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Abstract 

Magnetic particle imaging (MPI) is an emerging molecular imaging technique with high sensitivity and temporal-spa-
tial resolution. Image reconstruction is an important research topic in MPI, which converts an induced voltage signal 
into the image of superparamagnetic iron oxide particles concentration distribution. MPI reconstruction primarily 
involves system matrix- and x-space-based methods. In this review, we provide a detailed overview of the research 
status and future research trends of these two methods. In addition, we review the application of deep learning 
methods in MPI reconstruction and the current open sources of MPI. Finally, research opinions on MPI reconstruction 
are presented. We hope this review promotes the use of MPI in clinical applications.
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Introduction
Magnetic particle imaging (MPI) is a novel molecular 
imaging modality that can image superparamagnetic 
iron oxide particles (SPIOs) with high temporal-spatial 
resolution and sensitivity in a noninvasive manner [1–4]. 
In 2005,Gleich and Weizenecker  [1] first proposed the 
physical principles and wide application prospects of 
MPI. The imaging principle of MPI is related to the non-
linear magnetization response of SPIOs in a magnetic 
field. First, a gradient field generated by a permanent 
magnet or energized coil is used to create a field-free 
region (FFR). Subsequently, by superimposing an oscil-
lating drive field, the FFR moves through the field of view 
(FOV) [5, 6]. The excitation field influences SPIOs near 
the FFR to undergo a nonlinear magnetization response 
to generate a voltage signal in the receiving coils (Fig. 1 
A). When SPIOs enter the magnetic-field saturation 
region, SPIOs are not magnetized to produce voltage 

signals (Fig.  1 B). The concentration distribution of the 
SPIOs can be further obtained by analyzing the recon-
struction algorithm from the signal to the image [7, 8].

Compared with current powerful imaging techniques, 
MPI has significant advantages. Computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) can 
achieve a sub-millimeter spatial resolution, but their 
sensitivity is limited, resulting in poor specificity at the 
molecular level [4]. Positron emission tomography (PET) 
and single-photon emission computed tomography 
(SPECT) have high sensitivity but a spatial resolution 
of approximately 3 mm. In addition, these applications 
are limited by the short half-life of radioactive tracers in 
cell tracking or other several research fields that require 
long observations [9]. Optical imaging technology can 
achieve a high sensitivity and spatial-resolution imag-
ing, but its imaging depth is limited to 2-3 cm [10, 11]. 
MPI is expected to overcome the limitations of molecu-
lar imaging technology in terms of imaging depth, sensi-
tivity, resolution, and radiation, thereby becoming a new 
trend in the development of high-end medical imaging 
that represents the international academic frontier of 
the development of modern medical imaging [4, 12–14]. 
Table 1 presents quantitative comparisons between dif-
ferent imaging modalities.
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As a new molecular imaging technology, MPI plays an 
increasingly important role in many preclinical biomedi-
cal studies. MPI has been proven to achieve a highly sen-
sitive detection of approximately 250 cells in vivo in cell 
tracking studies [15]. MPI has provided the highest imag-
ing sensitivity in multimodality dynamic observations of 
gliomas [16, 17]. MPI can also detect and visualize the 
homing of breast tumor cells with high sensitivity [18]. 
MPI has also been successfully applied in cardiovascular 
and cerebrovascular imaging [19, 20] and neuroimag-
ing [21]. These advances fully demonstrate the imaging 
advantages of the high sensitivity and specificity of MPI, 
demonstrating the great potential and value of this new 
molecular imaging technology.

In recent years, the imaging theory and instruments for 
MPI have been continuously improved and developed. 
In 2008, instead of moving the object mechanically in a 
horizontal direction, Gleich et al. [22] achieved fast two-
dimensional (2D) imaging by superposing a horizontal 
drive field. In the same year, they proposed a field-free 
line (FFL), which is an effective encoding scheme for 
MPI. The results of the simulations demonstrated an 
obvious improvement in image quality compared with 
the existing field-free point (FFP) [23–26]. Subsequently, 
novel single-sided MPI equipment was proposed by Sat-
tel et al. [27], which overcame the limitations of specimen 
size. In 2009, they achieved the first three-dimensional 
(3D) real-time in vivo MPI [2]. In 2013, the world’s first 
commercial MPI scanner (based on FFP) was released 
by Bruker Biospin. In 2014, the Magnetic Insight com-
pany from the United States unveiled the world’s second 

commercial MPI scanner (based on FFL) [4]. In 2015, a 
superspeed traveling wave MPI scanner was proposed 
to realize superspeed imaging of magnetic particle flows 
[28]. In 2016, Franke et  al.  [29] designed a hybrid sys-
tem that combined MRI and MPI. In 2019, Gräser  et al. 
[30] designed an MPI scanner with the size of the human 
brain. In 2020, scientists from Turkey proposed an open-
sided MPI scanner system based on the FFL scheme [31]. 
In 2021, a novel handheld MPI scanner was designed for 
the intraoperative imaging of breast nodules [32]. Fig-
ure 2 shows the development timeline of MPI.

With the continuous development of MPI scanners, 
abundant research on MPI reconstruction has been 
conducted to enhance the imaging performance of the 
instruments. MPI reconstruction algorithms are pri-
marily of two types of methods: system matrix (SM) and 
x-space. SM-based MPI reconstruction is an important 
field [33–35]. The acquisition of SMs in SM-based MPI 
reconstructions is an important research topic. Cur-
rently, three methods have been reported for obtain-
ing SMs: measurement-based SM, sparse recovery SM, 
and model-based SM. Owing to the complex magnetic 
environment and magnetization behavior of SPIOs, the 
development of an accurate physical model remains a 
challenging problem. Therefore, the first reported, and 
the most accurate method, is measurement-based SM 
acquisition, which involves moving a delta sample with a 
robot at all positions of the entire FOV [1, 36]. Despite its 
high accuracy, the measurement process is time consum-
ing. In addition, the measured SM requires a lot of mem-
ory, which leads to inefficient reconstruction. Therefore, 

Fig. 1  Magnetization response of SPIOs. A SPIOs are excited with a sinusoidal magnetic field. B SPIOs enter the magnetized saturation region
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sparse recovery methods and model-based SM acquisi-
tion have been proposed [37, 38]. In addition to the SM 
acquisition method, a reconstruction strategy based 
on SM is an important research topic. Further details 
regarding this are covered later in this review.

X-space methods are another important component of 
MPI reconstruction [39–42]. This study reviews the basic 
theory and improved algorithms developed in recent 
years. In addition, with the current development of arti-
ficial intelligence (AI), strategies based on deep learning 
networks have also shined in the field of MPI reconstruc-
tion. We review the relevant research in detail. Further-
more, there is an increasing number of MPI research 
groups around the world, as well as many open-source 
data, programs, and software platforms, which are also 
discussed in this review. Finally, the conclusions and out-
look of MPI are presented.

SM‑based MPI reconstruction
The objective of MPI reconstruction is to transform the 
induced voltage signal into a spatial concentration dis-
tribution of the SPIOs. A SM is a mapping of the two 
items, considering the complex magnetic field and SPIOs 

properties [7, 36, 43]. The linear mapping between the 
induced voltage signal uk ( Fourier coefficients of the 
time-domain signal u(t)) and SPIO concentration c(r) can 
be described as follows:

where r represents the spatial position, and sk(r) denotes 
the system function. K denotes the total number of fre-
quency components. By sampling all N positions of the 
FOV, we obtain the following linear relationship:

where S ∈ C
K×N denotes the SM. u ∈ C

K×1 and 
c ∈ R

N×1 denote the voltage and SPIOs concentration 
vector, respectively.

SM-based reconstruction plays an important role in 
MPI reconstruction. This section describes the com-
monly used SM acquisition methods and reconstruction 
strategies based on SM.

(1)uk =
�

sk(r)c(r)d
3r, k = 1, . . . ,K

(2)u = Sc

Table 1  Quantitative comparisons of different imaging modalities

Property CT MRI PET/SPECT Optical imaging MPI

Spatial resolution < 1 mm < 1 mm 3 mm < 1 mm < 1 mm

Temporal resolution 1 s 1 s-1 h 1 min < 0.1 s < 0.1 s

Sensitivity Low Low High High High

Depth High High High 2-3 cm High

Radioactivity Yes No Yes No No

Fig. 2  Timeline of MPI development
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Acquiring the SM
Measurement‑based methods
A tedious calibration procedure must be performed for 
the measurement-based SM acquisition method. Figure 3 
shows the calibration procedure for the measurement-
based method. It measures the induced voltage signal 
at all positions in the FOV with a delta sample to obtain 
the SM. Even a medium-sized image of 34×28× 20 can 
require up to six hours to measure the SM [2, 37]. There-
fore, a high-quality image requires a time-consuming 
and tedious calibration procedure. In addition, when the 
experimental conditions change, such as changes in par-
ticle species and magnetic field intensity, the SM must be 
recalibrated. In addition, cooling is required during cali-
bration because the coils overheat after prolonged system 
operation [44].

Sparse recovery methods  Owing to the complexity and 
time requirements of the measurement-based SM acqui-
sition method, many studies have proposed sparse recov-
ery methods to obtain a complete SM using only a subset 
of all calibration scans. In 2013, Knopp and Weber [37] 
proposed using the sparsity of SMs based on certain basis 
transformations (such as the discrete Fourier transform, 

discrete cosine transform or discrete Chebyshev trans-
form) for compressed sensing (CS) reconstruction to sig-
nificantly reduce the number of calibration scans. Each 
row of the SM is handled separately. Taking the k-th row 
as an example, an inverse problem must be solved:

where � ∈ C
N×N denotes a basis transformation matrix, 

x ∈ C
N×1 denotes the optimization results, and P repre-

sents the undersampled matrix, which denotes the posi-
tion index of the points sampled from the k-th row sk . yk 
denotes the undersampled measurement: yk = Psk . Sev-
eral algorithms have been proposed to solve this inverse 
problem [37]. The sparse recovery method based on the 
standard CS can reduce the sampling rate by 10% [37].

Based on CS theory, many improved sparse recov-
ery algorithms have also been extended. Weber and 
Knopp [45] proposed the use of SM symmetry to further 
compress SMs (Fig.  4). Grosser et  al.  [44] proposed the 
use of low-rank tensors to represent SMs, which allows 
SM recovery even when the sampling rate is reduced to 
2%. Ilbey et  al.  [46] presented a framework for a coded 
calibration scene. Compared with the standard CS 

(3)arg min
x

��x�1 subj.to
1

2
�Px − yk�

2
2 < ε2

Fig. 3  Principle of measurement-based SM method of MPI using a delta sample (taking a grid of 3 × 3 as an example). A robot moves the delta 
sample to scan the location of each pixel
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method, the image quality is significantly improved 
under the same signal-noise ratio (SNR) and sampling 
rate [46]. Sparse recovery algorithms can significantly 
reduce the calibration time and guarantee the quality 
of image reconstruction, which has attracted increasing 
attention in the field of MPI reconstruction.

Model‑based methods  In addition to the measurement-
based and sparse recovery methods, Knopp et al. [38] pro-
posed a model-based method in 2010. They used the 

model of a signal chain to generate SMs. This approach 
consisted of three steps.

1) Signal encoding: the principle of the signal chain 
is used to model signal encoding. In MPI, the relation-
ship between the time-domain induced voltage u(t) in the 
receiving coil and SPIO concentration c(r) is as follows:

where µ0 represents the permeability of a vacuum, and 
M(r, t) denotes the unit magnetization of the SPIOs. p(r) 

(4)u(t) = −µ0

∫

�

∂

∂t
M(r, t) · p(r)c(r)dr

Fig. 4  A The principle of the CS-symmetry method: the first half of the SM is recovered based on the CS method. Then, the complete SM is 
recovered based on mirror symmetry (alternatively, by changing the order of the two steps, symmetry-CS is permissible). B The SM components at 
different frequencies recovered with the symmetry-CS method at different sampling rates. C Reconstructed phantom results of the recovered SM at 
different sampling rates based on the symmetry-CS method. For more images see ref. [45]
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is the sensitivity profile of the recording coil. Because 
filtering is easier in the frequency domain, processing is 
generally performed in the frequency domain to increase 
the accuracy of the modeled-induced voltage:

where ak is the transfer function. Comparing Eqs. (1), (4), 
and (5), the model-based system function is obtained as 
follows:

2) Particle model: Langevin is the most commonly used 
model for describing the magnetization of SPIOs:

with

where KB and T are the Boltzmann constant and tem-
perature, respectively. m denotes the magnetic moment, 
and eH = H(r, t)/�H(r, t)�2 denotes the direction of the 
magnetic field strength. D represents the diameters of the 
SPIOs.

3) Transfer function: ak can be obtained by minimizing 
the following equation:

where k denotes the frequency index, smeas
k  denotes the 

measured system function, and ŝmodel
k = smodel

k /ak . ak can 
be computed as follows.

In principle, a measured system function with a sin-
gle position is sufficient for obtaining ak . This approach 
demonstrates the feasibility of modeling instead of meas-
uring SMs [38]. Subsequently, Knopp et  al.  [47] verified 
the accuracy of a model-based SM acquisition method 
on 2D data. Model-based SM acquisition methods can 
accurately model the system function based on a few 
calibration scans, and the accuracy can be increased by 
improving the underlying physical model.

(5)

uk =

∫

�

(

ak

∫ T

0

∂

∂t
M(r, t) · p(r)e2π ikt/Tdt

)

c(r)dr

(6)smodel
k (r) = ak

∫ T

0

∂

∂t
M(r, t) · p(r)e2π ikt/Tdt

(7)M(r, t) = eH

∫ ∞

0
ρ(D)m

(

coth(ξ)−
1

ξ

)

dD

(8)ξ =
µ0m�H(r, t)�2

kBT

(9)f (ak) =

∫

�

|smeas
k (r)− ak ŝ

model
k (r)|2dr

(10)ak =

∫

�
smeas
k (r)ŝmodel

k (r)dr
∫

�
|ŝmodel
k (r)|2dr

SM‑based MPI reconstruction based on the regularization 
strategy
After obtaining the SM, the concentration distribution 
of the SPIOs can be obtained by solving Eq. (2) using a 
series of optimization algorithms. Owing to the ill-pos-
edness of the inverse problem, a regularization strategy 
was introduced to improve the accuracy of image recon-
struction. Tikhonov regularization is the most commonly 
used method and is widely used in MPI reconstruction 
owing to its fast and simple implementation [3]:

where � denotes the regularization parameter that penal-
izes the solution with a large Euclidean norm. W denotes 
the weighting matrix used to normalize the elements of 
the SM.

Both direct and iterative methods are used to solve the 
Tikhonov regularization. Examples of direct methods are 
Cholesky decomposition or singular value decomposition 
(SVD) [48, 49]. Direct methods have several advantages. 
For example, SVD can flexibly tune the regularization 
parameters with only a small amount of computational 
effort. However, the complete SM must typically be 
stored in memory while solving Eq. (11), which is unfea-
sible for a huge SM of 3D MPI.

Therefore, iterative methods have emerged with a high 
demand in MPI, leading to less memory and computa-
tional effort in several cases. Popular iterative methods 
include the conjugate gradient method [48] and Kacz-
marz method [50, 51]. The Kaczmarz method is a row-
action method that operates on rows independently. 
Convergence has been reported to occur within ten itera-
tions of the Kaczmarz method [52]. Therefore, the state-
of-the-art method for SM-based reconstruction is the 
Tikhonov regularization solved by the Kaczmarz method 
[53]. In recent years, many Kaczmarz-related Tikhonov 
regularization solutions have emerged in the field of MPI 
reconstruction [3, 50, 54].

Although Tikhonov regularization is simple and 
easy to implement, it does not use the inherent spatial 
neighborhood structure priori to improve the image 
quality. Therefore, to introduce the neighborhood 
structure,Storath et al. [55] proposed nonnegative fused 
LASSO regularization and achieved edge-preserving and 
noise-reducing reconstruction for MPI. The form of the 
fused LASSO regularization is as follows:

where TV (c) denotes the total variation that promotes 
a sparse edge. ‖c‖1 represents the L1 norm. α and β are 

(11)arg min
c≥0

�W1/2(Sc− u)�22 + ��c�22

(12)arg min
c≥0

1

2
�Sc− u�22 + αTV (c)+ β�c�1
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regularization parameters. Storath et  al. [55]  also intro-
duced nonnegativity to model a (12) and defined it as 
nonnegative fused LASSO regularization. Compared 
with Tikhonov regularization, nonnegative fused LASSO 
regularization is more robust to Gaussian noise. In addi-
tion, the reconstructed images showed sharp bounda-
ries and uniformity. Regularization technology plays an 
important role in the field of SM-based MPI reconstruc-
tion and is an important approach to further improve 
image quality.

X‑space methods for MPI reconstruction
X-space methods are another important research topic 
for MPI reconstruction [39]. X-space and SM-based 
reconstruction differ significantly. Specifically, x-space 
can achieve a real-time reconstruction by dividing the 
velocity of the FFR based on the linear shift-invariant 
(LSI) system.

Mathematically, the theory of one-dimensional (1D) 
x-space in MPI can be described as follows:

where ṙs(t) denotes the velocity of the FFR (In this review, 
we consider FFP as an example.). p(r) is the sensitivity of 
the receiver coil, and G denotes the gradient strength. 
h(r) = dM

dH
 represents the point spread function (PSF), 

which is the derivative of the Langevin function:

The raw MPI image was obtained using a simple two-step 
velocity-compensation process. MPI reconstruction is 
performed by gridding the induced voltage signal to the 
velocity of the FFP:

where ĉ(r) denotes the raw MPI image, which can be 
described as the convolution of the real MPI image c(r) 
with a PSF.

The MPI voltage signal can be regarded as a sampling 
operation in the raw MPI image ĉ(r) at the instantaneous 
position of the FFP. Therefore, ĉ(r) can be reconstructed 
by the velocity compensation and meshing of the MPI 
voltage signal based on the position of the FFP.

In 2011, Goodwill and Conolly [56] extended 1D 
x-space theory to 2D and 3D x-space reconstruction. 
They proved that 3D MPI is also an LSI imaging pro-
cess and derived the 3D PSF of MPI. Furthermore, they 
verified the feasibility of the 3D x-space method on a 
theoretical basis and conducted 2D MPI verification 
based on an x-space MPI scanner. However, the quality 

(13)u(t) = p(r)Gṙs(t)c(r) ∗ h(r)

(14)h(r) = mL̇(ξH)

(15)ĉ(r) = c(r) ∗ h(r) =
u(t)

p(r)Gṙs(t)

of reconstructed images must be improved. A year later, 
Goodwill et al. [57] proposed the projection x-space MPI 
theory based on FFL scanning. They used permanent 
magnets to generate the FFL for the first time and pro-
vided the first FFL-based MPI images. Fast 3D MPI scans 
were performed using a FFL-based projection x-space to 
further improve image quality and sharpness. However, 
classical x-space methods ignore the relaxation effects of 
SPIOs and assume SPIOs are instantaneously magnetized 
with the magnetic field, possibly diminishing the MPI 
signal and causing artifacts in the reconstructed images 
[58, 59].

X‑space methods based on relaxation models
Classical x-space methods use the Langevin model under 
the adiabatic hypothesis to describe the magnetization 
process of SPIOs:

However, in practice, SPIOs cannot operate in an ideal 
adiabatic environment. In a nonadiabatic environment, 
SPIOs change with the magnetization delay, which is 
often referred to as relaxation effects or relaxation time. 
Therefore, errors occur when using the Langevin model 
to describe the magnetization process of SPIOs under 
adiabatic assumptions, leading to blurred and inaccurate 
x-space reconstructed images (Fig. 5 A).

Several research groups have proposed improved 
x-space methods based on relaxation models to account 
for the relaxation effects and accurately describe the 
magnetization process. Croft et al. [60] theoretically and 
experimentally demonstrated the blurring of x-space 
images and deterioration of resolution and SNR caused 
by relaxation effects. Furthermore, they proposed a sim-
ple relaxation model called the Debye model to achieve a 
desirable signal strength and resolution (Fig. 5 B). A dif-
ferential equation in the Debye model is as follows:

where MD(r, t) denotes the Debye model that describes 
nonadiabatic magnetization. τ denotes the relaxation-
time constant. Furthermore, by solving this differential 
equation, the following temporal convolution formula-
tion can be obtained:

where p(t) denotes the Heaviside function, with τ > 0 . 
Nonadiabatic magnetization can be described as the 
temporal convolution of the adiabatic magnetization and 

(16)ML(r, t) = mL(ξH)

(17)
dMD(r, t)

dt
= −

MD(r, t)−ML(r, t)

τ

(18)
MD(r, t) = ML(r, t) ∗

1

τ
exp(−t/τ)p(t) = ML(r, t) ∗ q(t)
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convolution kernel q(t) (q(t) denotes the relaxation pro-
cess). Correspondingly, the nonadiabatic raw image is 
described as the temporal convolution of the adiabatic 
raw image and convolution kernel:

ĉL denotes a raw image based on the Langevin model 
(ideal adiabatic conditions). The nonadiabatic X-space 
method based on the Debye relaxation model showed 
excellent consistency with the measured signals from the 
Berkeley MPI scanner [60].

The relaxation effect is caused by Néel and Brownian 
rotations of the SPIOs. In MPI, two rotations are cou-
pled, and both rotations have their own relaxation times. 
However, the Debye model uses a relaxation time con-
stant τ to represent all rotations, which cannot describe 

(19)ĉD(r) = ĉL(r) ∗ q(t) = (c(r) ∗ h(r)) ∗ q(t)

the dynamic magnetization process or rotation mecha-
nism in a complete and accurate manner [61]. There-
fore, in recent years, many theoretical models have been 
developed to accurately describe the relaxation effects of 
SPIOs. Löwa  et al. [62] proposed that the magnetization 
behavior of SPIOs should be quantified as a function of 
the excitation magnetic field, properties of SPIOs, and 
surrounding environment. At present, the Landau-Lif-
shitz-Gilbert model is the most comprehensive model 
for exploring the relaxation effect [63]. However, an obvi-
ous error is observed between the simulation and meas-
urement results, and significant computational power is 
required to generate the solution [61]. The Fokker-Plank 
model explores the dependence of the relaxation time on 
the excitation field [64]. However, the solutions did not 
couple the Néel and Brownian rotations [65, 66]. The 
complex relaxation effect has an important influence on 

Fig. 5  A Comparison between adiabatic and nonadiabatic x-space scanning. The blurs caused by the relaxation effects occur in two scanning 
directions, which lead to nonidentical PSFs. B Experiments and reconstructed results of line phantoms with different spacing. For more images 
see ref. [60]
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the reconstruction results of the x-space; therefore, con-
ducting relevant research is crucial.

AI methods for MPI reconstruction
The development of deep learning technology based on 
AI has inspired new approaches to MPI reconstruction. 
Currently, AI is primarily applied in MPI reconstruction 
[67, 68], SM recovery [69],  and image postprocessing 
[70].

In 2017, Chae  [67] proposed the reconstruction of 
MPI images using a single-layer fully connected network 
(Fig. 6 A). The input of the network is the voltage u in the 
frequency domain, and the output is the concentration 
distribution of the SPIOs c : c = δ(Wu) . δ is the activation 
function, and W represents the weighting matrix. The 
author constructed 30000 training datasets and 1000 test 
sets using 1D simulation. The test images were all recon-
structed well by the trained network. The results showed 
that a neural network structure is expected to be a better 
tool for MPI image reconstruction because of its capac-
ity to overcome the low incoherence of the inverse kernel 
through the classification property. Subsequently, Ditt-
mer et  al.  [68] proposed a novel reconstruction frame-
work based on a deep image prior (DIP). The basic idea of 
DIP is to use an untrained neural network that implicitly 
encodes a priori to perform a reliable reconstruction [71]. 
Compared with traditional variational and iterative regu-
larization, it has significant advantages in terms of image 
quality [72].

The SM recovery problem was transformed into a 
super-resolution reconstruction problem for deep learn-
ing approaches. Baltruschat et al. [69] proposed the use of 
a 3D-SM recovery network (3D-SMRnet) to recover a 3D 
SM with an undersampling rate of less than 1.6% (Fig. 6 
B). Their results showed that 3D-SMRnet is superior to 
the CS method in terms of SM recovery quality, recon-
structed image quality, and performing time. In addi-
tion, Güngör et al. [73] proposed an SM super-resolution 
method based on transformer network architecture 
(TranSMS) (Fig. 6 C). Compared with state-of-the-art CS 
and deep learning baselines, TranSMS enables low-error 
SM recovery and high-quality MPI image reconstruction.

The advantage of deep learning technology in the 
field of image processing also inspired MPI image post-
processing. Shang et  al. [70]  designed an end-to-end 
dual-sampling convolutional neural network to improve 
the spatial resolution of MPI (FDS-MPI) (Fig. 6 D). The 
results of the simulation, phantom, and in  vivo experi-
ments demonstrated the advantages of FDS-MPI in 
improving MPI image resolution. Deep learning technol-
ogy plays an important role in signal and image process-
ing. It has been applied to many medical modalities such 
as CT, MRI, and ultrasound. This will definitely shine in 
benefit MPI in the future.

Current open sources for MPI
Many countries, such as Germany, United States, Turkey, 
China, Japan, and South Korea, have conducted research 
on MPI. More importantly, many groups have created 

Fig. 6  Deep learning networks used in MPI. A Architecture of a single-layer neural network [67]. B Overview of the data flow of 3d-SMRnet[69]. C 
Schematic of TranSMS [73]. D Main framework of FDS-MPI [70]
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open sources that allow novice groups to conduct MPI-
related research as quickly as possible. In this section, we 
summarize widely used open sources.

Knopp et  al. [72] published an article about Open 
MPI data in 2020, which provides experimental MPI 
and related data processing code for free. This benefits 
research groups without MPI systems to understand and 
analyze MPI experimental data. This dataset is stored in 
the MDF format, which is an open-document standard 
format. A pre-clinical MPI scanner (Bruker, Ettlingen) 
was used to acquire the MPI data, including three differ-
ent phantoms and three different imaging sequences, as 
shown in Fig. 7. The CAD data of the phantoms are also 
provided. Furthermore, the Open MPI data also contain 
the SM based on the calibrations for different mesh den-
sities (Fig. 7 B). Several groups have conducted research 
on image reconstruction, SM recovery, and other aspects 
based on Open MPI data [44, 68, 69].

In addition, Tian’s team from the Chinese Academy of 
Sciences has conducted several MPI studies. They set up 
an MPI website (MPILabs, http://​mpilab.​net/​en/​simul​

ation) that exhibits relevant academic research, open-
source experimental data, an algorithm framework, 
and a software platform. Notably, the software platform 
MPIRF developed in Python 3.8 integrates SM-based and 
x-space algorithms to realize MPI reconstruction from 
the voltage signal of SPIOs to the image [74].

Another public MPI site, open-Source MPI (https://​os-​
mpi.​github.​io), is offered by Harvard Medical School and 
Massachusetts Institute of Technology. It publishes the 
MPI system design and basic components, as well as the 
associated auxiliary simulation algorithms. These MPI 
open sources have greatly promoted the development of 
MPI worldwide.

Conclusions and outlook
As a novel imaging technology, MPI has wide research 
and application prospects. This study primarily reviews 
MPI reconstruction techniques, the SM-based and 
x-space methods. For these, we provide a detailed review 
of the SM acquisition and reconstruction methods based 
on a regularization strategy. In addition, the x-space 

Fig. 7  Open MPI data [72]. A MPI scanner and phantoms used for measurements. B Calibration datasets. C Phantom datasets

http://mpilab.net/en/simulation
http://mpilab.net/en/simulation
https://os-mpi.github.io
https://os-mpi.github.io
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reconstruction theory and corresponding improved algo-
rithms based on the relaxation model were described. We 
also reviewed recent deep learning applications in MPI 
reconstruction and current open sources of MPI.

This review demonstrates the multifaceted nature 
of MPI. The main challenge for SM-based reconstruc-
tion in the future may involve obtaining the SM more 
quickly and accurately through modeling, measurement, 
or simulation; this requires a detailed understanding of 
the SM. In addition, the introduction of prior knowledge 
and deep learning technology to further improve the 
reconstruction performance of SM-based reconstruction 
remains a research focus. In terms of x-space methods, 
establishing a more accurate magnetization model to 
describe the relaxation or hysteresis effect is an impor-
tant challenge to overcome. Furthermore, multi-contrast 
or multi-color reconstruction based on the specific phys-
ical properties of SPIOs, as well as sequence development 
and corresponding image reconstruction based on novel 
hardware design, are important challenges and interest-
ing hot spots.

In the past 20 years, because of the tireless efforts of 
scientists worldwide, MPI has progressed considerably in 
equipment development, magnetic particle preparation, 
and reconstruction algorithm research, which have fur-
ther promoted the application of MPI in clinical settings. 
We expect this review to provide references for MPI 
researchers and promote the development and future 
clinical applications of MPI.
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