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Complement receptor type 1 (CRI, CD35) is a membrane glycoprotein that is
present on erythrocytes, leukocytes, glomerular podocytes, and splenic follicular den-
dritic cells, and mediates the binding by these cells of particles and immune com-
plexes that have activated complement (1, 2) . This function of CRl is dependent
on its capacity to bind reversibly the C3b and C4b fragments of C3 and C4 that
are covalently attached to activators of complement . CRl also can inhibit comple-
ment activation by impairing the formation and function ofthe alternative and clas-
sical pathway C3/C5 convertases, and by serving as a cofactor for the cleavage by
factor I of C3b to iC3b, C3c and C3d,g, and of C4b to C4c and C4d.

Four molecular weight allotypes of CRl have been described that vary by incre-
ments of 40,000-50,000, andeach is able to mediate binding ofC3b (1, 3) . The most
frequently occurring F or A allotype has an Mr after reduction of 250,000 on SDS-
PAGE. The receptor is comprised ofa single polypeptide chain and has an estimated
six to eight N-linked complex oligosaccharides and no 0-linked carbohydrate. The
amino acid sequence of -75% of the extracellular region, the single 25-amino acid
membrane spanning domain, and the 43-amino acid cytoplasmic sequence has been
determined by sequence analysis of overlapping cDNA clones (4). The extracellular
domain consists of a series of tandemly arranged short consensus repeats (SCRs)'
of 60-70 amino acids, each SCR having four conserved cysteines and a consensus
sequence involving -40% of the residues . Every eighth SCR is a highly homolo-
gous repeat, such that SCR-1, -8, and -15, SCR2, -9, and -16, etc. are 65-100% iden-
tical . Thus, seven SCRs constitute a long homologous repeat (LHR). This earlier
study presented the sequence of three LHRs, and a fourth NH2-terminal LHR was
predicted for the F allotype (4).
Although the LHR appears to be unique to CRl, the basic SCR structural ele-

ment has been found in other C3/C4-binding proteins such as factor H, C4b-binding
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protein (C4bp), decay accelerating factor, complement receptor type 2, factor B,
Clr, Cls, C2, and membrane cofactor protein (1, 5) . The presence of the SCR in
the noncomplement proteins, the IL-2-R, factor XIIIb, and R-2-glycoprotein I, in-
dicates that the SCR, although capable of forming a C3/C4-binding site, does not
necessarily have this activity.
The present study is an analysis ofthe SCRs ofCRI necessary to form the C3b/C4b-

binding sites of CRl . The sequence of the NH2-terminal LHR, LHR-A, has been
deduced from cDNA clones encoding this region ofthe receptor. A full-length cDNA
clone containing all of the coding sequence of the F allotype of CRl has been con-
structed and expressed in L cells and in COS cells . The function ofthis recombinant
CRI and of CRI-derived proteins encoded by a series of deletion mutants has been
assessed and has permitted the mapping of functional domains .

Materials and Methods
Construction ofa cDNA Library.

	

A selectively primed cDNA library, XHH, was constructed
from 3 ug of poly(A)' RNA purified from DMSO-induced HL-60 cells (6-8) as described
with the modification that LK35.1, a 35-mer oligonucleotide (5'-TGAAGTCATC ACAG-
GATTTC ACTTCACATG TGGGG-3'), was used in place of oligo (dT),2-,s > and 40 gCi
of a-[s2P]dCTP was added during second strand synthesis . One third of the cDNA was
cloned in ?.gtll and 750,000 independent recombinants were obtained . The size-selected
human tonsil library, XS2T, has been previously described (4, 9) (American Type Culture
Collection accession No . 37546) .

Isolation of Clones, Probes, andDNA Sequence Analysis .

	

The probes used for screening cDNA
libraries study were CRI-1 (9) (American Type Culture Collection, accession No . 57331),
CRI-2 (9), CRI-4 (10), and CRI-18, a 252-bp Sau 3AI fragment from the 0.5-kb Eco RI
fragment of cDNA clone XH3 .1 corresponding to nucleotides 101-352 in Fig . 1 . Under con-
ditions of high stringency, CRl-18 hybridizes only to cDNA clones encoding either the NH2-
terminal SCR of LHRA or the signal peptide. The inserts of the cDNA clones were sequenced
by the dideoxynucleotide technique (11) after subcloning fragments into M13mp18 and
M13mp19 (12) . Deletion mutants for sequencing were made by the exonuclease III method
(13) . Deletion constructions for expression were sequenced directly from the double-stranded
plasmid as described (14) . DNA sequences were aligned and analyzed with the UWGCG
package (15) or the MicroGenie software (Beckman Instruments, Inc ., Fullerton, CA) .

Strains and Plasmids.

	

Escherichia coliMC1061/P3 and the CDM8 expression vector (16), were
gifts from Dr. Brian Seed (Massachusetts General Hospital, Boston, MA). The expression
vector, pMTneo.l, was a gift from Dr. Keith Peden (The Johns Hopkins University School
of Medicine, Baltimore, MD) . E. coli GM48 and GM271, dam and dcm- , respectively, were
gifts from Dr. Elizabeth Rayleigh (New England Biolabs, Beverly, MA) and E. coli DKl,
a recA derivative ofMC1061, was a gift from Dr. David Kurnit (University ofMichigan Med-
ical School, Ann Arbor, MI) . Strains DKI/P3 and GM271/P3 were prepared by transforming
the indicated parental strain with plasmid DNA isolated from MC1061/P3 and selecting for
kanamycin resistance. Strain DH5a (Bethesda Research Laboratories, Bethesda, MD),
pBluescript KS' (Stratagene, Madison, WI), and pGEM3b (Promega Biotec, LaJolla, CA)
were obtained as indicated .

Construction ofpBSABCD andpiABCD.

	

Restriction fragments derived from the cDNA clones,
XT109.1, XH10.3, XH7 .1, XT8.3 (9), XT6.1 (4, 10), XT50.1 (4), and XT8.2 (4) were ligated and
inserted into pBluescriptKS' to form pBSABCD (Fig . 1) . The 6.9-kb Xho I/Not I fragment
containing the entire CRl cDNA coding sequence was ligated to the 4.4-kb Xho I/Not I
fragment of CDM8 (Fig . 4), the ligation mixture used to transform DKl/P3, and the clone,
piABCD, containing the CRI cDNA insert was selected .

Construction of CRI Deletion Mutants.

	

The construction ofthe deletion mutants utilizes the
four Bsm I sites in homologous positions near the sequence encoding the NH2 terminus of
each of the four LHRs and the absence of Bsm I sites elsewhere . 10 wg of pBSABCD DNA
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was partially digested with 50 U of Bsm I for 45 min, and the restriction fragments of 8.55,
7.20, and 5.85 kb that corresponded to linear segments of the parent plasmid lacking se-
quence encoding one, two, or three LHRs, respectively, were purified, self ligated, and used
to transform competent DH5a.
The 8.55-kb fragment was generated from pBSABCD by releasing any one of three 1.35-

kb Bsm I fragments corresponding to the coding sequence for 92% of LHRA, -B, or -C .
Thus, three distinct plasmids distinguishable by restriction mapping with Sma I were gener-
ated after ligation : pBSBCD, pBSBCD, and pBSBCD, in which the capital letters following
pBS represent the LHRs present . The 5 .6-kb insert of each of these constructs was released
by digestion with Xho I/Not I and ligated to the expression vector, CDM8, to form piBCD,
piABD, and piACD. The 7.20-kb fragment from the partial digestion of pBSABCD resulted
from Bsm I digestion at three adjacent sites or at two sites separated by a single uncut site .
The two possible products obtained after ligation and transformation, pBSAD, and pBSCD,
were distinguished by digestion with Xho I/Pst I . The 4.2-kb insert was released from each
by digestion with Xho I/Not I and subcloned into CDM8 to yield piAD and piCD . The 5.85-
kb fragment from the Bsm I digestion ofpBSABCD represented a product ofcomplete diges-
tion and was self ligated to form pBSD. The 2.9-kb insert of pBSD was released with Xho
I/Not I and ligated into CDM8 to yield piD.
The plasmid, pBSBD, was prepared by Bsm I partial digestion of pBSBCD. The linear

7.2-kb fragment corresponding to cleavage of two adjacent Bsm I sites was self-ligated and
used to transform DH5a . The 4.2-kb insert containing 1 .2 and 6.0 kb Sma I fragments was
released with Xho I/Not I and transferred to CDM8 to yield piBD.
The plasmid piABCD was digested to completion with Bst EII, and a doublet of 1 .35 kb

and a single fragment of 8.6 kb were ligated and the mixture was used to transform DKI/P3 .
Colonies were identified by hybridization with the CRI cDNA probe, CRI-4, and the DNA
of positive clones was digested with Sma I . The plasmid, piE-2, was identified as containing
a weakly CRI-4' clone having a single 8.6-kb Sma I fragment .
The plasmid, piA/D, was prepared by digesting piABCD to completion with Pst I and

partially with Apa I . The 3' overhangs were removed with the Klenow fragment of E. coli
DNA polymerase I . A 7 .5-kb fragment was ligated and used to transform DKI/P3 .

Transfection ofRecombinant CRI Plasmids.

	

Each 30-50% confluent 10-cm dish of COS cells
or L cells was transfected with 8 Rg of DNA and 1.6 mg of DEAE-dextran in the presence
of 100 uM chloroquine diphosphate (8) . The transfected cells were shocked with 10% DMSO
(17) and cultured for 2-3 d in DMEM supplemented with 10% FCS, 2 mM glutamine, 50
U/ml penicillin, 50 gg/ml streptomycin, and 1 mM sodium pyruvate .

RIA, Immunofuorescence, and Immunoprecipitation ofRecombinant CRI .

	

Replicate samples of
3 x 10 5 transfected cells in 0 .1 ml PBS containing 1% BSA and 0.02% sodium azide were
incubated at 0°C for 60 min with 3 gg/ml YZl IgGI anti-CRI (18) or with 90 ug/ml rabbit
IgG anti-CRI . The cells were washed and resuspended in 0 .1 ml of buffer containing 1-2
gCi/ml of 125I - F(ab')2 goat anti-mouse IgG or 125 1-protein A . After 1-2 h at 0°C, the cells
were washed and assayed for 125 1 .

For immunofluorescent detection of CRI, transfected cells were sequentially incubated with
YZl anti-CR1 and affinity-purified FITC-labeled sheep F(ab')2 anti-mouse IgG (Cappel
Laboratories, Cochranville, PA) .
CRI was immunoprecipitated from detergent lysates of 125 1-surface-labeled (19) cells with

SepharoseYZl or with rabbit IgG anti-CRI/protein A-Sepharose (18) . Immunoadsorbed pro-
teins were assessed by SDS-PAGE (20) and autoradiography.

Assay ofRecombinant CRI Function .

	

Sheep erythrocytes sensitized with rabbit antibody (EA)
and limited amounts of C4b (EAC4b [lim]) and 12,000 125 1-Cab/cell (EAC4b [lim], 3b) were
prepared by sequential treatment of EAC4b (lim) (Diamedix, Miami, FL) with Cl, C2, and
1251-C3 followed by incubation for 60 min at 37°C in gelatin veronal-buffered saline con-
taining 40 mMEDTA. Alternatively, methylamine-treated C3 (C3 [ma]) and (C4 [ma]) were
covalently attached to sheep erythrocytes treated with 3-(2-pyridyldithio) propionic acid
N-hydroxysuccinimide ester (Sigma Chemical Co ., St . Louis, MO) (21) . EAC4b were pre-
pared with purified C4 (22) .
The C3- and C4-binding functions of recombinant CRI were assayed by rosette forma-

tion . Transfected cells, 1-4 x 106/ml, were incubated with C3- or C4-bearing erythrocytes,
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2-6 x 10 6 /ml, in 0.02 ml for 60 min at 20°C . The percentage of transfected cells forming
rosettes was evaluated microscopically with a transfected cell scored as a rosette if there were
at least five adherent erythrocytes .
The factor 1-cofactor function of recombinant CRI was assessed by incubating transfected

COS cells with 0.5 gg'25I-C3(ma) and 0.2 ltg factor I (23) in 0.04 ml for 60 min at 37°C
followed by SDS-PAGE and autoradiography. Alternatively, detergent lysates of 106 COS cells
were immunoprecipitated sequentially with Sepharose-UPC10 anti-levan and SepharoseYZl .
The washed beads were incubated for 60 min at 37°C with ' 211-C3(ma) and factor I in 0.05
ml PBS-0.5% NP-40 .

Results
Isolation and Sequence ofcDNA Clones Encoding the Signal Peptide andLHRA ofCRI .

	

A
specifically primed ),gtll cDNA library, XHH, that contained 7 .5 x 105 recom-
binants was prepared with cDNA synthesized from poly(A)+ RNA from DMSO-
induced HL-60 cells . These cells express only the F allotype of CRI (3) which is
predicted to have four LHRs (4) . The primer, LK35.1, was an antisense 35-mer cor-
responding to nucleotides 896-930 of the previously published partial cDNA sequence
of CR1 (4) . This oligonucleotide was shown to hybridize to LHRB, LHRC, and
LHRD under the conditions ofreverse transcription . 250 positive clones were identified
in a plating of 3.8 x 105 unamplified recombinant phage screened with a mixture
of the CRI cDNA probes, CR1-1 and CRl-4. 38 positive clones were picked and
plaque purified . Southern blots of Eco RI-digested DNA from these clones were
screened with the 23-mer oligonucleotide, KS23.1 (5'-CTGAGCGTAC CCAAA-
GGGAC AAG-3') corresponding to nucleotides 763-785 of the partial CRI cDNA
sequence (4) . This probe hybridizes under conditions of high stringency at a single
site in the sequence encoding LHR-B but not to sequences encoding LHR-C or
LHR-D. The insert of clone XH7 .1 (Fig. 1) contained three Eco RI fragments
of 1 .0, 0 .9, and 0.4 kb, and the two larger fragments hybridized to KS23.1, indi-
cating that this clone contained sequences coding for the 3' five SCRs of LHR-A
and all of LHR-B. This finding confirmed the prediction that LHRA would be highly
homologous to LHRB (4) . Clone XH3 .1 (Fig . 1) contained a single KS23 .1+ Eco
RI fragment of 1.0 kb and a 5', 0.5-kb fragment that hybridized weakly with CR1-4
at high stringency. This clone was considered to contain the additional 5' sequence
completing LHR-A, including SCR-1 and -2 and 0.1 kb ofupstream sequence . None
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FIGURE 1 .

	

Restriction map of the insert ofthe plasmid, pBSABCD, encoding human CRI . Indi-
cated within the box delineating the region containing the coding sequence are the nine frag-
ments ofeight cDNA clones that were ligated to form the CRI construct . The brackets designate
the positions ofLHR-A, -B, -C, and -D, respectively. The lines below the box represent the posi-
tions of the newly isolated 5' cDNA clones. The restriction sites are abbreviated : A, Apa I ; B,
Barn HI; G, Bgl II ; H, Hind III ; K, Kpn I ; M, Bsp MII ; P, Pst I ; R, Eco RI ; and S, Sac I .
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of the remaining 36 clones, all of which hybridized with CR1-1, were detected with
the probe, CRI-18, a 252-bp Sau 3AI fragment from the 0.5-kb Eco RI fragment
of clone XH3.1 that does not hybridize to sequences encoding LHR-B, -C, or -D.
DNA sequence analysis of XH3.1 revealed that the open reading frame continued

to the 5' end of the cDNA, indicating that the clone did not extend to the transla-
tional start site . Therefore, the cDNA libraries, XHH and XS2T (4, 9), were
rescreened with the probe CRl-18 to identify one clone from each 1H10 .3 and
XT109.1, respectively. The Eco RI fragments of these clones that hybridized with
CR1-18 were sequenced as were the inserts from the clones XH3 .1 and XH7.1 . The
composite sequence is presented such that the nucleotide following 1531 in Fig. 2
is nucleotide 1 in Fig. 2 of the previously published sequence (4). The overlapping
sequences of the cDNA clones from the HL-60 and tonsillar libraries are identical.
Immediately upstream of LHR-A, clones XH10.3 and XT109.1 contain identical

putative hydrophobic leader sequences (24) encoding 41 amino acids, including an
ATG matching the consensus NNA/GNNATGG proposed for eukaryotic transla-
tion initiation sites (Fig. 3) (25) . A second ATG, located six codons upstream of
the chosen ATG andjust downstream of an in-frame stop codon, is a poor match

FIGURE 2. Nucleotide se-
quence of the 5' CR1 cDNA
clones . The composite sequence
begins with the first nucleotide
after the octamer Eco RI linker
in clone XT109.1 . Nucleotide
1,531 of this sequence is the first
nucleotide 5' of nucleotide 1 of
the sequence depicted in Fig. 2
of reference 4. The proposed
initiation codon is underlined
and an upstream stop codon is
indicated by the overbar. These
sequence data have been sub-
mitted to the EMBL/GenBank
under the accession number
Y00816 .

1

61

121 NTrr

60

120

180

210181

261 MACKPOW 300

301 360

361 CRAMMMMM 420

421 480

481 540

s41 600

601

661

660

721

781

720

780

841

840

901

900

961

960

1021

1020

1081

1161

1080

1140

1201

1200

1261

1321

MWAGMRM

1260

1320

1381

1380

1461

1440

1501 1531

1500



1704

	

LIGAND BINDING SITES OF HUMAN CRI

Ae~

1

	

vrnrttatrvANa

	

SiWAi

47

	

A
497HQ DHFL KNmQ NASD

	

SK

	

8 Y

	

T DL SSP V K

	

B
947 HQ

	

MM EIWQ N1M

	

S K

	

B Y

	

T

	

D L SBP V K

	

C
1400 HRr QP

	

BMW

	

V S

	

F KK

	

S E L SSVS N

	

D

107

	

A
557

	

RC

	

TD V RN

	

TH

	

H

	

E

	

L WE BW

	

Q

	

B
1007

	

RP

	

TD V RN

	

T H

	

H

	

E

	

L N AH 8T10'

	

0

	

C
1460

	

GP E F

	

D4S11'

	

TtRt

	

NEF

	

PT IV NN T M

	

91

	

D

FIGURE 3 .

	

Thededuced amino
acid sequence of the 5' cDNA
clones encoding the seven SCRs
of LHRA, and alignment of
this sequence with the corre-
sponding SCRs of LHRB, -C,
and -D. The four cysteines that
are conserved in each SCR are
underlined . A residue is shown
for LHR-B, -C, and -D only
where it is different from that
in LHRA. These sequence data
have been submitted to the
EMBL/GenBank under the ac-
cession number Y00816 .

for this consensus sequence . The first three amino acids of this leader sequence for
CRI, MGA, are the same as those reported for CR2 (1). The sequences of these
two clones diverge upstream of the ATG, and that from clone XH10.3 is believed
to represent a portion of an intervening sequence (data not shown) as has been de-
scribed earlier for other CR1 cDNA clones (4).
The signal peptidase cleavage is predicted (24) to occur between glycine-46 and

glutamine-47, suggesting that the blocked NH2 terminus of CRI (26, 27) may be
due to the presence of a pyrrolidone amide. The first two SCRs of the NH2-terminal
LHR-A contained in these clones are only 61 % identical to the corresponding region
of LHRB, whereas SCRs 3-7 of LHRA are 99% identical to the corresponding
SCRs of LHRB (Fig . 3) . Comparison of LHRA with LHR-C reveals that only the
third and fourth SCRs ofeach are highly homologous (99% identical) . LHR-A and
-D have only 68 °Io overall identity, with maximal identity of 81% between the sixth
SCR of each LHR. Thus, completion of the 5' cDNA sequence of CRI indicates
that the F allotype is composed of 2,039 amino acids, including a 41-amino acid
signal peptide, four LHRs ofseven SCRs each, two additional COOH-terminal SCRs,
a 25-residue transmembrane region and a 43-amino acid cytoplasmic domain. There
are 25 potential N-linked glycosylation sites .

Expression ofRecombinant CRI Protein .

	

Restriction fragments of eight cDNA clones
were ligated to form the plasmid, pBSABCD, having the entire coding sequence
of the F allotype of human CRI (Fig . 1) . The 6.9-kb Xho I-Not I fragment of
pBSABCD containing this sequence was subcloned into the eukaryotic expression
vectors, CDM8, to form piABCD and pMTneo.1 to form pMTABCD (Fig. 4). Ex-
pression of the insert is driven from a cytomegalovirus promoter in piABCD and
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TABLE I

Dose Response of Recombinant CRI and Human Growth Hormone
in Cotransfected L Cells

FIGURE 4.

	

Restriction maps of the expression plasmids piABCD and pMTABCD. P.MT and
PcMV represent the murine metallothionein and cytomegalovirus immediate early promoters,
respectively.

from the mouse metallothionein promoter in pMTABCD; both plasmids contain
an SV40 polyadenylation signal . The "ABCD" notation refers to the LHRs that are
present in the expression constructs .
Murine L cells were cotransfected by the DEAE-dextran method (8, 17) in dupli-

cate with 0, 2, or 4 ug of either piABCD or pMTABCD and 2 ug of pXGH5, a
reporter plasmid that directs the expression of growth hormone (28) . The cells were
harvested after 2 d and assayed for expression ofCR1 by binding ofYZ1 monoclonal
anti-CR1 . There was a dose-response relationship between recombinant plasmid DNA
and the expression of CR1 antigen (Table I) . The plasmid, piABCD, directed the
expression ofnearly threefold more CR1 antigen than did pMTABCD. The growth
hormone concentration in the culture medium varied by less than twofold with the
exception ofplate 5 . Additional experiments revealed that piABCD directed the tran-

Plate pXGH5 pMTABCD piABCD YZ1 RIA Growth hormone

u8 lug u8 CPm ng/ml
1 2 0 0 1,444 120
2 2 0 2 6,058 130
3 2 0 2 6,531 140
4 2 0 4 10,620 180
5 2 0 4 9,898 80
6 2 2 0 3,111 180
7 2 2 0 2,747 160
8 2 4 0 3,547 160
9 2 4 0 3,337 140
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sient expression of threefold more CRI antigen in COS cells than in L cells (data
not shown) .
CRI antigen present on the surface of the transfected COS cells was distributed

in clutters when assessed by indirect immunofluorescence of cells stained with YZl
anti-CRI (pig . 5) . This distribution of recombinant CR1 on COS cells resembles
that of wild=type CRI on human leukocytes (29) .
The Mr of the recombinant CRI was determined by surface iodination of COS

cells transfected with piABCD, immunoprecipitation ofcell lysates with Sepharose-
YZI, SM"PAGE, and autoradiography. The recombinant CRI had an Mr of
190,000 unreduced, which was equivalent to that ofthe F allotype and less than that
of the S allotype of erythrocyte CRI (Fig. 6) .
The Cab-binding and C4b-binding function of recombinant CRI was assayed

by the formation of rosettes between the transfected COS cells and EAC4b or
EAC4b(lim),3b. In 31 separate transfections, 5-50% of COS cells transfected with
the plasmid, piABCD, bound five or more EAC4b or EAC4b(lim),3b (Fig . 7). The
COS cells expressing CRI did not form rosettes with EAC4b(lim),3bi, although this
intermediate did form rosettes with Raji B lymphoblastoid cells expressing CR2
(data not shown).
The factor 1-cofactor activity of recombinant CRI immunoadsorbed from deter-

gent lysates of transfected COS cells with Sepharose-YZI was evaluated by incuba-
tion with 0.5 pg of 1251-C3(ma) and 200 ng of factor I . Factor I cleaved the a chain

FIGURE 5 .

	

Analysis by phase contrast (a and c) and immunofluorescent (b and d) microscopy
of COS cells transfected with piABCD (a and b) and CDM8 vector alone (c and d), respectively,
and indirectly stained with YZI monoclonal anti-CRI and fluorescein-labeled goat anti-mouse
F(ab')2 .
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FIGURE 6. - Analysis of recombinant CRl expressed by transfected COS cells by SDS-PAGE .
COS cells transfected with the CDM8 vector alone (lanes 1 and 4) and with piABCD (lanes 2
and 5), respectively, and erythrocytes from an individual having the F and S allotypes of CR1
(lanes 3 and 6) were surface labeled with 1251 . Detergent lysates of the cells were sequentially
immunoadsorbed with Sepharose-UPC10 (lanes 1-3) and Sepharose-YZI (lanes 4-6), and the
eluates were analyzed by SDS-PAGE under nonreducing conditions and autoradiography.

of C3(ma) into fragments of 76,000 and 46,000 Mr only in the presence of im-
munoimmobilized recombinant CRl or factor H (Fig . 8). The regions corresponding
to bands from the autoradiogram were excised from the gel and assayed for 1251 to
determine the amount of the a chain cleaved. In the presence of factor H, 91% of
the a chain was cleaved, while in the presence of increasing amounts of recombinant
CRl, 267o, 41%, and 5570, respectively, was cleaved .

Identification andLocalization ofMultiple C3b/C4b-bindingSites in CR1.

	

Deletion muta-
genesis of recombinant CR1 was performed to determine whether multiple distinct
C4b/C3b-binding sites are present in the receptor. The clones piBCD, piAD, piBD,
piCD, and piD were prepared from partial digests of the full coding sequence of
CRl cDNA with Bsm I, which restricted the DNA at single sites near the sequence
encoding the second cysteine of the first SCR of each LHR (Fig. 9) . After ligation
ofthe various restriction fragments, deletion mutants lacking one, two, orthree LHRs
were generated.
The clone piA/D was prepared by digesting the CR1 cDNA with Pst I and Apa

I, which restricted the DNA at a site between the codons for cysteine-3 and -4 of
the fifth SCR of LHRA and cysteine-3 and -4 of the fourth SCR ofLHRD, respec-
tively (Fig . 9) . Ligation of the appropriate fragments formed a hybrid construct con-
taining the NH2-terminal four and three quarters SCRs of LHRA and the COOH-
terminal three and one quarter SCRs of LHRD.
The clone piE-2 was prepared by digesting the CRl cDNA with Bst EII, which
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FIGURE 7 .

	

Analysis of C3b and C4b binding by COS cells expressing recombinant CRi. COS
cells transfected with piABCD (a and c) orwith the CDM8 vector alone (b and d) were incubated
with EAC4b(lim),3b (a and b) or with EAC4b (c and d) and examined for formation of rosettes
by phase contrast microscopy.

FIGURE 8.

	

Cleavage of .2 .I-C3(ma) by fac-
tor I in the presence of immunoimmobi-
lized recombinant CRl. Replicate samples of
1211-C3(ma) were treated with factor I in the
presence of factor H (lane 1), Sepharose-
UPC10 preincubated with the lysate ofCOS
cells transfected with the CDM8 vector alone
(lane 2), Sepharose-UPC10preincubated with
the lysate of piABCD-transfected COS cells
(lane 3), SepharoseYZl preincubated with the
lysate of CDM8-transfected COS cells (lane
4), and 6 pl (lane 5), 12 pl (lane 6), and 25
pl (lane 7) of SepharoseYZl that had been
preincubated with the lysate of piABCD-
transfected COS cells . Samples of 125I-labeled
C3(ma) were also treated in the absence of
factor I with 25 pl of SepharoseYZl that had
been preincubated with the lysate ofpiABCD-
transfected COS cells (lane 8) . After reduc-
tion, the 1211-C3(ma) was analyzed by SDS-
PAGE and autoradiography.
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FIGURE 9. The cDNA con-
structs encoding the CR1 dele-
tion mutants. The positions of
the cDNA segments encoding
the four LHRs are indicated by
the brackets above the full-
length piABCD construct on
which are shown the restriction
sites used for preparation ofthe
deletion mutants. The cDNA
restriction fragments remaining
in each ofthe mutants are indi-
cated by the solid lines . The re-
striction sites are abbreviated :
A, Apa I; B, Bsm I; E, Bst Ell;
and P, Pst I .

restricted the DNA at a site between the codons for cysteine-1 and -2 of the third
SCR of LHR-A, -B, and -C, respectively (Fig. 9) . Ligating the 5' LHRA-encoding
fragment to the fragment encoding the 3' end of LHRC and the rest of the 3' se-
quence created a construct in which SCR-1 and -2 of LHR-A were substituted for
the corresponding SCRs of LHRC, with deletion of the rest of LHRA and all of
LHRB.
COS cells transiently expressing the piABCD, piBCD, piCD, and piD constructs,

respectively, were surface labeled with 1251 and immunoprecipitated with anti-CRI .
On SDS-PAGE after reduction, the product of the piABCD construct comigrated
with theFallotype ofCR1, while the deletion mutants demonstrated stepwise decre-
ments of "45,000 Mr, indicative of the deletion of one, two, and three LHRs,
respectively (Fig . 10).

FIGURE 10. Comparison of re-
combinant deletion mutants of
CRl with the wild-type F and
S allotypes of CRI. Detergent
lysates of 1251-surface-labeled
erythrocytes (lanes 1 and 7) and
COS cells transfected with
CDM8 vector alone (lanes 2
and 8), piABCD (lanes 3 and 9),
piBCD (lanes 4 and 10), piCD
(lanes 5 and 11), and piD (lanes
6 and 12), respectively, were im-
munoprecipitated with Seph-
arose-UPC10 anti-levan (lanes
1-6), SepharoseYZ-1 anti-CR1
(lanes 7-11), and rabbit anti-
CR1 and protein A-Sepharose
(lane 12), respectively. The
eluates were subjected to SDS-
PAGE under reducing condi-
tions and autoradiography.
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In each of three separate experiments, the proportion of COS cells expressing the
full-length piABCD construct that formed rosettes with the EC3(ma) was similar
to the fraction having detectable recombinant receptor, as assessed by immunofluores-
cence using either YZ1 monoclonal anti-CR1 or rabbit anti-CRI (Table II) . In con-
trast, cells expressing piD did not form rosettes, indicating that a C3-binding site(s)
must reside in or require the presence of LHRA, -B, or -C . A site was shown to
be present in both LHRB and -C by demonstrating that cells expressing either the
piBD or piCD constructs formed rosettes with EC3(ma). Cells expressing piAD,
piA/D, or piE-2 did not have equivalent C3-binding function . As the piE-2 con-
struct differs from piCD only in having SCR-1 and -2 of LHRA instead ofthe first
two SCRs of LHR-C, the function of the C3-binding site in LHRC must require
these NH2-terminal SCRs .
The proportion of COS cells expressing the full-length piABCD recombinant that

formed rosettes with EC4(ma) was less than the fraction rosetting with EC3(ma),
perhaps reflecting fewer C4(ma) per erythrocyte (Table II) or fewer C4-binding sites
per receptor. Deletion mutants having all or part of LHRA, the piAD, piA/D, and
piE-2 constructs, bound EC4(ma) better than did the deletion mutants, piBD and
piCD; piD lacked this function . Thus, the C4-binding site ofCRl resides primarily
in LHR-A, although secondary sites may be present in LHRB and -C . The im-
proved rosetting capability of the piE-2 construct relative to that of piCD suggests
that SCR-1 and -2 of LHRA are involved in the C4-binding site.
RIA of the binding of YZI monoclonal anti-CRI indicated significant uptake by

COS cells expressing the piABCD, piAD, piBD, and piCD constructs (Table III) .
Cells transfected with piD or piA/D, which is composed of the five NH2-terminal
SCRs of LHRA andthe three COOH-terminal SCRs of LHR-D, did not bind YZl
anti-CR1, although the products of these constructs bound polyclonal anti-CRI (Table

TABLE II

Formation of Rosettes between COS Cell Transfectants
Expressing Recombinant Forms of CRI and Sheep

Erythrocytes Bearing C3(ma) or C4(ma)

The numbers of C3 (ma)/E were 60,000, 350,000, and 900,000, respectively,
in the three experiments using this intermediate .
The number ofC4 (ma)/E were 160,000 and 140,000, respectively, in the two
experiments using this intermediate .

§ Mean of separate experiments .
II Number of experiments .

COS cell
transfectant

Percent of transfectants forming rosettes/
percent of transfectants fluorescent with anti-CRI

EC3 (ma)' EC4 (ma)1
piABCD 1095 (3)I1 62 (2)
piAD 8 (3) 107 (2)
piBD 107 (3) 12 (2)
piCD 127 (3) 32 (2)
piD 0 (3) 0 (2)
piA/D 11 (2) 83 (2)
piE-2 0 (1) 102 (1)
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TABLE III

Binding of Monoclonal and Polyclonal Anti-CR1 to COS Cell
Transfectants Expressing Recombinant Forms of CRI

' Mean of duplicate determinations, cpm/3 x 10 5 COS cells .

III) . Thus, the YZl epitope is repeated in LHRA, -B, and -C, is not present in
the NH2-terminal SCRs of LHRA, and is not present or is inaccessible in LHRD.

Factor I Cofactor Function of the CRI Deletion Mutantsfor Cleavage of C3 . COS cells
transfected with piABCD, piAD, piBD, piCD, and piD, respectively, were incubated
with 1251-C3(ma) and factor I to evaluate factor I-cofactor activity. In contrast to
the experiment depicted in Fig. 8, the recombinant CRI was assayed on intact COS
cells because the product of the piD construct cannot be immunoadsorbed by
SepharoseYZI (Table 111) . Although theCOS cells transfected with theCDM8 vector
alone contained some endogenous factor I-cofactor activity, an increase in this function
was evident with COS cells transfected with piABCD, piBD, and piCD (Fig. 11).
No enhanced cleavage of 1251-C3(ma) was seen with COS cells transfected with
piAD or piD. Thus, among these constructs, only the deletion mutants, piBD and
piCD, which conferred on COS cells a capacity for binding C3, also had factor
I-cofactor activity for cleavage of C3 .

Discussion
The primary structure of the NH2 terminus and the signal peptide of the F allo-

type of CRI has been deduced by the isolation and sequencing of 5' cDNA clones .
The highly repetitive nature of the CRI sequence made critical the development
of an appropriate strategy for the preparation and identification of cDNA clones
encoding this region ofthe receptor. A cDNA library was prepared using as a primer
a 35-mer oligonucleotide known to hybridize under the conditions of reverse tran-
scription to LHRB, -C, and -D ; the possibility was considered that this primer might
hybridize also to LHR-A that had been predicted to be highly homologous to LHR-
B (4). Appropriate cDNA clones would be identified by the use of another oligonu-
cleotide, KS23 .1, which would hybridize only to LHRB under stringent conditions,
thereby increasing the probability of finding 5' cDNA clones . Two clones were found
that encompassed almost all of the residual sequence of CRI, and a Sau 3AI frag-
ment of one of these, CRI-18, had sequence sufficiently unique to permit its use
in the identification of the remaining 5' clones (Figs . 1-3) .
Amino acid sequencing studies ofCRI purified from erythrocyte membraneshad

revealed that the NH2 terminus was blocked (26, 27). Therefore, unambiguous
demonstration that the full-length sequence of CRl had been completed required

COS cell transfectant YZl mAb Rabbit polyclonal antibody
piABCD 2,362' 12,277'
piAD 2,879 19,891
piBD 3,646 21,922
piCD 2,189 19,926
piA/D 410 23,052
piD 404 16,386
CDM8 428 4,886
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FIGURE 11 .

	

Cleavage of 1251-C3(ma) by factor I in the presence of COS cells expressing full-
length and deletion mutants of CRI. Replicate samples of 1251-C3(ma) were incubated with COS
cells transfected with the CDM8 vector alone (lanes I and 7), piABCD (lanes 2 and 8), piAD
(lanes 3 and 9), piBD (lanes 4 and 10), piCD (lanes 5 and 11), and piD (lanes 6 and 12), respec-
tively, in the absence (lanes 1-6) or presence of factor I (lanes 7-12). Samples of 1251-C3(ma)
also were incubated with factor H and factor I (lane 13) and with factor I alone (lane 14), respec-
tively. After reduction, the 1251-C3(ma) was analyzed by SDS-PAGE and autoradiography.

expression of recombinant receptor and comparison with wild-type CR1 . Restric-
tion fragments ofeight cDNA clones were ligated and the putative full-length con-
struct was inserted into two expression vectors (Fig . 4) to direct the synthesis of the
recombinant receptor detectable by immunofluorescence on COS cells (Fig. 5) . The
recombinant CR1 was indistinguishable from the Fallotype oferythrocytes by SDS-
PAGE (Fig . 6), it mediated the binding of sheep erythrocytes bearing either C4b
or C3b, reproducing the ligand specificity of CRI (Fig . 7), and it exhibited factor
1-cofactor activity for cleavage of the a polypeptide of C3(ma) (Fig . 8) . Thus, all
of the coding sequence of the F allotype CRl had been cloned and, after cleavage
of the signal peptide of 41 amino acids, the mature receptor contained 1,998 amino
acids, including an extracellular domain of 1,930 residues that forms 30 SCRs, 28
of which are organized into LHR-A, -B, -C, and -D (Fig. 3), a single membrane-
spanning domain of 25 amino acids and a relatively short cytoplasmic domain of
43 amino acids (4).
Among the C3/C4-binding proteins that contain multiple SCRs, CR1 is unique

in having groups of SCRs organized into LHRs. Comparison of the four LHRs
of CRI reveals that each is a composite of four types of SCRs: types a, b, c, and
d (Fig . 12). For example, the sequences of SCR-1 and -2 of LHR-A are only 62%,
62%, and 57% identical to the first two SCRs of LHR-B, -C, and -D, respectively.
However, SCR-3 through SCR-7 differ from the corresponding SCRs of LHR-B
at only a single position, and SCR-3 and-4 differ from those of LHR-C at only three
positions (Fig . 3) . Thus, some of the type "a" SCRs of LHR-A are also present in
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FIGURE 12 .

	

Schematic model
depicting the types of SCRs
composing each LHR of CR1,
and the predicted sites deter-
mining the specificities of the
receptor for C3b and C4b. The
secondary binding specificities
of these are indicated by the
parentheses.

LHRB and -C . The first two SCRs of LHR-B, which differ from those of LHRA,
are 99% identical to the corresponding SCRs of LHRC, so that LHRB and -C
share the type "b" SCR at these positions . The fifth, sixth, and seventh SCRs of
LHRC are only 77% identical to the type "a" SCRs in LHRA and -B at these posi-
tions, and are considered as type "c" SCRs. The first through fourth SCRs of LHR-
D are relatively unique and are type "d", while the fifth through seventh SCRs are
-93 17o identical to the "c" type found in LHR-C. This mosaic composition of the
LHRs, whichmayhave arisen through gene conversion or homologous recombina-
tion with unequal crossover, provided an experimental approach for determining
those SCRs involved in the C4 and C3 specificity of CRl.
The conserved Bsm I site found midway through the coding sequence of the first

SCR of each LHR permitted the construction of a series of deletion mutants that
corresponded closely to the boundaries of the LHRs, and maintained the open reading
frame and the appropriate positions ofthe four cysteines necessary for the presumed
disulfide bond formation (Fig. 9) . Comparison of the C3(ma)- and C4(ma)-binding
functions of these deletion mutants would distinguish not only the LHRs having
these specificities, but also those SCRs critical for determining the ligand specificity.
Thus, the capacity of piAD, piA/D, and piE-2 forms of the receptor, but not the
piDform, to mediate rosette formation between the transfected COScells and EC4(ma)
indicated that the NH2-terminal two SCRs of LHRA contained a site for interac-
tion with this complement protein (Table II) . This site was only relatively specific
for C4(ma) because transfectants expressing piAD and piA/D also were capable of
binding EC3(ma) (Table II) . The C3(ma)-binding function of the receptors encoded
by the piBD andpiCD constructs, demonstrated by rosette assay and factor I-cofactor
function for cleavage of C3(ma) (Table II ; Fig. 11), indicated the presence of sites
specific for C3(ma) in the first two SCRs ofthese LHRs. These sites also were capable
of interacting with C4(ma) (Table II) . The finding of preferential, but overlapping,
C4- and C3-binding activities in LHRA, -B, and -C is not unprecedented, as both
factor H and C4b-binding protein have been found to have secondary specificities
for C4b and C3b, respectively (30, 31), a finding that perhaps reflects shared struc-
tural features in C3 and C4 . Alternatively, the capacity of the COS cells expressing
the piBD and piCD constructs to bind EC4(ma)may have been caused by the transfer
of nucleotides encoding the NH2-terminal 36 amino acids from SCR-1 of LHRA
to LHRB, and -C through the ligation of the Bsm I fragments. However, these 36
amino acids alone did not confer on the piD product C4-rosetting function . We cannot
exclude a secondary function of LHRD in these reactions because this LHR was
present in all the constructs assayed for function . The finding of three distinct ligand
recognition sites in CR1, two for C3b and one for C4b (Fig . 12), indicates that each
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receptor molecule may be capable of effectively binding complexes bearing multiple
C4bandC3b molecules despite having a relatively low affinity for monovalent ligands
(32) . This finding also provides an explanation for the inability of soluble C4b to
inhibit formation of rosettes between erythrocytes bearing C3band ahuman B lym-
phoblastoid cell line (33) . The recent description ofcovalent complexes between C4b
and C3b (34), and perhaps between C3b molecules, suggests that possible ligands
for which CRI would be especially adaptedmay be the molecular complexes C4b/C3b
andC3b/C3b, which are generated during activation ofthe classical and alternative
pathways, respectively. The presence of distinct binding sites in three of the four
LHRs also suggests that the CRI structural allotypes differing by their number of
LHRs mayhave significant functional differences caused by variations in the number
ofligand-binding sites. Although in vitro studies have not reported differing binding
activities of the F, S, and F (A-C, respectively) allotypes, the smaller F allotype,
presumably having only three LHRs, has been reported possibly to be associated
with systemic lupus erythematosus (3), perhaps reflecting an impaired capability
of this allotype to participate in the clearance of immune complexes.
The demonstration that the epitope recognized by YZ1 monoclonal anti-CR1 was

present in LHR-A, -B, and -C indicates that prior estimates based on the binding
of this antibody of the number of CR1 molecules expressed by various cell types
may be excessive (35, 36). Supporting this conclusion is an earlier study in which
the concentration of CRI in apurified preparation ofreceptor estimated by an assay
using YZl was 2.7-fold greater than that estimated by protein determination (26) .
In addition, studies have reported variation in the number of erythrocyte epitopes
recognized by different mAbs (37, 38). However, the low number of CR1 sites on
erythrocytes of patients with lupus cannot be accounted for by abnormal expression
of epitopes as patients and normals have the same frequency of the F and S allo-
types, and diminished numbers of receptors were also found when assayed by the
binding of soluble C3b (39) .

Summary
Complementary DNA clones encoding the NH2-terminal region of human CR1

have been isolated and sequenced. The deduced complete amino acid sequence of
the F allotype of human CRI contains 2,039 residues, including a 41-residue signal
peptide, an extracellular domain of 1,930 residues, a 25-amino acid transmembrane
domain, and a 43-amino acid cytoplasmic region . Theextracellular domain is com-
posed exclusively of 30 short consensus repeats (SCRs), characteristic of the family
of C3/C4-binding proteins . The 28 NH2-terminal SCRs are organized as four long
homologous repeats (LHRs) ofseven SCRs each . Thenewly sequenced LHR, LHRA,
is 61% identical to LHR-B in the NH2-terminal two SCRs and >99% identical in
the COOH-terminal five SCRs . Eight cDNA clones were spliced to form a single
construct, piABCD, that contained the entire CR1 coding sequence downstream
of a cytomegalovirus promoter. COS cells transfected with piABCD transiently ex-
pressed recombinant CR1 that comigrated with the F allotype of erythrocyte CRI
on SDS-PAGE and that mediated rosette formation with sheep erythrocytes bearing
C4b and C3b. Recombinant CRI also had factor I-cofactor activity for cleavage
of C3(ma) . Analyses of six deletion mutants expressed in COS cells indicated that
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the N112-terminal two SCRs of LHRA contained a site determining C4 specificity
and the NH2-terminal two SCRs of LHRB and -C each had a site determining
C3 specificity. The presence ofthese three distinct sites in CRl may enable the receptor
to interact multivalently with C4b/C3b and Cab/C3b complexes generated during
activation of the classical and alternative pathways .
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