
R
E
V
IE

W
A
R

T
IC

L
E

Diabetes, Obesity and Metabolism 18: 855–867, 2016.
© 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.review article

Extracellular microRNAs and endothelial hyperglycaemic memory:
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Type 2 diabetes mellitus (T2DM) is a major cause of cardiovascular (CV) disease. Several large clinical trials have shown that the risk for patients
with diabetes of developing CV complications is only partially reduced by early, intensive glycaemic control and lifestyle interventions, and that such
complications result from changes in complex, not fully explored networks that contribute to the maintenance of endothelial function. The accumulation
of senescent cells and the low-grade, systemic, inflammatory status that accompanies aging (inflammaging) are involved in the development of
endothelial dysfunction. Such phenomena are modulated by epigenetic mechanisms, including microRNAs (miRNAs). MiRNAs can modulate virtually all
gene transcripts. They can be secreted by living cells and taken up in active form by recipient cells, providing a new communication tool between tissues and
organs. MiRNA deregulation has been associated with the development and progression of a number of age-related diseases, including the enduring gene
expression changes seen in patients with diabetes. We review recent evidence on miRNA changes in T2DM, focusing on the ability of diabetes-associated
miRNAs to modulate endothelial function, inflammaging and cellular senescence. We also discuss the hypothesis that miRNA-containing extracellular
vesicles (i.e. exosomes and microvesicles) could be harnessed to restore a ‘physiological’ signature capable of preventing or delaying the harmful systemic
effects of T2DM.
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Introduction
Type 2 diabetes mellitus (T2DM) is a chronic, multifactorial,
metabolic disease caused by a complex interplay among envi-
ronmental and genetic factors [1]. The number of patients
with diabetes is increasing relentlessly in western countries,
and is expected to reach 552 million by 2030 [2]. T2DM is a
source of disability and morbidity, especially as a result of its
vascular complications, which eventually lead to retinopathy,
nephropathy, neuropathy, ischaemic heart disease and periph-
eral vasculopathy [2]. Endothelial dysfunction (ED), chronic,
low-grade systemic inflammation and (probably) cellular
senescence contribute to the development of severe vascular
complications, and have been proposed as key therapeutic
targets for T2DM [3–5]. Large clinical trials [6,7] have found
that early hyperglycaemia can promote disease progression
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and late complications, perpetuating ED and vascular damage
despite the achievement of improved glycaemic control, a
phenomenon that has been called ‘metabolic memory’ [1]. The
term indicates the vascular damage that persists after glucose
normalization, whereas the general, long-term, harmful effects
of diabetes (i.e. complications other than vascular) have been
referred to as the ‘legacy effect’ [8]. Different cell types are
affected by metabolic memory, including endothelial cells
(ECs), immune cells, smooth muscle cells and fibroblasts [1].
The lasting molecular changes involving the endothelium could
be termed ‘endothelial hyperglycaemic memory’. According to
recent evidence, oscillating glucose levels may actually be more
harmful, and induce more enduring effects on endothelial
health, than hyperglycaemia itself [9].

A variety of mechanisms are involved in metabolic mem-
ory, including increased production of advanced glycation
end products (AGEs), AGE receptor overexpression, increased
anion superoxide formation, mitochondrial protein glycation,
mitochondrial DNA damage, protein kinase C activation, and
polyol pathway and hexosamine flux alterations [1]. However,
targeting these changes with new therapies has had limited suc-
cess in slowing down disease progression and the development
of complications [10], indicating that not all the imbalances
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experienced by people with diabetes can be addressed by
therapies addressing single targets. Moreover, even though
combined treatment with glucose-lowering and lipid-lowering
drugs and antihypertensive medications has greatly improved
diabetes management, it cannot prevent the eventual devel-
opment of vascular complications, especially in patients with
long-standing disease [10,11].

Genome-wide association studies, linkage studies, candidate
gene association studies and meta-analyses have identified a
number of genes involved in susceptibility to both T2DM and
its complications [12]. However, genetic testing cannot predict
the clinical risk of vascular complications in T2DM with accu-
racy, suggesting that the cardiovascular (CV) complications of
diabetes are only partially attributable to genetic predisposition
[12,13].

Recently, epigenetic mechanisms have been hypothesized
to be a crucial interface between genetic and environmental
factors to explain metabolic memory [11,14–16]. Hypergly-
caemia can induce a variety of epigenetic changes that per-
sist for days after normalization of glucose levels [11,14–20],
mainly through the involvement of inflammatory genes [17,18].
DNA methylation and post-translational histone modifica-
tions (PTHMs) are the most extensively investigated epige-
netic mechanisms involved in metabolic memory. Hypergly-
caemia can affect the activity of PTHMs and DNA methyl-
transferases, and changes may become irreversible over time,
explaining the long-term harmful effects of metabolic memory
[16–20].

Recently, further epigenetic mechanisms have been iden-
tified. Non-coding RNAs, including microRNAs (miRNAs),
have emerged as key factors in gene expression regulation
and are likely to participate in metabolic memory modula-
tion. More than 2000 human miRNAs have been identified to
date, making them one of the most abundant classes of epi-
genetic regulatory molecules [21]. MiRNAs were previously
thought to act mainly as negative regulators of gene expres-
sion, by binding to the three-untranslated regions of their tar-
get protein-coding mRNAs in a sequence-dependent manner
[21]; however, a growing body of evidence supports the notion
that they are not only post-transcriptional regulators of gene
expression, but can directly repress or stimulate target gene
transcription by directly binding to promoter regions, a phe-
nomenon that has been called RNA activation [22]. Moreover,
miRNAs can target enzymes involved in DNA methylation and
miRNA genes which, in turn, are closely regulated at the level
of promoter methylation, transcription and processing [23].
Although miRNA modulation in the bloodstream and tissues
has been extensively studied in patients with diabetes [24],
their involvement in the CV complications of diabetes has only
recently been established conclusively [25,26].

In the present paper, we review the latest data on miRNA
changes in diabetes, address their potential relevance to the
development of CV complications, and highlight the possible
relationships among some affected pathways, altered molecular
data and the major pathogenic factors (i.e. low-grade inflam-
mation and ED) that are involved in the vascular complica-
tions of T2DM. The possibility of erasing metabolic mem-
ory by restoring physiological miRNA levels using innovative

therapies harnessing the miRNAs contained in microvesicles
(MVs) or exosomes is also discussed.

Chronic, Low-grade Inflammatory Phenotype
and Type 2 Diabetes
Several age-related conditions, including T2DM and CV dis-
eases, share a chronic, low-grade inflammatory state [3–5,27].
According to a recent, brilliant hypothesis, the build up of
cells with a senescence-associated secretory phenotype (SASP)
could promote the development of diabetes and its vascular
complications [5]. Senescent cells are believed to accumu-
late during physiological aging, driving the development of
age-related diseases through chronic secretion of a variety of
(SASP-related) factors that contribute to inflammaging (i.e. the
chronic, low-grade, systemic inflammation that accompanies
aging) [28]. The SASP is capable of transmitting senescence
(via the ‘bystander effect’) and of exerting harmful effects
in a paracrine as well as systemic way. The inflammatory
phenotype is characterized by persistent activation of the
nuclear factor kappa B (NF-kB) pathway, which induces
transcription of a number of genes involved in inflammatory
response modulation, including adhesion molecules such as
VCAM-1 and cytokines such as interleukin (IL)-6 and tumour
necrosis factor (TNF)𝛼 [29,30]. These genes are chronically
activated in cells from patients with diabetes [14–20]. The role
of senescence in the development of the vascular complica-
tions of T2DM, and whether their establishment precedes or
follows low-grade inflammation and vascular complications
are being extensively investigated [5,31]. In vivo senescence
probably encompasses a spectrum of states ranging from a
low to a high secretory phenotype, depending on its inducers
(i.e. replication or hyperglycaemia) and cell types, among
other factors. Epigenetic modifications leading to chronic
inflammation have been described in ECs and immune cells
of patients with diabetes even in the absence of replicative
senescence biomarkers [14–20]; however, most of the inflam-
matory mediators involved in the vascular complications of
diabetes, which are induced in vitro by hyperglycaemia in ECs
and immune cells, are the molecules released by cells bearing
the SASP (i.e. NF-kB, IL-1, IL-6, TNF𝛼, VCAM-1) [14–20],
suggesting a causal role for them in the maintenance of the
chronic, systemic inflammation that accompanies diabetes. A
comparative analysis of gene (and pseudogene) expression in
replicative and hyperglycaemia-induced senescence could shed
some light. Hyperglycaemia clearly promotes the acquisition
of a proinflammatory cellular phenotype that may be defined
as diabetes- (DASP) or hyperglycaemia-associated secretory
phenotype (HASP). Moreover, mounting evidence suggests
an important role for the inflammasome platform in both
T2DM and atherosclerotic disease [32,33]. The NOD-like
receptor (NLR)-caspase 1-IL-1𝛽 cascade can be activated by
endogenous metabolism or injury-derived byproducts called
damage-associated pattern molecules, resulting in chronic
secretion of inflammatory cytokines [34,35]. Strikingly, the
inflammasome controls the transmission of the SASP senes-
cence signal [30]. Besides NLR activation, toll-like receptor
(TLR) activation has also been proposed to be involved in
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T2DM and its complications, supporting a role for innate
immunity, and probably for microbiota, in the diabetic inflam-
matory milieu [36,37]. Remarkably, all lines of evidence point
to the chronic, low-grade inflammation typical of T2DM as a
key therapeutic target [3,38,39].

Our group has recently published a pioneering study sug-
gesting that some miRNAs may be part of the secretome of
cells bearing the SASP [40–42]. MiRNAs are expressed by all
living cells and can actively be released or shed in the blood-
stream and taken up in active form by receiving cells, acting
as highly efficient systemic communication tools. Easy detec-
tion in serum and plasma makes miRNAs emerging, mini-
mally invasive biomarkers of complex processes like age-related
diseases, including T2DM and CV diseases [43,44]. MiRNAs
can be secreted or released by cells within small membranous
vesicles (e.g. exosomes, MVs and apoptotic bodies), or pack-
aged in HDLs or RNA-binding proteins (e.g. Argonaute) [44].
MiRNAs have been shown to be functional mediators capable
of coordinating multiple pathways and of modulating virtually
all cellular responses to environmental stimuli, according to
each individual’s genetic make-up. Factors associated with dia-
betic complications, such as hyperglycaemia, ED, inflammation
and senescence, can induce deregulation of epigenetic mecha-
nisms, thus affecting circulating miRNA profiles. As a conse-
quence, the expression of specific genes in receiving cells, espe-
cially ECs, fibroblasts, vascular smooth muscle and immune
cells, may exhibit extensive changes even in the absence of other
adverse stimuli (i.e. return to normoglycaemia), disseminating
and possibly amplifying a pathological signature.

MiRNAs Involved in the Pathogenesis
of Diabetic Complications and Metabolic
Memory
After the initial metabolic insult, the pathways involved in
diabetic vascular complications are complex, interlinked and
self-perpetuating [10]. It is unlikely that a single druggable
pathway can prevent their onset. Targeting a number of path-
ways to slow down the development of diabetic complications
seems to hold greater promise, but has not proved effective
so far, probably because the intricate connections among the
mechanisms giving rise to such complications create redun-
dancy [10]. Since a single miRNA can target several genes, and
multiple miRNAs share common targets, miRNAs are partic-
ularly suited to target processes and pathways at the ‘network’
level [45], and could prove effective in eradicating metabolic
memory as well as multifactorial age-related diseases and
metabolism-related diseases [46,47]. Moreover, recent findings
indicate that circulating miRNAs, either carried by exosomes
or bound to HDL/proteins, can provide efficient communica-
tion between different tissues and organs, suggesting that they
can exert a remote action to regulate gene expression in target
cells [44].

A miRNA array approach involving human aortic ECs
has found that the expression of some miRNAs (miR-125b,
miR-146a-5p and miR-29a-3p) is associated with metabolic
memory. Interestingly, these miRNAs are involved in
the modulation of proinflammatory pathways and EC

dysfunction [48]. The demonstration that direct inhibition of
miR-125b expression, or miR-146a-5p upregulation, improves
endothelial function, blunting NF-kB signals, suggests that
glucose-induced changes in miR-125b and miR-146a-5p are
related to long-standing activation of the NF-kB pathway,
and help perpetuate metabolic memory. These data strongly
suggest that miRNA modifications could have a significant
role in metabolic memory. They also provide a miRNA-based
explanation for the constitutive activation of the NF-kB path-
way, which is considered to be one of the main causes of
ED in metabolic memory [14–20]. Importantly, miR-146a
is the most extensively investigated inflammation-related
miRNA (inflamma-miRNA) and senescence-associated
miRNA [49,50]. Under chronic stimulation, it is over-
expressed in several cell types, including ECs and white
blood cells, restraining inflammation and switching off acute
inflammation after removal of the harmful stimulus [49,50].
Altered (increased or decreased) miR-146a expression has
been detected in several diabetic tissue and cell types exposed
to hyperglycaemia [51–53]. Moreover, it plays an important
role in mitochondrial homeostasis [54,55], possibly connecting
aging- or hyperglycaemia-induced low-grade inflammation to
mitochondrial alterations, which are a hallmark of the compli-
cations of diabetes and of cellular senescence [56,57]. Because
a single miRNA can influence multiple features (i.e. low-grade
inflammation and ED) that are modulated by different path-
ways in different tissues, some circulating miRNA signatures
during aging and in patients with the major age-related dis-
eases suggest that they participate in a complex cross-talk
among tissues and organs. Interestingly, miR-146a is found in
exosomes, and its content increases after bacterial stimulation,
suggesting its systemic spread in some conditions [58,59].

A recent meta-analysis has found 40 circulating miRNAs,
including miR-21, miR-29a, miR-34a, miR-103, miR-107,
miR-126, miR-132, miR-142-3p, miR-144 and miR-375, that
are significantly deregulated in T2DM [43].

MiR-126 is the most extensively studied miRNA in T2DM.
Its best characterized biological function is to maintain vascular
integrity, which promotes the mobilization of haematopoietic
stem/progenitor cells and vascular cell survival [60]. A number
of reports have documented that miR-126 is downregulated
in plasma/serum, ECs and endothelial progenitor cells of
patients with diabetes [42,61–64]. Our group has reported that
circulating miR-126 increases both during aging and EC senes-
cence, and that diabetes/hyperglycaemia abolish this trend
[42]. The recent demonstration that miR-126 targets insulin
receptor substrate (IRS)-1 expression via PI3K/AKT signalling
pathways suggests that it is involved in IR modulation [65].
The key tissues regulating glucose homeostasis in response to
insulin are liver, skeletal muscle and adipose tissue. IRS-1 is a
key insulin signalling protein, whose adipose tissue expression
is reduced in humans and animals with T2DM, impairing
downstream insulin signalling through the PI3K and AKT
pathways, and resulting in reduced insulin-stimulated glucose
uptake [66,67]. Moreover, IRS-1 is a target of miR-126 in
adipose tissue and hepatocytes [68]. miR-126 downregulation
in the diabetic milieu could therefore be a compensatory
mechanism counteracting the loss of insulin sensitivity [69].
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(a) (b)

Figure 1. Pleiotropic effects of hyperglycaemia-induced miR-126 underexpression and insulin resistance. Hyperglycaemia-induced underexpression of
miR-126 may have favourable effects on adipose cells and hepatocytes in patients with insulin resistance, because miR-126 downregulates insulin receptor
substrate (IRS)-1, the key gene signalling insulin activation (a). Reduced miR-126 levels in such a setting could thus increase cell survival chances; however,
hyperglycaemia-induced miR-126 underexpression can exert harmful effects on EC, inducing upregulation of SPRED1 and PIK3R2, two of the most effective
angiogenic pathway inhibitors (b). In turn, endothelial dysfunction promotes development of diabetic complications.

The reduced intracellular miR-126 levels seen in cells cul-
tured in hyperglycaemic conditions as well as in plasma from
patients with T2DM could have a beneficial role in adipose
cells and hepatocytes, reducing IR. However, because miR-126
has pleiotropic effects, being also involved in the maintenance
of endothelial function, its downregulation in ECs exposed
to hyperglycaemic conditions promotes ED (Figure 1). In
this scenario, the extracellular exchange of miR-126 could
have clinical relevance in T2DM progression. Interestingly,
miR-126 has also been detected in circulating exosomes/MVs
of endothelial and adipose origin. MiR-126 downregulation
has been documented in exosomes from patients with diabetes
[42,61–64]; however, circulating miR-126 does not seem to
have predictive value for the development of CV complications
in subjects with diabetes [51,70], possibly as a result of the large
number of factors and tissues contributing to its circulating
levels (e.g. age, gender, medications and intrinsic response
differences between cell types) [42,51]. Exosomes/MVs of
endothelial origin might provide a more accurate source of
information about EC health. A large prospective study of
patients with stable coronary artery disease has shown that
only MVs containing miR-126 predicted a CV event over the

following 6 years, whereas circulating levels were uninforma-
tive [71]. Similarly, ECs exposed to hyperglycaemia release
less miR-126 into the culture medium [42]; this is especially
evident in miR-126 found in vesicles, both exosomes and
MVs (unpublished data from our laboratory). Convincing data
show the possibility of microparticle exchange among ECs,
where miR-126 interchange can regulate SPRED-1 expression,
and consequently the proliferation status of receiving cells, a
mechanism that is blunted in the diabetic environment [62].

Recently, new molecular changes have been described in
association with altered miR-126 levels. Unacylated ghre-
lin protects diabetic mice from peripheral artery disease
by restoring miR-126 levels and consequently VCAM-1,
SIRT1 and SOD-2 regulation, suggesting that miR-126 could
have anti-inflammatory and anti-senescence activity [72].
A huge amount of data stresses the central role of miR-126
in IR and endothelial homeostasis. The development of cell
type-specific delivery strategies could turn miR-126 mimics
into a therapeutic opportunity.

MiR-21 is extensively studied in cancer, but recently a role
for it in aging-induced inflammation [73] and endothelial
senescence has also been disclosed [74]. Several reports have
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described its downregulation in serum and endothelial progen-
itor cells from patients with diabetes [61,63,70] and still lower
serum levels in patients with diabetic complications [70]. In
contrast, a tissue-specific increase in miR-21 has been reported
in different hyperglycaemic environments [75–77], including
patients with diabetes with proliferative diabetic retinopathy
[75], while tissue upregulation has been seen to promote
renal fibrosis in diabetic nephropathy [76]. Interestingly, the
levels of circulating miR-21 can predict the development
of end-stage renal disease [78]. Moreover, it plays a crucial
role in cardiac fibrosis and related heart failure in a mouse
pressure-overload-induced model [79], an effect that seems
to be mediated by miR-21* contained in fibroblast-derived
exosomes [80]. Pharmacological inhibition of miR-21* in a
mouse model of angiotensin II-induced cardiac hypertrophy
has attenuated the disorder [80]; similar findings are emerging
for diabetic cardiomyopathy [81]. A list of circulating miRNAs
differentially expressed in plasma, serum and blood-derived
microparticles from patients with T2DM compared with
healthy subjects is reported in Table 1.

MiR-21, miR-126 and miR-146a are three extensively stud-
ied miRNAs in relation to T2DM and its vascular compli-
cations, as they display altered circulating as well as tissue
levels [11,43,51,103]; however, several other miRNAs, includ-
ing miR-1, miR-16, miR-125b, miR-133, miR-155, miR-206,
miR-221, miR-223 and miR-503, have been associated with
the vascular complications of diabetes [11,14,51,104] through
inflammatory pathway alterations and impairment of endothe-
lial function [11,14,51,104].

According to a recent interesting paper, intensive glycaemic
control in streptozotocin-treated mice is unable to reverse the
deregulation of a large miRNA panel in the diabetic heart; in
particular, 268 of 316 miRNAs remained dysregulated after
intensive glycaemic control with insulin for 3 weeks [105], sug-
gesting a strong role for miRNAs in diabetic cardiomyopathy
and metabolic memory; informatics analysis then disclosed
that the majority of dysregulated miRNAs were involved in
inflammation, fibrosis, apoptosis and hypertrophy. An ex vivo
study of left ventricle biopsies from patients with heart failure
has found several deregulated miRNAs (miR-34b/c, miR-199b,
miR-210, miR-223 and miR-650) in individuals with diabetes
compared with individuals without [106].

Epigenetic therapy has finally moved from the workbench to
the clinic [107]. A variety of pharmacological tools have been
developed to target miRNA pathways [46] or exploit miRNAs
for selective gene therapy [108]. Promising in vivo results have
been achieved in patients with CV disease, and progress is
continuous [46,47,108]. Several experimental strategies have
been tested to deliver miRNA mimics or antagonists. Syn-
thetic miRNA or pre-miRNA duplexes, chemically modified
to enhance stability and cellular uptake, have been loaded
onto different delivery systems, including lipid nanoparticles
with surface receptor ligands to improve tissue specificity.
Adeno-associated viruses and other viral-based vectors are
further well-studied delivery methods [46]. Antisense oligonu-
cleotides complementary to the mature miRNA sequence,
or ‘antagomiRNAs’, were the first miRNA inhibitors to be
used in mammals [109]. AntagomiRNAs were subjected to a

Table 1. Circulating microRNAs differentially expressed in patients with
type 2 diabetes and control subjects, and sample type.

miRNA

Expression in
patients with
T2DM versus
control
subjects Sample type

Proteins
targeted in
recipient cells
by miRNA
transfer

let-7a Down Plasma [82]
let-7f Down Plasma [82]
let-7i Down Serum [83]
miR-100 Down Whole blood [84]
miR-124a Up Serum [85]
miR-125b Down Plasma [86]
miR-126 Down

Down
Down
Down
Down

Down
Down

Plasma [86]
Plasma [87]
Plasma[61]
Microparticles [88]
Circulating microparticle,

plasma [62]
Serum [89]
Plasma [70]

SPRED1 [62]
IRS-1 [90]
FGF2 [90]

miR-1303 Up Serum [91]
miR-130b Down Plasma [86]
miR-140-5p Up Plasma [86]
miR-142-3p Up Plasma [86]
miR-144 Up Peripheral blood [92]
miR-146a Up

Up
Down
Down
Down

Serum [85]
Plasma [93]
Serum [83]
Peripheral blood [92]
Serum [94]

IRAK1 [59]
TRAF6 [59]
NFkB pathway

[59]

miR-150 Up Peripheral blood [92]
miR-15a Down Plasma [61]
miR-182 Down Peripheral blood [92]
mir-186 Down Serum [83]
mir-191 Down

Down
Serum [83]
Plasma [61]

miR-192 Down
Down
Up

Plasma [86]
Serum [83]
Peripheral blood [92]

miR-195 Down Plasma [86]
miR-197 Down Plasma [61]
miR-199a Up Plasma [94]
miR-20b Down Plasma [61]
miR-21 Down

Down
Plasma [61]
Plasma [70]

miR-222 Up Plasma [86] ICAM-1 [95]
miR-223 Down Plasma [61]
miR-23a Down Serum [83]
miR-23b Down Peripheral blood [96]
miR-24 Down Plasma [61]
miR-26a Down Microparticles [62]
miR-27a Up Whole blood [97]
miR-28-3p Up Plasma [61]
miR-29a Up

Up
Serum [85]
Peripheral blood [92]

miR-29b Down Plasma [61]
miR-30d Up Serum [85]
miR-320a Down

Up
Up

Plasma [61]
Peripheral blood [92]
Serum exosomes [97]

IGF1 [98]
Hsp20 [98]
Est2 [98]
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Table 1. Continued

miRNA

Expression in
patients with
T2DM versus
control
subjects Sample type

Proteins
targeted in
recipient cells
by miRNA
transfer

miR-326 Up Plasma [82]
miR-34a Up Serum [85]
miR-375 Up

Up
Serum [85]
Plasma [99]

miR-423-5p Down Plasma [86]
mir-486 Down

Down
Serum [83]
Plasma [61]

miR-503 Down
Up

Serum [100]
Plasma [101]

EFNB2 [102]
VEGFA [102]

miR-532-5p Down Plasma [86]
miR-571 Up Serum [91]
miR-661 Up Serum [91]
miR-770-5p Up Serum [91]
miR-892-5p Up Serum [91]
miR-9 Up Serum [85]
mir-96 Down Serum [83]

IRS, insulin receptor substrate; miRNA, microRNA; NF-kB, nuclear factor
kappa B; T2DM, type 2 diabetes.
Target proteins are reported only for those microRNAs whose transfer has
been shown to regulate protein expression levels in recipient cells.

number of chemical adjustments. Cholesterol conjugation via a
20′-O-methyl linkage in the 30 end, phosphorothioate linkage,
20′-O-methyl-modified ribose sugar, 20-′,40′-constrained
20′-O-ethyl-modified nucleotides, 20′-O-methoxyethyl and
20′-fluoro and 20′-fluoro/methoxyethyl are all modifications
introduced to improve their pharmacokinetic and phar-
macodynamic properties [46]. Finally, locked nucleic acid
(LNA)-antagomiRNA technology has successfully been tested
in an in vivo trial [107]. The ribose moiety of an LNA nucleotide
has been modified with an extra bridge connecting the 2′ oxy-
gen and 4′ carbon, conferring higher stability, binding affinity
and increased selectivity to complementary RNA [46].

Both miRNA antagonists and miRNA mimics, however,
still have some technical, pharmacological and pharmacoki-
netic problems [46]. MiRNA shuttling by exosomes or MVs is
expected to overcome technical difficulties, providing a valu-
able, practical strategy for efficient delivery of corrective or
protective miRNA signatures to target cells. Extracellular vesi-
cles (EVs) are physiological cell-derived nanocarriers that are
immunologically inert if purified from a compatible cell source
[110]. Moreover, it has been shown that polymeric nanoparti-
cles can be engineered to target certain tissues selectively [111].
In particular, any nanoparticles designed to target the vascular
endothelium could provide an attractive drug delivery tool. In
this context, EV integrin expression patterns appear as the main
determinants of vesicles tropism [112].

MiRNAs and Off-target Effects of Diabetes
Medications
Among the medications currently used to treat patients with
T2DM, some molecules have shown better results in terms of

protection against CV complications. For example, a number
of clinical studies have shown that metformin, a hypoglycaemic
agent, reduces the risk of myocardial infarction and all-cause
mortality compared with other medications [113,114]. The
drug’s off-target molecular effects are not yet clear, but some
interesting data suggest that it can mitigate endothelial senes-
cence both in vitro [115] and in vivo [116], and that it exerts
similar effects on the SASP through NF-kB inhibition in
oncogene-induced senescence [117]. Moreover, metformin
has proven molecular in vitro efficacy against metabolic
memory in ECs through SIRT-1 activation [118] and an in
vivo anti-inflammatory effect in patients with diabetes and
atherosclerosis [33,119,120]. These data suggest the existence
of shared molecular and epigenetic alterations in diabetes and
aging that are probably related to low-grade inflammation; such
changes could provide other possible exploitable targets for
T2DM treatment (i.e. the sirtuin family) [121,122]. In a recent
study, circulating levels of miR-140-5p and miR-222, two of the
most extensively studied inflamma-miRNAs that are altered in
patients with diabetes, were reduced by 3-month metformin
treatment [86]. Interestingly, miR-222 has recently been shown
in endothelial microparticles; its transfer can regulate ICAM-1,
which is impaired in a hyperglycaemic environment [95].
MiR-222 also has an important role in ED and atherosclerosis
progression [123]. Circulating miRNA profiling after human
administration could offer key information on the off-target
effects of metformin. If its anti-inflammatory/secretory activity
is confirmed [33], it can be harnessed to design new drugs or
miRNA-based strategies.

At present, antihypertensive medications are among the
most effective treatments for ED prescribed to subjects
with diabetes [124]. Blood pressure reduction confers the
strongest protection against CV events in such patients [124].
Angiotensin-receptor blockers (ARBs) seem to be able to
reverse metabolic memory in diabetes [125,126].

Beyond the extensive molecular imbalances induced by high
blood pressure on endothelial function and the inflammatory
profile [127], a possible role for senescence and the associated
epigenetic changes should also be considered. Hyperglycaemia
and hypertension are strong individual inducers of senescence
[127–130]. It is conceivable that high blood pressure and
hyperglycaemia, combined with the characteristic, low-grade
chronic inflammation of diabetes, can accelerate the onset
of senescence, which would otherwise develop later in life.
Remarkably, there seems to be a partial overlap between
miRNAs that are deregulated in patients with diabetes and
in hypertension because the levels of miR-21 [131], miR-126
[132], miR-146a [133], miR-155 [134], and a long-coding
RNA, which functions as a host transcript for miR-221 and
miR-222 [135], are affected in either condition, both in the
circulation and in tissue. In particular, a disturbed flow can
negatively regulate miR-126-5p and abrogate EC prolifera-
tion at predilection sites in response to hyperlipidaemic stress
through upregulation of Dlk1 expression [136]. Administration
of miR-126-5p rescued EC proliferation at predilection sites
and limited atherosclerosis; moreover, miR-126 downregula-
tion and the subsequent SPRED-1 increase contribute to right
ventricle failure in pulmonary arterial hypertension [137].
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Table 2. MicroRNAs expression changes in the bloodstream after treatment with currently used diabetes medications.

Treatment Experimental procedure Modulated miRNAs Sample type References

Metformin Three-month metformin
treatment in patients with
T2DM

↓ miR-140-5p
↓ miR-222
↓ miR-192

Plasma [86]

Angiotensin-receptor blocker or
angiotensin-converting
enzyme inhibitor + statin

Twelve-month combined
treatment with atorvastatin
and telmisartan or atorvastatin
and enalapril in patients with
coronary artery disease

↓ miR-146a/b
↓ miR-31
↓ miR-181a
↓ miR-16
↓ miR-145

PBMCs Plasma [133]
[139]

Metformin+ anti-diabetic
agents (dipeptidyl peptidase 4
inhibitors and glynides)

Glucose-lowering treatment
followed by clinical
re-evaluation at 12 months

↑ let-7a
↑ let-7f

Plasma exosomes [82]

miRNA, microRNA; PBMC, peripheral blood mononuclear cells; T2DM, type 2 diabetes.

Furthermore, combined treatment with an ARB and a statin
has been shown to counteract the effects of both acute hyper-
glycaemia and acute hyperlipidaemia [138], and to reduce
circulating miR-146a/b and TLR4 signalling in patients with
coronary artery disease [133]. ARBs appear to be more
effective than angiotensin-converting enzyme inhibitors in
modulating a panel of TLR4-responsive miRNAs [139]. Statins
have a known pleiotropic anti-inflammatory effect [140].
Recently, a role for them has been proposed in telomerase
and senescence regulation [140]. Because miR-146a increases
during senescence [50,141], attenuating IL-6 release in both
fibroblasts and ECs acquiring the SASP, it is conceivable that
the anti-inflammatory effect of statins is partly mediated
by miR-146a. Moreover, oscillatory shear stress is capable
of upregulating miR-21, which in turn targets peroxisome
proliferator-activated receptor-𝛼 (PPAR-𝛼) in an autoregula-
tory loop, modulating flow-induced endothelial inflammation
[142]. Fenofibrate, the only PPAR-𝛼 agonist approved for
human use, has shown great potential in diabetic retinopathy
[143]. Various mechanisms have been proposed to explain this
off-target effect [143]. Fenofibrate also modulates miR-199a
and miR-214 [144], which play an important role in retinal
neovascularization [145].

It is difficult to establish whether miRNA modulation after
drug treatment is direct or mediated by other medication-
modified factors; however, since existing anti-diabetic drugs
can modulate miRNA levels, the topic deserves further inves-
tigation. The literature describing miRNA expression changes
after administration of antidiabetic treatment is summarized in
Table 2.

Therapeutic Potential of Exosome/
Microvesicle-contained miRNAs and Metabolic
Memory
One approach to overcome some technical problems of
miRNA-based treatment is to use physiological, human-
derived, and ready-packaged EVs, either exosomes or MVs.
EVs released from donor cells by shedding from the plasma
membrane are commonly referred to as MVs, whereas those
secreted by multivesicular endosomes are called exosomes
[146]. EVs contain mRNA, miRNAs, other non-coding RNAs,

and a variety of protein types. EVs can be transferred to recip-
ient cells, where shuttled RNA can be functional [147,148].
The functional relevance of miRNA-containing EV transfer
has been described both in vitro and in vivo [147,148]. EVs,
particularly exosomes, have attracted considerable interest
for their potential use both as biomarkers and as vehicles for
gene (or pseudogene) therapy [147,148]. They are found in the
circulation in healthy individuals, and their number rises in
several CV conditions associated with inflammation; a growing
number of reports have been documenting a role for them in
endothelial function regulation [149].

MiR-146a and miR-155 are involved in the vascular com-
plications of diabetes [51,150] and are probably the two best
explored inflamma-miRNAs [41,49]. A recent and innovative
study has found them in exosomes released from dendritic
cells after LPS (a TLR4 ligand) stimulation. In particular,
exogenous miRNAs can reprogramme the cellular response to
endotoxin, where miR-155 enhances and miR-146a reduces
inflammatory gene expression [59]. NLR and TLR pathways
play a significant role in the pathogenesis of inflammaging and
inflammation-mediated ED [36]. Endogenous TLR ligands
activate the TLR pathway, inducing NF-kB activation and
promoting inflammation-mediated ED [36,39]. It is conceiv-
able that diabetic adipose tissue is a source of inflammatory
exosomes with altered miRNA content. For instance, stimula-
tion of human-isolated adipocytes with LPS induces release of
specific miRNAs into the culture medium [151]. Interestingly,
secreted miR-155, miR-221 and miR-222, which play a role in
the CV complications of diabetes, are shared between inflamed
adipocytes and M1 macrophages [151]. Evidence of EVs con-
taining inflamma-miRNAs that can modulate ED is already
being published [64,152–155].

It is still unclear whether the EV content closely reflects the
cell of origin or whether it may be altered also in the absence
of major imbalances in parent tissue [147,148]. Evidence for
both options has been provided [156,157]. Some discrepancies
probably depend on the size of the EVs examined, as different
molecular mechanisms regulate the sorting of molecules into
exosomes or MVs [147]. In any case, hyperglycaemia itself can
induce epigenetic damage [14–20]; the resulting EVs may thus
have an altered content capable of propagating an ‘incorrect’
signature that modifies the epigenetic set-up in receiving cells
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(a) (b) (c)

Figure 2. Epigenetic damage transmission. Postulated mechanism. Extracellular vesicles (EVs) contain mRNAs, microRNAs (miRNAs) and other
non-coding RNAs, as well as a number of proteins. EVs can be transferred to recipient cells, where shuttled RNA can be functional. The endothelium uses
EVs for physiological cell–cell communication (a). Hyperglycaemia can exert semi-permanent epigenetic damage in endothelial cells (b). The resulting
EVs may have an altered content capable of propagating an ‘incorrect’ signature that modifies the epigenetic set-up in receiving cells even after stimulus
removal; this would perpetuate the insult despite glucose normalization (c), which can be achieved through hypoglycaemic medications and/or lifestyle
interventions.

even after stimulus removal. This would perpetuate the insult
despite glucose normalization (Figure 2), a phenomenon that
could be defined as ‘epigenetic damage transmission’.

Reports of altered EV content in diabetic humans or
mice and of hyperglycaemia-challenged ECs, fibroblasts, adi-
pose, immune and pancreatic cells are increasingly frequent
[62,82,95,98,102,153,155,158–161]. Intra- and inter-tissue
horizontal miRNA transfer through exosomes or MVs appears
to be an important phenomenon, especially for the vascular
complications of diabetes. Imbalances in the content of pro-
or anti-inflammatory miRNAs (i.e. miR-21, miR-146a and
miR-155) and pro- or anti-angiogenic miRNAs (i.e. miR-126,
miR-320 and miR-503) currently seem to be the most promis-
ing exploitable differences [62,95,98,102,153,155,160–162].

Exosomes derived from cardiomyocytes of Goto-Kakizaki
rats, a widely used T2DM model, have been seen to increase
miR-320 and reduce miR-126 content. Their transfer achieved
functional downregulation of target genes (e.g. IGF-1, Hsp20
and Ets2) in recipient ECs, and miR-320 overexpression inhib-
ited endothelial migration and tube formation [98]. Engineered
exosomes, enriched with miR-320 antagonists, have already
been proposed as a therapeutic option to increase angiogenesis
in the diabetic heart [98,160]. Moreover, high glucose induces
NF-kB binding to the miR-503 promoter region and upregu-
lates miR-503 expression in ECs. NF-kB further induces shed-
ding of endothelial microparticles carrying miR-503, inducing
its transfer from ECs to vascular pericytes; integrin-mediated

uptake of miR-503 in recipient pericytes reduces EFNB2 and
VEGFA expression, resulting in impaired migration and prolif-
eration [102].

Finally, proof-of-concept showing that miRNA-rich exo-
somes secreted from fibrocytes can accelerate wound healing
in diabetic mice has been provided [162].

Conclusions and Future Prospects
A range of interventions, including lifestyle modification
and/or pharmacological treatment, can be harnessed to
improve outcomes in patients with diabetes; however, they are
not sufficient, alone, to prevent the onset of the long-term dis-
ease complications. Epigenetic mechanisms, including DNA
methylation, histone modifications and non-coding RNA
expression modulation, have tremendously expanded our
knowledge of some basic mechanisms of metabolic memory.
EVs containing miRNAs are emerging as ideal candidates to
provide diagnostic and prognostic information about diabetes
and its CV complications. Moreover, exosome/MV-shuttling
of miRNAs might provide a novel therapeutic approach to
mitigate ED and inflammation in T2DM by trying to avoid or
delay the harmful effects of diabetes on CV complications.

How do we go on from here? Further progress requires provi-
sion of two sorts of experimental data: (i) extensive comparative
characterization of the nucleic acid (mRNA, miRNAs and other
non-coding RNAs) and protein content of exosomes/MVs from
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diabetic and healthy subjects; and (ii) the demonstration that
chronic EV administration (chronic parabiosis) from a diabetic
to a healthy mouse and vice versa is sufficient to induce and mit-
igate the CV complications of diabetes, to confirm the feasibility
of ‘small balls’ therapy.
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