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Benchmarking common quantification strategies
for large-scale phosphoproteomics
Alexander Hogrebe 1, Louise von Stechow1, Dorte B. Bekker-Jensen1, Brian T. Weinert1,

Christian D. Kelstrup 1 & Jesper V. Olsen 1

Comprehensive mass spectrometry (MS)-based proteomics is now feasible, but reproducible

quantification remains challenging, especially for post-translational modifications such as

phosphorylation. Here, we compare the most popular quantification techniques for global

phosphoproteomics: label-free quantification (LFQ), stable isotope labeling by amino acids in

cell culture (SILAC) and MS2- and MS3-measured tandem mass tags (TMT). In a mixed

species comparison with fixed phosphopeptide ratios, we find LFQ and SILAC to be the most

accurate techniques. MS2-based TMT yields the highest precision but lowest accuracy due to

ratio compression, which MS3-based TMT can partly rescue. However, MS2-based TMT

outperforms MS3-based TMT when analyzing phosphoproteome changes in the DNA

damage response, since its higher precision and larger identification numbers allow detection

of a greater number of significantly regulated phosphopeptides. Finally, we utilize the TMT

multiplexing capabilities to develop an algorithm for determining phosphorylation site stoi-

chiometry, showing that such applications benefit from the high accuracy of MS3-based TMT.
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Nanoflow liquid chromatography tandem mass spectro-
metry (LC-MS/MS)-based quantitative phosphopro-
teomics technology has revolutionized cell biology in the

past decade1–3. This has mainly been driven by advances in MS
instrumentation4–7, phosphopeptide enrichment strategies8,9,
peptide chromatography10–12, and computational proteomics
tools13,14. The basis for any biological interpretation of phos-
phoproteomics data is the quantification of the identified phos-
phopeptides. This can be done either relatively by calculation of
ratios between conditions, or absolute within conditions, often
referred to as phosphorylation site stoichiometry or occupancy15–
17. Stable isotope labeling by amino acids in cell culture (SILAC)
has long been the preferred method for phosphopeptide quanti-
fication1,18, but recently label-free quantification (LFQ)2,19,20 and
isobaric tandem mass tags (iTRAQ, TMT)3 have become popular
for phosphoproteomics.

SILAC is a full (MS1) scan-based quantification method. Stable
heavy isotope-labeled or unlabeled amino acids are incorporated
metabolically into cells, and differentially labeled cell populations
can be mixed directly after lysis21. SILAC is arguably the most
accurate quantification technique. However, SILAC is limited to
cell lines and a maximum of three conditions per sample in
routine analysis. In addition, SILAC and other labeling approa-
ches with MS1-based quantification have inherently higher MS1

spectral complexity. The resulting over-sequencing of peptide
isotope-variants leads to a decrease in total peptide identifica-
tions22,23. LFQ does not require incorporation of stable isotopes,
but instead relies on comparison of peptide MS1 signal intensities
between MS runs and is therefore easy to integrate in most
experimental workflows24. Conversely, LFQ requires each sample
to be measured individually and often suffers from “missing
quantification values” between them. To circumvent this, isobaric
labeling techniques such as iTRAQ25 and TMT26 were developed,
which enable the simultaneous measurement of up to 11 samples
labeled on peptide-level27. This approach is known as sample
multiplexing and allows highly sophisticated biological study
designs. As a tradeoff compared to LFQ, isobaric quantification
approaches usually yield decreased peptide identifica-
tion rates22,28 and lowered accuracy when quantified on MS2-
level23. The latter is caused by ratio compression via impure MS1

precursor isolation29. This leads to ratios between conditions
converging towards the median value, i.e. usually towards unity30,
but also higher apparent precision31. To circumvent the ratio
compression issue, MS3-based approaches have been introduced,
which aim at isolating target fragment ions from MS2 and
quantifying the target reporter ions separately32,33. However,
these and similar approaches to prevent ratio compression are
usually either limited to specialized MS instruments or not rou-
tinely usable yet34–37.

Different quantification approaches have been compared in a
systematic way for protein quantification, but not yet for phos-
phoproteomics, where sampling of several peptides for each
protein ratio is not possible22,23,31,38–40. Furthermore, the impact
of individual technical parameters for actual biological findings,
such as quantification precision and accuracy for deeming
phosphopeptides significantly regulated or estimation of frac-
tional phosphorylation site stoichiometry, has not been assessed
previously41.

Here, we systematically compared phosphoproteomics quan-
tification approaches with a focus on technical parameters and
their performance in biological studies. We tested the four most
common quantification strategies for phosphoproteomics: LFQ,
SILAC, and MS2- and MS3-based TMT. Initially, we assessed the
extent of ratio compression in different phospho-optimized MS2-
and MS3-based TMT methods, and compared their quantification
accuracy and precision to LFQ and SILAC using a controlled

phosphoproteome mixture with defined ratios. We then tested
how these findings translate into identification of significantly
regulated phosphopeptides in the well-studied DNA damage
response (DDR)18 under instrument-time-limiting conditions.
Finally, we evaluated the capability of TMT to determine frac-
tional phosphorylation site stoichiometry in large-scale phos-
phoproteomics data sets. For this purpose, we developed a 3D
multiple regression model (3DMM)-approach that makes use of
the high TMT multiplexing capabilities. Our results indicate that
even with ratio compression, MS2-based TMT is best suited for
the quantification of complex biological phosphoproteomics
samples, while the high accuracy of MS3-based TMT quantifi-
cation is ideal for calculation of phosphorylation site
stoichiometry.

Results
MS3-based TMT enables best ratio decompression. In this
analysis, we aimed at evaluating different MS quantification
methods both from a technical perspective, as well as with a
biological focus on identification of significantly regulated phos-
phopeptides. Since the latter is influenced by technical parameters
such as quantification accuracy, we first assessed to which extent
ratio compression affecting the accuracy of MS2-based TMT
measurement can be decompressed using MS3. To measure actual
ratio-compressed MS2-quantified ratios, we treated U2OS human
osteosarcoma cells for 2 h with doxorubicin (DOX), a potent
genotoxic agent inducing a global phospho-signaling response, or
DMSO as a control (C). TiO2-enriched tryptic phosphopeptides
were then measured on an Orbitrap Fusion Lumos instrument by
MS2- and four different phospho-optimized MS3-based approa-
ches (Fig. 1a, Supplementary Table 1). The MS3-based methods
either employed MS2 analysis in the orbitrap (OT) or ion trap
(IT), and used different settings for MS2-fragmentation and MS3-
ion selection. Three of them used multi-stage activation (MSA)-
combined low energy collisional-induced dissociation (CID) and
synchronous precursor selection (SPS) of the ten most abundant
MS2 fragment ions33. The fourth method applied CID without
MSA followed by neutral loss (NL)-triggered phospho-peak
selection for MS3, as previously reported by Erickson et al.39. All
raw files were then processed by the MaxQuant software suite
(www.maxquant.org) for identification and quantification13.

To evaluate MS3-based decompression of MS2-measured DOX
vs. C ratios, we performed a linear correlation of the 5% most up-
and downregulated phosphopeptide ratios after log2-
transformation and used the slope as a readout. As expected, all
MS3-based TMT methods were able to decompress the observed
MS2-based TMT ratios, but to different extents (Fig. 1b,
Supplementary Figs. 1 and 5g). The SPS-MS3-based method
with MSA-CID and ion trap-MS2 analysis performed worst, only
decompressing log2 ratios by a factor of 1.35. The NL-triggered
method showed a better decompression of 1.72, but at the same
time generated the lowest number of phosphopeptide ratios of all
five methods (Fig. 1c). The low numbers of phosphopeptide
identifications for the two ion trap MS2-based methods indicated
that phosphopeptide-identifications benefited significantly from
MS2-analysis in the orbitrap. The best performing method was
termed MS3 orbitrap multiple charge state (OT MC) and yielded
a log2 ratio decompression of 1.96 and the highest MS3-based
number of ratio quantifications. It combined phospho-optimized
MSA-CID-MS2-based orbitrap analysis with SPS-MS3 and an ion
selection width, which was inversely correlated with the precursor
charge state. We further noted that all MS3-based analyses had a
significantly lower number of phosphopeptide ratios and lower
median signal-to-noise ratios of the TMT reporter ions (Fig. 1d)
than the MS2-based approach.
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MS2-based TMT is the most precise quantification method.
The ability of a quantification method to identify phosphorylation
sites as significantly regulated depends on different technical
parameters. Thus, after confirming that MS3-based TMT meth-
ods can decompress MS2-measured phosphopeptide ratios to
different extents, we next compared the quantification accuracy
and precision of these approaches to that of LFQ and SILAC. For
this purpose, we used a mixed species approach in which we
diluted phosphopeptides enriched from yeast at fixed 1:4:10 ratios
into a 1:1:1 background of HeLa phosphopeptides. This way we
can assess how the different methods would quantify the expected

ratios (Fig. 2a). Since SILAC labeling of wild-type yeast cells is
limited to lysine, we digested proteins only with endoproteinase
Lys-C for all methods in this experiment42. Importantly, all LFQ
and TMT-labeled samples used for the dilution experiments were
generated from the same lysate, but this was not possible for
SILAC, which was heavy stable isotope-labeled already during cell
culture. Thus, it should be noted that while all LFQ and TMT
samples were essentially the same peptides mixed in different
abundances, the SILAC ratios might be influenced by unavoidable
biological sample-variation, which we expect to have an impact
on assessing its precision. In MaxQuant, the LFQ-measured
samples were processed both with and without activation of the
MaxQuant feature match-between-runs (MBR), and SILAC-
measured samples with and without MBR and the requantify
(REQ) feature. MBR is a method for transferring identification
information between samples, leading to increased peptide
identifications and fewer missing values. MBR is now widely
employed in LFQ- and SILAC-based studies and similar concepts
are implemented in many proteomics software tools.

To achieve reliable biological interpretation, quantification
methods have to be both accurate and precise. To assess this, we
first compared how accurate the different quantification methods
could measure the 4:1 and 10:1 yeast phosphopeptide ratios
(Fig. 2b, Supplementary Fig. 2). LFQ and LFQ MBR both turned
out to be the most accurate methods, slightly overestimating
ratios on median. SILAC was almost as accurate as LFQ, but
underestimated ratios on median. However, the quantification
accuracy drops significantly when also activating the REQ feature
together with MBR, indicating that REQ trades accuracy for an
increase in number of quantified sites and thus should be used
with caution (Fig. 2b). As expected, MS2-based TMT ratios were
heavily affected by ratio compression, resulting in the lowest
accuracy of all compared quantification methods. MS3-based
TMT methods can rescue the compression to different extents,
with the TMT MS3 OT MC method being closest to SILAC. Since
the true target ratios were known, we were able to calculate the
fraction of reporter ion intensity coming from contaminating ions
for MS2-based TMT. We found that it negatively correlated with
MS1 precursor intensity, Andromeda MS/MS score and precursor
isolation fraction (PIF) (Supplementary Fig. 3). However, based
on the Pearson correlation coefficients, none of these turned out
to be a robust predictor, which is consistent with what was
previously reported for the PIF value23. We next calculated the
mean squared errors (MSE) as the sum of positive bias and
variance for each method. These represent the quantification
error in accuracy and precision, respectively, and thus allowed for
a direct comparison of these two parameters (Fig. 2c, Supple-
mentary Fig. 2d). Of all methods tested, MS2-based TMT yields
the highest precision but lowest accuracy. Furthermore, the

Fig. 1 Evaluation of phosphorylation-optimized MS2- and MS3-based
TMT methods. a Colored peaks illustrate MSn peak selection. MS2 analysis
either took place in the orbitrap (OT) or ion trap (IT). Ion selection for MS3

analysis was based on synchronous precursor selection (SPS) or neutral
loss (NL)-triggered peak isolation. In the multiple charge state (MC)
method, the MS3 isolation width was decreased for higher charge states. IT,
OT and OT MC used multi-stage activation (MSA) with neutral loss mass
97.9673 Da. b Heatmap of correlation slopes of the 5% highest and lowest
log2 ratios for all replicates. U2OS cells were treated 2 h with 5 µM
doxorubicin (DOX) or DMSO (C). The resulting TMT sample was
measured on an Orbitrap Fusion Lumos three times as technical replicates
with each quantification method. c Bar plot showing the total number of
quantified phosphopeptide DOX vs. C ratios per method for all replicates. d
Violin plot showing log 10 signal-to-noise ratio distributions of the TMT
reporter ions with the median marked as a dash
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higher accuracy of MS3-based TMT methods seem to come at the
cost of lower precision compared to MS2-based TMT. LFQ, LFQ-
MBR and SILAC-MBR-REQ show the lowest precision of all
quantification methods. Furthermore, increasing ratios from 4:1
to 10:1 leads to a decrease in precision for all quantification
methods.

Next we assessed how the different tradeoffs in accuracy and
precision for the quantification approaches would influence their
ability to identify phosphopeptides as significantly regulated. This
seemed especially interesting for MS2-based TMT, where the
apparent increase in quantification precision is easiest explained
by the contamination of the TMT reporter ion signal with co-
isolated, non-regulated peptides. We would expect that if the gain
in precision is indeed caused solely by such a quantification
artifact, MS2-based TMT should perform much worse than MS3-
based TMT at deeming phosphopeptides significantly regulated.
To test this, we analyzed our phosphoproteomics data sets for
significantly regulated sites by applying a well-established
statistical technique for large-scale omics data, significance
analysis of microarrays (SAM)-testing, which uses t-testing with
an added background variance parameter termed s043. This s0
parameter gives greater weight to extreme fold changes and
should be adjusted to the data set at hand44. We used an R
package provided by Tibshirani et al.45, which can automatically
estimate optimal s0 based on the tested data, and calculates a d-
score representing the degree of significant regulation of each
tested phosphopeptide. Since we know that all yeast phosphopep-
tides should by definition be regulated within our data set, we can
use the d-score to calculate true-positive-rates (TPR) and false-
positive-rates (FPR) of the upregulated phosphopeptides for each
of the quantification approaches, and plot them against each
other in a receiver operating characteristic (ROC) curve (Fig. 2d).
In such a ROC curve plot, an ideal quantification approach would
reach a TPR of 100%, which means all true positive hits were
identified as positive, before the FPR becomes greater than 0%.
When looking at the 4:1 ratios, we see that LFQ shows the
steepest TPR increase, followed by SILAC and MS3 OT MC-based
TMT. As expected, MS2-based TMT performs poorly, indicating
that its higher apparent precision is indeed not providing robust
quantification of low peptide ratios. At the higher 10:1 ratios
however, MS2-based TMT performs equally well as MS3 OT MC-
based TMT, and even outperforms it at higher FPRs. We would
like to stress that this analysis of course depends on many factors,
including chosen ratios, total MS ion intensities and the applied
statistical test. It is additionally complicating that the number of

Fig. 2 Evaluation of quantification methods with focus on accuracy and
precision. a Yeast phosphopeptides were diluted in fixed ratios 1:4:10 and
added to a background of 1:1:1 HeLa phosphopeptides. Same total protein
starting amounts were used for each method and SILAC ratios were mixed
before digestion. All samples were measured on an Orbitrap Fusion Lumos
three times as technical replicates with each quantification method. For
SILAC and TMT, MS samples were diluted to contain a total peptide
amount equal to one LFQ injection based on protein starting amount. For
TMT, all mixing replicates were measured within the same TMT10-plex
run. b Box plot showing yeast 4:1 and 10:1 phosphopeptide ratios for the
different quantification methods and all replicates. Boxes mark the first and
third quartile, with the median highlighted as dash, and whiskers marking
the minimum/maximum value within 1.5 interquartile range. Outliers are
not shown. Both LFQ and SILAC were tested with and without the
MaxQuant feature match-between-runs (MBR), and SILAC additionally
with both MBR and requantify (REQ) activated. As SILAC-MBR only results
were essentially identical to SILAC only, they are not shown here. c Mean
squared errors were calculated as a sum of positive bias and variance for
each method and all replicates. d Receiver operating characteristic (ROC)
curves were calculated by using the d-score from SAM testing as an
indicator for significant regulation at 4:1 and 10:1 dilution. SAM testing for
significantly regulated phosphopeptides was performed at default settings
(s0 estimation automatic). ROC plots are presented as zoomed-in excerpts
from the total plots, shown on the lower right each
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identified yeast and human peptides vary between the quantifica-
tion approaches due to the inherent stochastic behavior of the
data-dependent acquisition (DDA). This is especially true for
LFQ/TMT vs. SILAC since they are essentially different biological
samples (Supplementary Table 2). Nevertheless, we can conclude
that, especially for the biologically more interesting 10:1 ratios,
LFQ, SILAC, MS3 OT MC-based and even ratio-compressed
MS2-based TMT, all seem to provide good and comparable
compromises between sensitivity and specificity.

MS2-based TMT excels at identifying significant regulation.
After comparing the different quantification methods in a tech-
nical setup, we next evaluated if the increased accuracy of MS3-
based TMT over MS2-based TMT translates into an advantage in
a biologically relevant setting. For this purpose, we used the well-
studied DDR as a model system (Fig. 3a). Cells were treated with
genotoxic agents doxorubicin (DOX), 4-nitroquinoline 1-oxide
(4NQO) or DMSO as a control (C) in biological triplicates for 2 h
before lysis. To provide a comparison that takes into account
time-limiting conditions of deep phosphoproteomics
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experiments, each method was limited to 2 days of MS instru-
ment time. The nine LFQ samples were analyzed as single shot
~5 h LC-MS/MS runs. The three SILAC replica and the TMT
samples were fractionated offline by high-pH reversed phase
chromatography11,12 into ten and 24 fractions, and analyzed by
70- and 90-min LC-MS/MS gradients, respectively.

We first looked at the numbers of identified and quantified
phosphorylation sites for each of the four quantification methods,
with 35,587 sites identified in total (Fig. 3b). As expected, LFQ
with 18,057 phosphorylation sites identified more sites than
SILAC with 15,119, due to the latter’s increase in MS1 spectra
complexity and MS2 fragmentation of redundant SILAC peptide
variants. MS2-based TMT identified 26,784 phosphorylation sites,
which is >60% more compared to MS3-based TMT with
16,565 sites. Interestingly, SILAC yields the highest number of
phosphorylation site identifications without quantitative informa-
tion, but this can to some extent be rescued by activating the REQ
feature. When calculating ratios between doxorubicin and control
and requiring values for them in all three biological replicates,
numbers for LFQ dropped by almost 80%. This significant loss is
due to the aforementioned problem of missing values caused by
the stochastic nature of DDA and can be reduced by activating
MBR. SILAC is impacted by this as well, when requiring
quantification in more than one biological replicate. Importantly,
both MS2- and MS3-based TMT are essentially unaffected by
missing values, since all conditions were measured within the
same TMT10-plex sample.

To assess the biological effect of 2 h doxorubicin treatment on
cellular signaling, we next aimed at identifying significantly up- or
downregulated phosphorylation sites. For this purpose, we only
used phosphorylation site ratios quantified in all three biological
replicates and with an at least 75% probability of correct
phosphorylation site localization (Fig. 3b). These strict require-
ments exclude most falsely quantified or localized sites, which is
commonly done in cell signaling studies. We then identified
significantly regulated phosphorylation site ratios among the
remaining sites via SAM testing (Fig. 3c). Due to its low precision
and phosphopeptide coverage, LFQ yielded only 62 significantly
regulated phosphorylation sites, and even using nearest neighbor-
based imputation of values only slightly increased this number
(Fig. 3d). Activating MBR on the other hand multiplied the
number of regulated sites more than four times to 279. SILAC
performs significantly better with 738 sites deemed significantly
regulated, and 908 when activating MBR and REQ. Interestingly,
this number doubles when using imputation to account for
missing values. Still, the TMT-based methods identify the highest
total numbers of significantly regulated sites, with 2140 for the
MS3-based and 5045 for the MS2-based approach. The more than
twofold increase in hits for MS2-based over MS3-based TMT

seems to be mainly caused by the higher total number of
phosphopeptide identifications for MS2-based TMT. In addition,
the increase in accuracy of MS3-based over MS2-based for TMT
quantification is essentially negated by its even bigger decrease in
precision. This is shown when looking at relative numbers, as
MS2-based TMT is able to deem a larger fraction of its quantified
phosphorylation sites as significantly regulated than the MS3-
based approach (Fig. 3e). Despite these substantial differences in
total numbers, at least 57% of phosphorylation sites tested in all
methods were identified as significant in at least one other
method as well (Fig. 3f, g).

We would like to stress that the actual number of significantly
regulated sites identified varies significantly depending on which
data normalization approach and statistical test are used
(Supplementary Table 3). Especially for LFQ, the number of hits
can vary from 0 to 2146. Importantly however, in all the applied
tests, the relative conclusions from above do not change, with
LFQ always identifying the least number of significantly regulated
phosphorylation sites. We were speculating that this could be
influenced by the measurement of LFQ in single shots on a long
50-cm column on a very long 290-min gradient. To test this, we
repeated the experiment only for LFQ with DOX treatment, but
this time varied the gradient length to include 30, 90 and 180 min
on a 15-cm column, and our original 290-min 50-cm approach
(Fig. 4a). This new data was measured on a Q Exactive HF-X
instead of the HF used in our original data set, which leads to
slightly better peptide quantifications for LFQ (Fig. 4b). This
might be influenced by the higher scan speed and brighter ion
source of the HF-X, which could lead to higher ion intensities and
thus better statistics, even though we have not tested this in a
direct comparison46. Importantly, we still achieve the highest
total number of significantly regulated phosphorylation sites with
a 290-min 50-cm approach, even though the increase in regulated
sites is not correlating well with the high increase in LC-MS time
as compared to the very short 30-min gradient (Fig. 4c, d). We
found that a much more efficient approach to boost the numbers
of significantly regulated phosphorylation sites for LFQ is to
measure more than three replicates (Fig. 4e, f). The number of
replicates has a profound impact on the number of significantly
regulated sites, which seems to increase linearly as a function of
the number of replicates (Fig. 4g). Analyzing four replicates with
90-min runs already results in more significantly regulated sites
than three 290-min measurements, while six replicates of 90 min
even double the number of significantly regulated sites. For our
biological comparison at hand however, we aim to compare the
inherent quantification characteristics of the approaches and
would further expect similar benefits from more replicates for
SILAC and TMT as well. Thus, while we encourage users to
measure more than three replicates especially for LFQ, we settled

Fig. 3 Evaluation of quantification methods in a biological setting. a Non- or SILAC-labeled U2OS cells were treated with 5 µM doxorubicin (DOX), 2.5 µM 4-
nitroquinoline 1-oxide (4NQO) or DMSO (C) for 2 h before lysis. Three biological replicates were measured for all quantification methods. For MS
measurement, each quantification method was given a total of 2 days instrument time (including LC overhead). SILAC samples were fractionated into ten
fractions per sample on an Ultimate 3000 high-flow system, and TMT into 24 fractions total on an Ultimate 3000 micro-flow system. Samples were then
measured using a 15- or 50-cm (only LFQ) column on a Q Exactive HF or Orbitrap Fusion Lumos (only TMT MS3 OT MC). For SILAC and TMT, MS
samples were injected without dilution, so that each labeling channel resembles one LFQ injection. b Bar plot showing total numbers of identified and
quantified phosphopeptides for all replicates of each quantification method, respectively. Calculations of ratios were performed within biological replicates
and filtered for measurement in a minimum of one, two or three replicates, and >75% confident phosphorylation site localization. For further analysis,
ratios quantified in all three replicates only and with a localization probability of at least 75% (black arrows) were used. c SAM-based identification of
significantly regulated phosphorylation sites was performed with two sample paired t-test and standard settings (s0 estimation automatic, delta estimation
based on FDR= 0.20). Significantly regulated phosphorylation sites (sig) are highlighted in red, non-significant sites in gray. Applied s0 and delta values,
as well as the total number of tested phosphorylation sites (n) are shown. For LFQ and SILAC nearest neighbor imputation (IMP), phosphorylation sites
quantified in at least one replicate and with a localization probability of at least 75% were used. d, e The bar plots show the number of significantly
regulated phosphorylation sites for each quantification method d in total, and e as a fraction relative to the total number of tested sites. f, g The Venn
diagrams show the overlap of SAM-regulated phosphorylation sites identified f in total, and g for commonly identified sites
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to compare SILAC and TMT to the in our hands best-performing
LFQ approach with 290 min on a 50-cm column with three
biological replicates each.

The analysis of treatment with 4NQO vs. control yielded
overall the same conclusions as doxorubicin (Supplementary
Fig. 4a−d), but since 4NQO induces a weaker rewiring of the
phosphoproteome, we identified less significantly regulated sites
for each of the quantification methods compared to doxorubicin.
Importantly, the observed loss in both MS3-based TMT
phosphoproteome coverage and identification of significantly
regulated phosphorylation sites compared to MS2 is not restricted
to our data set, but is also observed when reanalyzing published
data. Huang et al. published a data set with complementary MS2/
MS3-based TMT quantification of breast cancer cell lines47.

Comparing the basal phosphoproteome of cell lines AU565 vs.
T47D in technical duplicates confirms that while MS3-based
TMT decompresses MS2-measured ratios, the latter allows the
identification of more significantly regulated phosphorylation
sites (Supplementary Fig. 5).

Quantification methods yield different biological insights.
After concluding that the four quantification methods can iden-
tify different numbers of SAM-regulated phosphorylation sites,
we wanted to assess if and to which degree these sites gave us
biological insight into the cellular signaling of the doxorubicin-
induced DDR. Linear sequence motif analysis of the upregulated
phosphorylation sites revealed that all techniques, including MS2-
based TMT, could correctly identify the DDR-induced ATM/
ATR kinase substrate motif [s/t]Q as significantly enriched
(Fig. 5a)48. This is also true when performing linear kinase motif
enrichment analysis within Perseus (Fig. 5b). However, when
analyzing enriched gene ontology (GO)-terms among the sig-
nificantly upregulated phosphorylation site ratios, LFQ was not
able to identify any DDR-related terms containing the keywords
checkpoint, damage, repair, cell cycle or chromosome (Fig. 5c).
Only with MBR was LFQ able to identify terms such as “response
to DNA damage stimulus” or “recombinational repair”, which
SILAC could with and without MBR REQ. Neither approach
however profited from missing value imputation, which like LFQ
alone did not yield any significantly enriched GO terms.
Importantly, both TMT methods performed a lot better, yielding
a broad variety of DDR-related terms. The deepest coverage of
GO terms with most significant q-values was achieved by the
MS2-based TMT method. The poor performance of LFQ was not
simply due to the broader phosphorylation site coverage of TMT.
Both TMT-approaches and SILAC still outperformed LFQ when
only sites quantified in all eight quantification approaches were
used for kinase motif enrichment (Supplementary Fig. 6).
Importantly, the 4NQO-based DDR phosphorylation landscape
yielded the same conclusions (Supplementary Fig. 4e, f).

TMT multiplexing enables accurate stoichiometry calculation.
In addition to the identification of significantly regulated sites,
calculation of absolute phosphorylation site stoichiometry can
give an extra layer of insight into cellular signaling15–17. In
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Fig. 4 Identification of significantly regulated phosphorylation sites using
LFQ. a U2OS cells were treated with 5 µM doxorubicin (DOX) or DMSO (C)
for 2 h before lysis. For the gradient experiment (b−d), samples were
measured in three biological replicates using a 15-cm column with a 30, 90
or 180-min gradient, or a 50-cm column with a 290-min gradient on a Q
Exactive HF-X. The shorter gradients are all time-compressed versions of
the 290-min gradient, and all other LC-MS instrument settings were kept
identical between conditions. For the number of replicates experiment (e
−g), samples were measured in six replicates using the 90-min gradient
setup on a Q Exactive HF-X, and 3−6 biological replicates (replic.) were
used for statistical analysis. b, e Bar plots showing total numbers of
identified and quantified phosphopeptides for the depicted gradients and
number of replicates. Calculations of ratios were performed within
biological replicates and filtered for measurement in a minimum of one, two
or three replicates, and >75% confident phosphorylation site localization.
For further analysis, ratios quantified in all three replicates only and with a
localization probability of at least 75% were used. c, f The bar plots show
the total number os significantly regulated phosphorylation sites. d, g The
bar plots show the number of significantly regulated phosphorylation sites
as a fraction relative to the total number of tested sites. SAM-based
identification of significantly regulated phosphorylation sites was performed
with two sample paired t-test and standard settings (s0 estimation
automatic, delta estimation based on FDR= 0.20)
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contrast to mere phosphopeptide ratios, stoichiometry can pro-
vide information on the change of the phosphorylation status of
individual sites relative to the total protein level. Stoichiometry
can then be used as an additional significance cutoff, or to dif-
ferentiate between extreme and minor phosphorylation changes.
Phosphorylation stoichiometry can be extracted directly from
large-scale quantitative phosphoproteomics experiments by using
ratios observed in both the phosphopeptide, its non-
phosphorylated counterpart and the respective protein between
treatment conditions15, or directly from the phosphopeptide
within a single treatment condition16,17. However, we reasoned
that the multiplexing capability of TMT should allow the
extraction of stoichiometry from multiple treatment conditions at
the same time. By integrating information of several treatment
conditions and replicates into one stoichiometry model, overall
quantification precision should be increased in comparison to
calculations based on individual ratios. Thus, instead of equations
using ratios, we here developed a 3D multiple regression model
(3DMM)-based approach, which uses phosphopeptide-, non-
phosphorylated peptide- and corresponding protein-intensities
from any multiplexed quantification method, including MS2- and
MS3-based TMT experiments (Fig. 6a, Supplementary Note 1 and
Supplementary Data 1 and 2).

Since our previous results highlighted the equal importance of
quantification accuracy and precision for the identification of
significantly regulated sites, we wondered if this also held true for
the calculation of phosphorylation site stoichiometry if quantified
via TMT. To test this, we prepared a mixed species sample with
fixed phosphopeptide stoichiometry (Fig. 6b). After phosphopep-
tide enrichment from both yeast and HeLa, half of both samples
was dephosphorylated using alkaline phosphatase. Mixing
together phosphorylated and non-phosphorylated yeast peptides
in fixed ratios yielded conditions ranging from 10 to 90%
phosphorylation site stoichiometry within a single TMT10-plex
sample.

When measuring these samples in both MS2- and MS3-mode,
we found that we can assess the quality of the 3DMM linear fit by
calculating a p-value, which describes the significance of the slope
being non-zero. We then show that this p-value, which can be
calculated for each 3DMM individually, is a reliable determinant
of stoichiometry accuracy (Fig. 6c). When comparing MS2- and
MS3-based TMT quantification, we can use this p-value to filter
inaccurate stoichiometry information. This turned out to be
important especially for MS2-based TMT measurement. In
contrast to identifying significantly regulated phosphorylation
sites, quantification accuracy seems to be crucial for accurately
estimating phosphorylation site stoichiometry (Fig. 6d). Even
though stoichiometry estimated by MS2-based TMT quantifica-
tion is trending towards the correct value, the estimation accuracy
is very low. It can be improved by setting stricter p-value cutoffs,
but this comes at the expense of excluding an increasing number
of identified phosphorylation sites. In contrast, MS3-based TMT
quantification-derived stoichiometry is highly accurate even
without any p-value cutoffs. For example, extreme target
occupancies of 10 and 90% were estimated as 12.4% ± 4.0% and
86.7% ± 3.8% (median ±MAD), respectively. Notably for both
MS2- and MS3-based TMT quantification, stoichiometry estima-
tion is more accurate and precise at higher stoichiometry values
(Fig. 6e).

Discussion
Quantification methods for proteomics have been evaluated
before, but no study compared their application for large-scale
phosphoproteomics in a complex biological setup. In this study,
we show that the highest accuracy alone does not automatically
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Fig. 5 Functional characterization of significantly regulated phosphorylation
sites. a iceLogos of the SAM-upregulated phosphorylation sites from
Fig. 3c vs. the respective non-regulated sites as background. The iceLogos
show the ATM/ATR kinase substrate [s/t]Q motif significantly enriched
for all tested quantification approaches. b, c Heat maps showing b a kinase
motif and c GO-term enrichment of significantly SAM-up/downregulated
phosphorylation sites from Fig. 3c vs. the respective non-regulated sites as
background. Enrichment was performed using Fisher exact tests within
Perseus with relative enrichment on gene level and an FDR of 0.02. The
numbers above the heatmap show the total number of enriched motifs/
GO-terms, while the heat maps below show b the most significantly
regulated motifs or c all GO-terms with “damage”, “repair”, “checkpoint”,
“cell cycle”, or “chromosome”, indicative of an activated DDR, respectively
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guarantee the best performance in cell signaling studies. We
found that quantification precision and phosphoproteome cov-
erage can be equally important. That is why, even with high ratio
compression, MS2-based TMT quantification was able to identify
more than twice as many significantly regulated phosphorylation
sites than MS3-based TMT methods based on multiple testing-
corrected SAM-testing. Of course, more significant hits do not
imply better quantification by themselves. However by

demonstrating their meaningful representation of the expected
DDR, we argue that they are a good indicator of the quantifica-
tion performance. Our data also shows that this increase in sig-
nificant hits is caused by the higher phosphopeptide coverage of
MS2-based TMT, facilitated by its faster peptide scanning speed
and its higher apparent precision. The higher apparent precision
seems to indeed enable robust peptide quantification for MS2-
based TMT, as demonstrated by its good compromise of TPR vs.
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FPR in our ROC curve analysis. Interestingly, we found that the
higher accuracy of SPS-MS3-based TMT approaches is directly
negated by its lowered precision. We assume that this decrease is
caused by the generally lower signal-to-noise of TMT reporter
ions on MS3 level. For complex cell signaling studies, where a
minimum of three biological conditions and three biological
replicates, as well as offline peptide fractionation are currently
standard requirements, MS2-based TMT quantification further-
more outperforms SILAC. Even though the latter shows the best
compromise between accuracy and precision, it suffers from
lower phosphopeptide coverage and low multiplexing capabilities.
Our data furthermore indicates that LFQ is the least suitable
quantification method for cell signaling studies among the ones
we tested, due to its lower precision and missing multiplexing
capabilities. However, this disadvantage might be counter-
balanced by activating MBR or measuring more replicates
instead.

Apart from comparing quantification approaches of sig-
nificantly regulated phosphorylation sites, we also present a
quantitative benchmark setup for global analysis of phosphor-
ylation site stoichiometry. We applied it by adapting stoichio-
metry estimation to TMT-based quantification, using a newly
developed 3D multiple regression model-based approach, which
takes advantage of the high multiplexing capabilities of TMT. A
direct comparison of MS2- and MS3-based analysis highlighted
that in this context, the high accuracy of MS3-based TMT
quantification is crucial for achieving accurate and reliable stoi-
chiometry information. In addition, we found that p-values
extracted from the fit of our 3DMM can estimate the quality and
serve as cutoff values, which is especially useful for MS2-based
TMT quantification. It has to be noted that our benchmark setup
made it necessary to simulate unregulated protein intensities for
the 3DMM. Furthermore, the approach most likely shares the
disadvantage of SILAC stoichiometry estimation15, which is that
subtle ratio changes are difficult to detect. However, even though
we did not test this with our setup, MS3-based TMT multiplexing
over 11 treatment conditions, instead of three in SILAC, makes it
more likely that a biological change is observed, and further
increases precision of the modeling. We thus believe it highlights
the potential of linear modeling-based TMT data analysis, not
only for phosphorylation stoichiometry, but for other PTM
applications as well.

For the purpose of this comparative analysis, we believe that
the different combinations of offline fractionation and LC-MS/
MS settings we eventually used represent our best optimized
setups for each respective method. We are of course aware that
alternative fractionation strategies, MS settings or biological sys-
tems can yield slightly different results. Nevertheless, we argue
that our conclusions hold true, not least because we could con-
firm our results for MS2- and MS3-based TMT by reanalyzing a
published data set from Huang et al.47. Furthermore, as multi-
plexing is not possible for LFQ and routinely only up to three
channels for SILAC, their accuracy, precision or identification
rates would need to increase substantially to catch up to a TMT-

based workflow with offline peptide fractionation. Even when
analyzing more than 11 conditions, where current-generation
TMT would start suffering from missing values as well, this issue
would be even more severe for LFQ and SILAC. With recent
developments in LFQ-based data independent acquisition (DIA)
quantification46, it might be interesting to see how this approach
can compare to TMT multiplexing for quantitative phospho-
proteomics experiments, once current DIA limitations such as
reliable phosphorylation site localization can be routinely
addressed. To increase phosphopeptide coverage and quantifica-
tion precision of MS3-based over MS2-based TMT, one would
need to increase scanning speed and/or identification rates, and
signal-to-noise ratios on MS3 levels, respectively. There is cur-
rently no evidence that a new MS3-based method that overcomes
these obstacles will be routinely available in the foreseeable future.
Instead, future developments in alternative quantification
approaches such as complementary reporter ion readout, or gas-
phase- or ion mobility-based ion purification may enable precise
and accurate large-scale phosphopeptide quantification34,35,37. In
the meantime, we advise large-scale phosphoproteomics users to
consider using MS2-based TMT-based quantification, as long as
reproducible but not necessarily accurate quantification is
required.

Methods
Human cell culture. All experiments were performed as either technical (Figs. 1, 2
and 6 and Supplementary Fig. 2) or biological (Figs. 3 and 4) replicates. Human
epithelial cervix carcinoma HeLa cells (female) and human epithelial osteosarcoma
U2OS cells (female) were purchased from ATCC. Cells were cultured in DMEM
high glucose with Glutamax (Gibco, 31966–021) or for SILAC experiments in
DMEM high glucose without L-glutamine, lysine and arginine (Biowest,
A0480–500), both with 10% fetal bovine serum (Gibco, 10270–106) and 100 U/ml
penicillin/streptomycin (Invitrogen, 15140-122) at 37 °C in a humidified incubator
with 5% CO2. For SILAC experiments with and without yeast protein background,
cells were labeled with three different isotopic versions of lysine (“0”: normal Lys,
“4”: Lys-D4, “8”: Lys-13C6,15N2), or lysine and arginine (“0”: normal Arg, “6”: Arg-
13C6, “10”: Arg-13C6,15N4), respectively (Cambridge Isotope Laboratories Inc.,
CNLM-291-H-PK)21. We have not performed specific authentication of the cell
lines in this study. Cells were tested mycoplasma negative via PCR-testing.
Treatment with genotoxic agents doxorubicin (Sigma Aldrich, D1515-10MG) and
4-nitroquinoline 1-oxide (Sigma Aldrich, N8141) with DMSO (Sigma-Aldrich,
D8418–250ml) as a control were performed for 2 h at final concentrations of 5 µM
and 2.5 µM diluted in DMSO, respectively. Cells were harvested with or without
previous treatment at approximately 90% confluency by washing twice with PBS
(Gibco, 20012–068) and then adding 95 °C hot GdmCl lysis buffer (6 M guanidine
hydrochloride, Sigma-Aldrich, G3272–2KG; 5 mM tris(2-carboxyethyl)phosphine,
Sigma-Aldrich, C4706–10G; 10 mM chloroacetamide; 100 mM Tris, pH 8.5, Sigma-
Aldrich, 10708976001) supplemented with protease and phosphatase inhibitors (1
complete mini protease inhibitor cocktail tablet, Roche, 04693124001; 50 mM

sodium fluoride; 10 mM sodium orthovanadate; 50 mM β-glycerol phosphate,
Sigma-Aldrich, G5422). After rocking for 5 min, cells were scraped and lysate was
boiled for 10 min at 95 °C. DNA was sheared by 2-min ultrasonication treatment
(Sonics & Materials, VCX 130; 1 s on, 1 s off, 80% amplitude).

Yeast cell culture. BY4742 wt yeast cells were grown in yeast medium (drop out
mix without lysine, Nordic Biosite, D9515B; 6.7 g/l yeast synthetic drop-out
medium supplements without lysine, Sigma-Aldrich, Y1376–20G; 2% v/v glucose,
Sigma-Aldrich, G7021–1KG; 205 µl/l SILAC lysine 0/4/8) at 30 °C and 200 rpm
rotation in overnight cultures. Day cultures were inoculated at OD600 of ~0.1 and
harvested at OD600 of ~0.9. Yeast cells were washed with ice-cold PBS and 1 l of

Fig. 6 3D multiple regression model-based calculation of phosphorylation stoichiometry. a Phosphorylation stoichiometry can be extracted by feeding
phospho-, non-phospho- and protein-intensity data into a 3D multiple regression model (3DMM). More detailed explanations are given in Supplementary
Note 1. b For benchmarking stoichiometry calculation via MS2- and MS3-based TMT, yeast and HeLa phosphopeptides were each half dephosphorylated
with Rapid alkaline phosphatase. Yeast phospho- and non-phospho-peptides were then diluted in fixed ratios to create samples with set phosphopeptide
stoichiometry, and added to equal amounts of HeLa phospho- and non-phospho-peptides serving as a contaminating background. The sample was
measured three times as technical replicates each with MS2- and OT MC MS3-based TMT quantification. In this setup, protein intensities were set to 1 in
the 3DMM. c 3DMM-extracted p-values describing the significance of the slope being non-zero were correlated against the difference of MS2- and MS3-
estimated stoichiometry vs. the true value of 10%. d Scatter plots showing estimated stoichiometry determined in TMT MS2 and MS3 mode, with three
different levels of 3DMM p-value cutoffs. e Mean squared errors were calculated as a sum of positive bias and variance for all replicates of both MS2- and
MS3-based TMT at different 3DMM p-value cutoffs
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OD600 0.5 cells equivalent were resuspended in 10 ml yeast lysis buffer (75 mM

TrisCl pH 8.0; 75 mM NaCl, Sigma-Aldrich, S5886–1KG; 1 mM ethylenediamine-
tetraacetic acid, Sigma-Aldrich, ED-500G; protease and phosphatase inhibitors
listed above). Resuspended yeast was frozen in droplets in liquid nitrogen, and
grinded in a MM400 ball mill (Retsch) for 3 min at 25 Hz. Yeast pellet powder was
supplemented with 1% Triton X-100 (Sigma-Aldrich, T9284) v/v and thawed at 4 °
C for 30-min rolling. Debris was spun down, and supernatant was transferred to
−80 °C acetone (Merck, 1.00020.2500) to a final 80% v/v and incubated for 4 h at
−20 °C. Precipitated proteins were spun down and resuspended in 95 °C GdmCl
lysis buffer and treated as human cells written above.

Protein digestion. Protein concentration was estimated by BCA assay (Thermo
Fisher Scientific, 23225). 1–2 mg protein per condition were digested with 1:100 w/
w LysC (Wako, 129-02541) for 4 h at 37 °C. Samples were diluted 1:3 in 25 mM

TrisCl pH 8.5 and digested with 1:100 w/w trypsin (Sigma-Aldrich, T6567) at 37 °C
overnight. After acidification 1:10 with 10% TFA (Sigma-Aldrich, T6508-500ML)
and spinning down 2 min at 2000 × g, peptides were purified on SepPak Classic
C18 cartridges (Waters; WAT051910).

High flow fractionation for SILAC biological benchmark only. Prior to phos-
phopeptide enrichment, SILAC samples were fractionated according to a modified
protocol by Batth et al.11. We used a Waters XBridge BEH130 C18 3.5 µm 4.6 ×
250 mm column on an Ultimate 3000 high-pressure liquid chromatography
(HPLC) system (Dionex) operating at a flow rate of 1 ml/min with three buffer
lines: Buffer A consisting of water, buffer B of ACN (Merck, 1.00030.2500) and
buffer C of 25 mM ammonium bicarbonate, pH8 (Sigma-Aldrich, 09830-500G).
Peptides were separated by a linear gradient from 5% B to 25% B in 50 min
followed by a linear increase to 75% B in 5 min, and kept there for 5 min before
ramping to 5% in 5 min. Buffer C was constantly added to the gradient at 10%. Ten
concatenated fractions consisting of pooled 1-min fractions were collected and then
used for phosphopeptide enrichment.

Phosphopeptide enrichment. Phosphopeptides were enriched from samples using
titanium dioxide beads (TiO2; GL Sciences, 5020-75000) according to a modified
protocol from Jersie-Christensen et al.49. TiO2 beads were pre-incubated in 2,5-
dihydroxybenzoic acid (20 mg/ml; Sigma-Aldrich, 85707-1G-F) in 80% ACN/1%
TFA (5 ml/mg of beads) for 20 min. All fractions were brought to 80% ACN and
5% TFA in a final volume of 5 ml. Beads equivalent to 2× starting protein amount
(in 5 ml of DHB solution) were added to each sample, which were then incubated
for 20 min while rotating. Beads were transferred to C8 StageTips (made from
Sigma Aldrich, 66882-U)50 and washed with 10% ACN/6% TFA, 40% ACN/6%
TFA, and 60%/6% TFA. Phosphopeptides are then eluted with 5% ammonia
(Merck, 1054321011) and 10% ammonia/25% ACN and subsequently loaded onto
C18 StageTips (made from Sigma-Aldrich, 66883-U). Peptides were eluted with 40
and 60% ACN and subjected to TMT labeling or directly to MS measurement.

TMT labeling. Enriched phosphopeptides were mixed with HEPES at pH 8.5
(Sigma-Aldrich, H3375) to a final concentration of 50 mM, as suggested by Ting
et al.32. TMT10-plex reagents (Thermo Fisher Scientific, 90110) were solubilized in
acetonitrile according to the manufacturer’s instructions. We performed dilution
experiments and determined that 1 µl TMT reagent is sufficient to label phos-
phopeptides equivalent to ~1 mg protein starting material to reach a labeling
efficiency of >95% for the cell lines used in this publication. We confirmed for
randomly selected raw files from all five TMT data sets in this study that the
labeling efficiency was >97%. After vortexing and incubating for 1 h at room
temperature, reactions were quenched using a 5% hydroxylamine solution (Sigma-
Aldrich, 467804-10ML) at 1 µl per 8 µl TMT reagent. After further 15-min incu-
bation, the peptide solutions were acidified 1:10 v/v with 10% formic acid (Merck,
1.00264.1000) and loaded onto C18 StageTips. Peptides were either eluted with 40
and 60% ACN for MS measurement, or with 40 and 60% ACN in 25 mM

ammonium bicarbonate for micro-flow fractionation.

Micro flow fractionation for TMT biological benchmark only. Phosphopeptides
were fractionated using a Waters Acquity CSH C18 1.7 µm 1 × 150mm column on
an Ultimate 3000 HPLC system (Dionex) operating at a flow rate of 30 µl/min with
two buffer lines: Buffer A consisting of 5 mM ammonium bicarbonate and buffer B
of 100% ACN. Peptides were separated by a linear gradient from 5% B to 25% B in
62.5 min followed by a linear increase to 60% B in 4.5 min and 70% in 3 min, and
kept there for 7 min before ramping to 5% in 1 min. Twenty-four concatenated
fractions consisting of pooled fractions of variable time length were collected and
directly subjected to MS measurement. For MS3-based TMT, concatenation of two
fractions failed, which thus had to be measured individually, resulting in a total of
26 equivalent measured fractions.

Nanoflow LC tandem MS. All samples were analyzed on an Easy-nLC 1000
coupled to a Q-Exactive HF instrument (Thermo Fisher Scientific; TMT MS2 of
Fig. 3), an Orbitrap Fusion Lumos instrument (Thermo Fisher Scientific; Figs. 1, 2,
TMT MS3 of 3, 6, Supplementary Fig. 2), or a Q-Exactive HF-X instrument

(Thermo Fisher Scientific; Fig. 4), all equipped with a nanoelectrospray source.
Peptides were separated on a 15-cm or 50-cm (Fig. 2 and LFQ Fig. 3 only) ana-
lytical column (75-µm inner diameter) in-house packed with 1.9-µm C18 beads
(Dr. Maisch, r119.b9). The column temperature was maintained at 40 °C or 50 °C
for the 15-cm and 50-cm column, respectively, using an integrated column oven
(PRSO-V1, Sonation). For SILAC and TMT in the technical comparison in Fig. 2,
MS samples were diluted to contain a total peptide amount equal to one LFQ
injection based on protein starting amount, to enable MS intensity-independent
comparison of the method-inherent quantification characteristics. For the biolo-
gical comparison in Fig. 3 and the original technical comparison on Supplementary
Fig. 2c–e, SILAC and TMT MS samples were injected without dilution, so that each
labeling channel resembles one LFQ injection. Each peptide fraction was auto-
sampled and separated using gradients optimized for the type of sample, the col-
umn length and the available MS time. We found that TMT-labeling seemed to
make the peptides more hydrophobic and tried to optimize our gradients based on
this observation. For the TMT MS2/MS3 comparison (Fig. 1), MS2- and MS3-based
TMT of the DDR comparison (Fig. 3) and the occupancy comparison (Fig. 6), we
used a 90-min gradient at a flow rate of 250 nl/min ramping from 10% buffer B
(80% ACN and 0.1% formic acid) to 30% B in 69 min, to 45% B in 13 min, to 80%
B in 2 min, kept 2 min, to 5% B in 2 min and kept 2 min. For the accuracy
comparison (Fig. 2 and Supplementary Fig. 2) and LFQ of the DDR comparison
(Fig. 3), we used a 290-min gradient ramping from 5% B to 30% B in 240 min, to
80% B in 35 min, kept 5 min, to 5% B in 5 min and kept 5 min. The shorter LFQ
gradients for 30, 90, and 180 min on a 15-cm column in Fig. 4 are time-compressed
versions of this 290-min gradient. For SILAC of the DDR comparison (Fig. 3), we
used a 70-min gradient ramping from 10% B to 30% B in 54 min, to 45% B in 10
min, to 80% B in 1 min, kept 2 min, to 5% B in 1 min and kept 2 min. The mass
spectrometers were operated in DDA mode to automatically isolate and fragment
topN multiply charged precursors according to their intensities. Detailed MS set-
tings for the methods used in this study are listed in Supplementary Table 1.

Raw data processing. An overview of all raw LC-MS/MS files is given in Sup-
plementary Data 3. All raw LC-MS/MS data were processed with MaxQuant13

v1.5.5.4i and v1.5.8.0 (only for Supplementary Fig. 3) using the Andromeda search
engine and searched against the complete human UniProt database including all
Swiss-Prot entries (downloaded 2016-04-14), and in case of mixed human/yeast
samples additionally with the complete yeast UniProt database including all Swiss-
Prot entries (downloaded 2016-11-30). In addition, the default contaminant pro-
tein database was included. The “match between runs” (MBR) and SILAC
requantify (REQ) features were activated where indicated. As activating MBR for
SILAC showed essentially no differences to having it deactivated, we did not show
this data in this study. Data sets for LFQ, SILAC, MS2- and MS3-based TMT, as
well as LFQ-MBR and SILAC-MBR REQ were kept in individual MaxQuant
analysis groups (Supplementary Data 3). TMT correction factors in MaxQuant
were updated to the values provided by the manufacturer. For LFQ of the DDR
comparison (Fig. 3), four replicates were measured, but only three were used at
random in the data analysis, equal to SILAC and TMT. Carbamidomethylation of
cysteine was specified as fixed modification for all groups. Variable modifications
considered were oxidation of methionine, protein N-terminal acetylation, and
phosphorylation of serine, threonine and tyrosine residues.

False discovery rate analysis. False discovery rate (FDR) filtering was applied as
described before12,13. Briefly, the FDR was set to 1% on peptide spectrum match
(PSM), PTM site and Protein level. MaxQuant applies a target-decoy search
strategy to estimate and control the extent of false-positive identifications using the
concept of posterior error probability (PEP) to integrate multiple peptide prop-
erties, such as length, charge, number of modifications, and Andromeda score into
a single quantity reflecting the quality of a PSM.

Bioinformatics analysis. The majority of the data analysis was accomplished by
using custom R scripts with R 64 bit version 3.4.051, including the R package data
table v1.10.452. Signal-to-noise ratios were extracted from MS raw files using
raxport.exe v3.3 (http://www.findbestopensource.com/product/raxport)53 and a
custom Perl script using ActivePerl v5.24.0.2400, with the script being provided as
Supplementary Data 4. All intensities, except for the technical benchmarks (Fig. 2
and Supplementary Fig. 2), were quantile normalized using the R package pre-
processCore v1.40.054. For the technical benchmarks, this would have affected the
quantification accuracy estimation, which is why intensities were not normalized
here, except for SILAC total triplet intensities. Furthermore for the technical
benchmarks, SILAC incorporation efficiency was corrected by using missed
cleavage-separated correlation factors between MaxQuant raw and “normalized”
SILAC ratio columns, extracted from a 1:1:1 mixture of HeLa or yeast, respectively.
SILAC intensities were calculated from total SILAC intensities and SILAC ratios, as
these proved to be slightly more robust in SAM analysis than the default
MaxQuant-calculated SILAC intensities. For phosphorylation site analysis, the
lowest available underscore intensity entries from the MaxQuant output were used.
For phosphorylation localization, the lowest MaxQuant-calculated localization
probability per method was used to filter confidently localized phosphorylation
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sites with a threshold of >0.75. However, MBR-derived localization scores of 0 were
ignored.

Heat maps were created using the R package gplots v3.0.155. Bar plots, box
plots, scatter plots, violin plots and ROC plots were creating using the R package
ggplot2 v2.2.156. Venn diagrams were created using the R package VennDiagram
v1.6.1757. Phosphorylation site stoichiometry information was calculated using a
custom R script, which is appended as Supplementary Data 1, together with
example data from Fig. 6 in Supplementary Data 2. The theoretical background
of multiplexed stoichiometry calculation is described in more detail in
Supplementary Note 1. After calculation of raw stoichiometry, “illegal
stoichiometry”, i.e. values x outside the boundary of 0 <= x <= 1, were excluded
from further analysis.

Statistics. SAM analysis was performed either in R with the R package SAMR
v2.045 (two class paired or unpaired t-testing, automatic s0 and FDR-based delta-
determination, a random seed= 123, and default values or otherwise indicated for
the FDR), or in Perseus v1.6.0.714 (two-sided t-test with FDR-adjustment of a q-
value threshold of 0.05, and s0 set to 0.1 or 0.2). Supplementary Data 5 contains all
normalized intensities from the biological benchmark and the results from SAM
testing (Fig. 3). Where indicated, imputation was performed with the R package
“impute” incorporated in the “samr” package using standard settings. Sequence
motif logos were generated using iceLogo v1.258 with fold-change as the scoring
system and a p-value cut-off of 0.05. Our input data sets were sequence windows
for SAM upregulated phosphorylation sites of each quantification method. For the
background data sets, we used all phosphorylation site ratios used for SAM testing
for each method, respectively. Significant enrichment of kinase linear motifs or GO
terms was performed using the Fisher exact test within Perseus, with standard
settings of FDR= 0.02 and relative enrichment on gene name level. Supplementary
Data 6 contains all enriched motifs and GO-terms from the biological benchmark
based on the results from SAM testing (Fig. 5).

Code availability. Custom R code to perform 3DMM stoichiometry calculations in
Fig. 6 is available as an R script in the supplementary section as Supplementary
Data 1 and example data from Fig. 6 as Supplementary Data 2. All other custom R
codes are available upon request.

Data availability. All raw MS data files from this study have been deposited to the
ProteomXchange Consortium59 via the PRIDE partner repository60 with identifier
PXD007145 (https://www.ebi.ac.uk/pride/archive/projects/PXD007145). Raw MS
data files from Huang et al. (2017)47 were downloaded from MassIVE with
identifier MSV000079655 (ftp://massive.ucsd.edu/MSV000079655). All other data
supporting the findings of this study are available from the corresponding author
on reasonable request.
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