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Abstract

Esophageal adenocarcinoma (EAC) has become a major concern in Western countries due to rapid rises in incidence
coupled with very poor survival rates. One of the key risk factors for the development of this cancer is the presence of
Barrett’s esophagus (BE), which is believed to form in response to repeated gastro-esophageal reflux. In this study we
performed comparative, genome-wide expression profiling (using Illumina whole-genome Beadarrays) on total RNA
extracted from esophageal biopsy tissues from individuals with EAC, BE (in the absence of EAC) and those with normal
squamous epithelium. We combined these data with publically accessible raw data from three similar studies to investigate
key gene and ontology differences between these three tissue states. The results support the deduction that BE is a tissue
with enhanced glycoprotein synthesis machinery (DPP4, ATP2A3, AGR2) designed to provide strong mucosal defenses
aimed at resisting gastro-esophageal reflux. EAC exhibits the enhanced extracellular matrix remodeling (collagens, IGFBP7,
PLAU) effects expected in an aggressive form of cancer, as well as evidence of reduced expression of genes associated with
mucosal (MUC6, CA2, TFF1) and xenobiotic (AKR1C2, AKR1B10) defenses. When our results are compared to previous whole-
genome expression profiling studies keratin, mucin, annexin and trefoil factor gene groups are the most frequently
represented differentially expressed gene families. Eleven genes identified here are also represented in at least 3 other
profiling studies. We used these genes to discriminate between squamous epithelium, BE and EAC within the two largest
cohorts using a support vector machine leave one out cross validation (LOOCV) analysis. While this method was satisfactory
for discriminating squamous epithelium and BE, it demonstrates the need for more detailed investigations into profiling
changes between BE and EAC.
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Introduction

Over recent decades the incidence of esophageal adenocarci-

noma (EAC) has increased rapidly in western societies [1,2,3], but

whilst recent evidence suggests that the rate may have stabilized

[4,5] this cancer now represents a significant health burden.

Epidemiological data relate the increased prevalence to factors

such as smoking, obesity and gastro-esophageal reflux [6,7,8,9].

The biology leading to EAC development is not fully

understood (reviewed in Reid et al., 2010 [10] & Phillips

et al., 2010 [11]). What is known presents a multistep process

which begins when the normal squamous epithelium of the

esophagus is repeatedly damaged by gastro-esophageal reflux.

In a subset of individuals the damaged epithelium then

undergoes a process of metaplasia with replacement by Barrett’s

esophagus (BE), a columnar epithelial tissue with intestinal

metaplasia. In a subset of cases BE undergoes a malignant

progression resulting in the formation of EAC (estimated to

occur in 0.5–2.0% of patients with BE per year). This

transformation can be histologically observed as progressive

dysplasia within the columnar phenotype. While the general

histopathological evolution from BE through high grade

dysplasia to EAC is well described, the underlying biological

mechanisms remain elusive, but suggest considerable variation

in relation to expression of specific gene products and the

disease stage at which they are important. Furthermore, while
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the presence of BE does confer a substantially (perhaps 30–40

fold) higher risk of developing EAC [12], the majority of

subjects with BE die from other causes (reviewed in Reid

2010 [10]).

The use of genome-wide gene expression arrays, in conjunction

with bioinformatics, has allowed groups of genes to be collectively

associated with the initiation of several common cancer types.

Comparing gene expression profiles between the key histological

stages in the progression towards EAC is one way to infer the

biological processes involved, as well as affording the opportunity

to identify potential therapeutic targets for development on novel

treatments for EAC. Several research groups have attempted this

[13,14,15,16,17,18,19,20], but identifying the key genetic factors

has been hampered by the relatively limited overlap between the

gene lists from the various profiling studies [21]. While exhibiting

different experimental designs, the studies have generally focused

on distinguishing squamous mucosa from BE, and from EAC; the

accepted histologic tissue stages. We hypothesized that applying a

standardized approach to the analysis of data from multiple studies

would be more likely to produce a robust core gene list which

differentiates the three tissue stages under investigation. Here we

analyze gene expression data from our sample of patients sourced

from a number of centers in Australia, and compare it to several

similar datasets that have been released into the public domain

[13,16,18]. The aim of this study was to use the combined

expression profiling data to identify a concordant set of ontology

based gene clusters which distinguish between the key histological

tissue types (squamous, BE and EAC), as well as highlighting some

individual gene differences, across the reported studies.

Methods

Participants
The biopsies used to generate our gene expression data were

collected from a subset of participants in the Study of Digestive

Health (SDH), methods for which have previously been

described in detail [6,7]. Approval for this study was obtained

from the research ethics committees of the Queensland Institute

of Medical Research (Queensland Institute of Medical Research

Human Research Ethics Committee), Flinders University

(Flinders Clinical Research Ethics Committee) and participating

hospitals; Princess Alexandra Hospital (Metro South Health

Service District Human Research Ethics Committee), Mater

Private Hospital (Mater Health Services Human Research Ethics

Committee), Royal Adelaide Hospital (Royal Adelaide Hospital

Research Ethics Committee), Flinders Medical Centre (Flinders

Clinical Research Ethics Committee) and The Repatriation

General Hospital (currently managed by a caretaker committee;

Flinders Clinical Research Ethics Committee). Prior to under-

going upper gastrointestinal endoscopy, participants gave written

informed consent for additional biopsies for this study to be

taken during their medical procedure. Patients eligible for

inclusion were those aged 18 to 80 years with a diagnosis of

histologically confirmed BE (specialized intestinal metaplasia and

negative for dysplasia n = 22) or EAC (n = 23). Control squamous

tissues (S) were obtained from patients who had similarly

undergone upper gastrointestinal endoscopy but in whom no

abnormalities were detected by either endoscopic or histopath-

ologic examination (n = 9). The patients in the three study

groups; squamous tissue controls (S), BE without dysplasia (BE)

and EAC, demonstrated gradients for both age (51, 61, and 68

years for mean group ages respectively) and gender ratio (56%,

68% and 96% male predominance, respectively) consistent with

epidemiology studies [22,23].

Study of Digestive Health biopsy samples
The SDH sample comprises 54 biopsy specimens, collected

from 54 individuals (this sample set is referred to as SDH-54). The

location of the collection site (distance in cm from incisors and

distance from gastro-esophageal junction) and macroscopic

appearance of the tissue (squamous, columnar or EAC) were

reported for each biopsy by the endoscopist on a standardized

form. Biopsies were placed in RNAlater (Ambion, Austin, TX)

immediately upon collection and left at 4uC overnight. Samples

were then stored at 220uC before removal of excess RNAlater

and long-term storage at 270uC.

All 23 EAC biopsies used in this study were collected prior to

the initiation of neoadjuvant therapy. The histopathology for most

participants (48 of 54) was reviewed by a single experienced

pathologist (A.D.C.) using H&E slides derived from separate

biopsies taken at the same time and from the same esophageal

level as the research biopsy. For the remainder of tissues,

pathology review was based on surgical resection specimens (6 of

54). Biopsies from the patient controls were reviewed to confirm

that there was no evidence of either esophagitis or BE. BE biopsies

were reviewed to exclude patients with dysplasia. The past medical

history of patients in a surveillance program was reviewed. All 22

BE participants in the SDH-54 had no prior history of dysplasia

and all histologically assessed BE biopsies were confirmed to be

negative for dysplasia. For each EAC biopsy we established that

the tumor content was more than 50%, based on assessment of

DNA copy number data derived from the same biopsy using the

procedure outlined previously [24].

RNA isolation
Whole esophageal biopsies were disrupted using a mechanized

tissue fractionator (Qiagen, Germany) in a 1.5 ml microfuge tube

with a single 5 mm stainless steel ball-bearing according to the

manufacturer’s protocol. Nucleic acid (both genomic DNA and

total RNA) was extracted using AllPrep (Qiagen) columns and

procedures as per the manufacturer’s instructions. Samples

yielding 1 ug or more of total RNA were used for expression

profiling.

Bead array hybridization
The Sentrix Human-6 Expression BeadChip system, version 1

(Illumina Inc, San Diego, CA) was used, as per the protocol set out

in Gene Expression Omnibus (GEO) platform ID numbers:

GPL2507 and GPL6097. Briefly, 90 ng of total RNA were applied

to the Illumina RNA Amplification Kit (Ambion Inc, Austin, TX)

supplied with the Beadchips, to perform double-stranded cDNA

generation, followed by in vitro transcription to synthesize cRNA,

as per the manufacturer’s instructions. The size and integrity of the

cRNA was assessed by liquid chromatography using a Bioanalyzer

(Agilent Technologies, Santa Clara, CA) as described in the

TotalPrep RNA Amplification Kit booklet (Illumina catalog;

#IL1791). All samples considered for microarray hybridization

showed the expected profile with the majority of fragments in the

range of 1000–1500 nt.

The purified cRNA was then labeled and hybrized to the

Beadchips for 17 hours at 42uC in a rotating oven (Thermo Fisher

Scientific, Waltham, MA). Chips were then washed, stained, and

scanned according to the protocol described in the Whole

Genome Gene Expression for BeadStation Manual, Revision D

(Illumina).

GenomeStudio software, version 2.0 (Illumina) was used to

extract raw signal intensity data. Quality control plots within

GenomeStudio showed acceptable signal strengths for all 54

samples. Barbosa-Morais and co-workers [25] have demonstrated

Expression Profiling in BE and EAC
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that a large number of probes on the Human-6 version 1 chips do

not bind uniquely to the transcriptome. We have chosen to include

only those probes deemed to be ‘perfect’ with regards to these

analyses (n = 25049); those that bind uniquely and have a perfect

match to the consensus genome [25]. Both raw and processed

expression data for the SDH-54 cohort are available in GEO

series GSE28302.

Preparation of comparison cohorts
We restricted primary analysis to published cohorts with

publically available raw data employing genome-wide expression

array platforms on individual, histologically verified normal

esophageal squamous, BE and EAC tissues. To ensure adequate

power to detect discriminatory gene profiles we further restricted

inclusion to those cohorts with at least 250 genes passing the B&H

false discovery rate adjusted threshold of p,0.05 for a 3 group

(squamous, BE and EAC) Welsh test comparison. We identified 3

studies which met these criteria [13,16,18]. Several of these studies

analyzed additional tissue types (e.g. gastric or intestinal or

squamous cell carcinoma biopsy samples) which we excluded to

allow a consistent comparison between normal esophageal

squamous, BE and EAC tissues. To indicate that we were

comparing to a subset of the originally published work we refer to

each study by first author surname, followed by total number of

squamous, BE and EAC samples (Gomes-41, Hao-34 & Green-

awalt-102). We compared these studies to the 54 individual

samples outlined above (SDH-54), making a combined total of 72

squamous, 81 BE and 78 EAC tissue samples. Since numerous

procedural differences existed between each of the studies

(including sample selection, sample preparation, array platforms,

and bioinformatic annotation methods), it was not possible to

conduct a direct comparison of samples. Thus we analyzed each

cohort separately and collated the resulting independent gene lists

into a single master list, as illustrated in Figure 1. In each instance,

we used the annotation data from each study, combined with

DAVID [26,27] and/or ACID [28] bioinformatics databases to

link chip probe IDs or accession numbers to active Entrez gene

IDs. In this way we were able to harmonize studies across very

different chip technologies into unified gene lists. Probes which

could not be linked to an Entrez ID, or that associated with

Figure 1. Study schema to combine 4 EAC expression profiling studies. mRNA profiling data for squamous, BE and EAC samples from the
new cohort (SDH-54) and three similarly size or larger samples for which raw data were available (Gomes -34, Greenawalt-102 and Hao-41). In each
case profiling data were analyzed using standard ANOVA methodologies to generate gene lists that discriminated the three tissue types in each
cohort (Figure 2). Gene lists were then overlapped and the most frequently discriminating genes, those with .1.2 fold tissue group differences in at
least 3 cohorts (Table S1), were used for ontology studies. More stringent fold-change thresholds were used to isolate the peak genes that
discriminate squamous from BE (Table 1 & 2) and BE from EAC (Table 3) tissue groups. * The Hao-34 sample set required a less stringent (p,0.05)
threshold in order to generate genes.
doi:10.1371/journal.pone.0022513.g001
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multiple IDs were excluded from the final tabulated lists for each

study (Figure 1).

Data preprocessing
Figure 1 summarizes our analytic approach to identifying the

most frequently involved genes and pathways in the progression to

EAC. Our goal was to apply a standard set of expression profiling

adjustments and gene-selection criteria to each of the 4 cohorts in

order to gain a comparable gene list from each study. Pre-

background adjusted, tab-delineated data for each of the 4 cohorts

was imported into GeneSpring GX version 7.3.1 (Agilent

Technologies, Inc., CA, USA) and normalized (logarithm to the

base 2). Signals were corrected for background (,0.01 adjusted to

0.01) and normalized for intensity (Lowess residual to the 50th

percentile) within GeneSpring.

Supervised sample clustering across 4 cohorts
We generated a visual comparison of sample relationships within

each cohort, using a consistent gene selection approach, to study

misclassification of individual samples. Given that the number of

Entrez gene IDs within the 4 genome-wide studies varied from

,4.4 K to 19.6 K, we chose to use the Welsh test (ANOVA

assuming unequal variance), with a Benjamini & Hochberg (B&H)

false discovery rate (FDR) adjustment [29], to identify genes that

significantly discriminated between the three tissue states (squa-

mous, BE & EAC) in each study. A B&H adjusted p value threshold

of p,0.01, was used for each cohort, with the exception of the Hao-

34 cohort, which required a B&H filter of p,0.05 to generate a

gene list. We then used a Tukey post hoc analysis to determine the

mean expression values for each sample group.

Genespring ‘standard’ clustering (a variant Pearson algorithm)

was applied to the B&H filtered discriminatory gene list from each

cohort to generate supervised dendrograms using average linkage.

Unsupervised clustering (all chip elements) was also performed for

each study, as a comparison.

Generating a consensus gene list for ontology
Our aim was to identify ontology-based gene clusters with

consistent evidence of differential expression levels between

squamous and BE, or BE and EAC. We generated a master list

of Entrez IDs present in at least three studies (n = 8762). For each

of these genes we recorded the number of studies in which it was

present, and the number of studies for which it passed the Welsh

test threshold. We considered that genes (Entrez IDs) which passed

the threshold in 75% of studies provided nominal support for

differential expression. This equates to at least 3 of the four cohorts

providing evidence of differential expression. There were 2240

Entrez IDs which met these criteria.

For the purpose of tracking gene ontology changes we catalogued

genes from our differential expression list with respect to the

direction of fold change (.1.2-fold increase/decrease) when

comparing squamous to BE, or BE to EAC mean group differences,

for each study. We noted each instance where there was a .1.2-fold

mean group difference, in the same direction (either increasing or

decreasing) in at least 75% of the studies (Table S1). Each of these

four lists was then subjected to DAVID ontology analysis, using the

default feature listings and algorithm settings, with the whole human

genome as background. Ontology categories with FDR adjusted

(Benjamini) p values ,0.05 were recorded.

Identifying the most discriminating gene subset
To identify the most consistently altered individual genes we

chose the subset with either a .3-fold change in at least 3 of the 4

cohorts for squamous to BE comparisons (Table 1 for those within

decreased expression in BE & Table 2 for genes with increased BE

expression, relative to squamous), or .2-fold change in 3 or more

cohorts for BE to EAC comparisons to demonstrate strong,

reproducible expression differences (Table 3). There is no standard

fold-change filter applied consistently in the literature: both two-

fold and three-fold mean group expression filters are prevalent.

Given that the squamous/BE discrimination is one of tissue type,

while BE/EAC relates to cancer progression there is no imperative

for the thresholds to be the same. We used different fold-change

thresholds for the two comparisons to restrict gene list lengths,

given that there were much stronger associations when contrasting

squamous and BE. We annotated this subset of genes to determine

the relevant ontology groups using the methodologies described

above.

Literature comparison
In order to compare our peak genes to those of previous reports,

we identified 11 reports based on whole genome expression arrays

[14,15,17,19,20,21,30,31,32,33,34] independent of those for

which we have included samples in the current study [13,16,18],

and 2 reports based on Serial Analysis of Gene Expression (SAGE)

of whole-genome profiling studies [35,36] involving EAC and/or

BE. We have scanned these reports for mention of official HUGO

Gene Nomenclature Committee (HGNC) [37] human gene

symbols or names downloaded from http://www.genenames.org

in December 2010. In each case we excluded text matches arising

within methods or supplementary data in order to focus on those

genes the authors of each manuscript deemed worthy of mention

(including Figures).

Gene text searches were conducted in two stages, an initial

automated screening, followed by manual confirmation of genes

present in at least three studies. We used version 7.1 of the Spell

Checker Oriented Word Lists (SCOWL) library (http://wordlist.

sourceforge.net) to restrict automated search terms to strings not

present in the English dictionary and thus reduce the false positive

rate. This library includes 652,475 search terms which include all

know English words and word versions (including British,

American and Canadian spellings), as well as common abbrevi-

ations. Search terms included HGNC gene names, symbols and

past symbols. Gene symbols with positive hits from this word

library were only used as search strings in all capitals format, while

gene names and past symbols present in SCOWL were excluded

from manuscript searches. Once automated search results were

compiled we manually confirmed the presence of each gene for

which the automated search detected hits in 3 or more profiling

papers, or within our key gene lists presented in Tables 1 and 2.

Text search results, excluding the three studies from which we

have drawn data, for our key gene lists were incorporated into

Tables 1 and 2 (last column), as well as Table 4.

Support Vector Machine (SVM) analyses
By defining the overlap between the 4 cohorts (Table S1), and

those present within at least 3 previous independent profiling

studies (Table 4), we arrived at a list of 11 genes; CA2, ANXA10,

CDX1, EMP1, IGFBP7, KRT1, KRT4, KRT20, LGALS4,

TFF1 and TSPAN1. To estimate the utility of this list as a tissue

type discriminator we applied a basic SVM LOOCV system using

a first order polynomial kernel function and a diagonal scaling

factor of one (GeneSpring GX version 7.3.1). Given that the two

smaller cohorts (Gomes-41 and Hao-34) each contained data for

only 4 of the 11 genes, they were excluded from the analysis. The

two largest cohorts, SDH-54 and Greenawalt-102, contained

transcripts of 11 and 10 of these genes respectively. From the
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resulting tables of expected and predicted tissue type assignments

we calculated sensitivity and specificity using standard formulae

[38].

Results and Discussion

Sample clustering
The mRNA profiles of the squamous, BE or EAC biopsies from

SDH-54 were clustered by the Genespring ‘‘Standard’’ clustering

algorithm using those probes that significantly (p,0.01 after B&H

false discovery adjustment) distinguished between the three tissue

types. While this supervised clustering (Figure 2a) demonstrated

relatively distinct squamous and columnar (BE+EAC) groups,

there were some columnar samples (two BE and one EAC) that

clustered with squamous tissues. The BE and EAC samples

generally clustered as two distinct groups, with the exception of

one EAC clustering within a BE group (Figure 2a). We expected to

observe the three distinct sample types as distinct clusters, but

analysis of data from 3 published studies [13,16,18] demonstrated

similarly incomplete separation when the same analysis steps were

applied (Figure 2b). Each dataset generally separated the

squamous from the BE and EAC samples, but in all but one

cohort there was incomplete separation between the BE and EAC

specimens. These results are comparable to previously published

cluster diagrams employing a variety of clustering methodologies

to distinguish between esophageal tissues [13,15,16,17,18].

From Figure 2, the few samples that clustered unexpectedly in

relation to their reported histology we henceforth refer to as

‘misclassified’. Across the 4 studies the samples ‘misclassified’

most often were EAC (11 out of 81; 13.6%, across the 4 studies),

followed by BE (5/80; 6.3%). There were only 2 instances of

squamous tissues clustering amongst BE or EAC groups (2/72;

2.8%). The ‘misclassification’ fraction varied between the

different cohorts (Figure 2), with each research group having

adopted a different strategy to attempt to enrich for tissue type

within their samples, ranging from hand-dissected resections (1/

34 or 2.9% ‘misclassification’) [13] to histology estimates of tissue

content (10/102 or 9.8% ‘misclassification’) [18]. Not enough

data were available to determine which was the better strategy,

although none of these studies used micro-dissection (given the

amount of mRNA required for whole-genome analysis) which is

likely to be the superior approach in terms of controlling tissue

purity [19,39].

The higher rate of ‘misclassification’ amongst BE and EAC

tissues could be explained in terms of contaminating epithelial

tissue types, which would have had a concentration related impact

on expression profiling. In the case of our SDH-54 dataset, we

know that both of the EAC tumor samples that were ‘misclassified’

(Figure 2a) contained substantial copy number changes (data not

shown) and around 60% tumor content [24], clearly distinguishing

their DNA from that of either BE or normal squamous sample.

These copy number data provide no explanation however, as to

Table 1. Peak Genes Decreased (Fold change ratio less than -3 in at least 3 studies) for Squamous verse BE Group Comparisons
across 4 Cohorts.

ANOVA p value S vs BE vs EAC# Mean Fold Change Ratio BE/S#‘ Independent

Entrez ID SYMBOL
Fold
in BE SDH GOMES GREENAWALT HAO*

p,0.01
Count* SDH GOMES GREENAWALT HAO

profiling
references

360 AQP3 down 1.3E-10 0.0004 2.9E-07 0.009 4/4 27.6 23.4 26.6 22.3 [15]

379 ARL4D down 7.8E-11 6.8E-14 0.043 3/4 23.6 27.1 210.7 [15,17]

390 RND3 down 9.4E-05 — 1.5E-06 0.002 3/3 23.5 — 24.6 24.8

646 BNC1 down 0.0012 6E-05 2.2E-11 0.041 4/4 21.3 23.3 26.1 24.1

810 CALML3 down 2.6E-09 — 3.7E-07 0.033 3/3 222.2 — 27.2 23.1 [15]

874 CBR3 down 1.2E-06 0.0001 1E-09 0.028 4/4 23.0 24.5 23.6 24.1 [17]

978 CDA down 3.2E-07 2E-05 1E-10 3/4 25.2 23.6 24.2 [17]

1382 CRABP2 down 1.5E-09 2.2E-12 0.024 3/4 212.5 26.0 26.7 [17]

1410 CRYAB down 8.3E-11 — 0.00037 0.035 3/3 26.4 — 23.7 24.2

2012 EMP1 down 7.4E-08 9E-05 1.3E-07 — 3/3 26.8 233.8 23.4 — [15,17,36]

2125 EVPL down 5.3E-10 0.003 7.2E-08 0.027 4/4 27.0 27.8 25.3 25.5 [30]

5292 PIM1 down 2.8E-06 0.0001 5.9E-05 0.028 4/4 23.7 24.5 28.0 210.2 [15]

5493 PPL down 6.9E-10 — 4.4E-09 0.017 3/3 211.8 — 25.6 25.5 [15,17]

10848 PPP1R13L down 6.4E-06 0.0018 1.6E-10 3/4 23.1 23.7 24.7

23136 EPB41L3 down 6.7E-12 — 3.5E-11 0.012 3/3 25.4 — 25.5 29.8

23328 SASH1 down 1.7E-05 8E-06 5.5E-10 0.01 4/4 23.2 27.0 27.3 28.2 [15]

23650 TRIM29 down 2.1E-08 2.7E-08 0.019 3/4 25.5 27.1 24.4 [15,17]

26085 KLK13 down 9.2E-09 2E-05 0.00055 3/4 210.0 230.9 25.7 [15]

26353 HSPB8 down 1.1E-08 2.2E-12 0.02 3/4 26.0 27.8 28.2

27076 LYPD3 down 5.8E-09 — 1.6E-14 0.002 3/3 27.8 — 27.3 27.9

57162 PELI1 down 0.0019 0.0029 4.1E-08 0.005 4/4 22.0 23.8 28.1 23.8

*For Hao-34 p,0.05 was required for any genes to pass threshold in the presence of B&H FDR.
#‘‘—’’ represents genes not present on the array in question while blanks represent non-significant genes for a given study.
‘Extreme fold change values may be the result due to rounding of non-expressed values (.0.01 = 0.01).
doi:10.1371/journal.pone.0022513.t001
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why one of these EACs would cluster amongst squamous samples

and the other amongst BE on the basis of mRNA profiling.

Three of the four cohorts clustered in Figure 2 had a small

number of EAC tissues that clustered with BE samples; one in

SDH-54 (Figure 2a) two in Greenawalt-102 [18] and three in

Gomes-41 [13] (Figure 2b). This was either the result of tumors

with expression profiles similar to BE tissues, or those that

contained a strong proportion of BE cells, in addition to the

cancer. Looking at the available details from 4 of these EAC

patients (sample 54043 from Table 1 of Nancarrow et al [24], as

well as GH865, GH871 and HC03 from Table 1 of Gomes et al

[13]; no additional data were available from the Greenawalt study)

they ranged from tumor stage I to III, disease stage II to IV and

included both moderate and poorly differentiated cancers. Thus it

seems unlikely that these EAC samples represent a subset with a

similar tumor profile to BE.

The SDH-54 cohort was the only one of the four studies to use

BE tissue exclusively from participants with no histological

evidence of either dysplasia or EAC. The two misclassified BE

samples within the SDH-54 cohort clustered with the squamous

samples, and neither showed evidence of copy number changes

using genome-wide high-density SNP chip data (results not

shown). Together these observations suggest that a mixture of

tissue types within a biopsy is a key factor in sample

misclassification.

We also conducted unsupervised clustering of the SDH-54

cohort, using the same clustering algorithm and all available

uniquely binding probes [25]. The pattern was almost identical

whether the clustering was supervised (Figure 1a) or unsupervised,

but this was not the case for several of the other data sets (data not

shown).

Gene ontology
Using the procedure outlined in Figure 1, we applied a standard

series of data enrichment steps to each cohort in order to derive

discriminatory (S vs BE vs EAC) gene lists for each study. There

were 8762 unique Entrez gene identifiers present in at least 3 of

the studies; around one third of the human genome, assuming

there are 20–25 K genes in total [40]. We combined the gene lists

from each of the 4 independent studies, based on Entrez gene

Table 3. Peak Genes (Fold change ratio greater than 2 in at least 3 studies) for BE verse EAC Group Comparisons across 4 Cohorts.

ANOVA p value S vs BE vs EAC# Mean Fold Change Ratio EAC/BE#‘ Independent

Entrez ID SYMBOL
Fold
in BE SDH GOMES GREENAWALT HAO

p,0.01
Count* SDH GOMES GREENAWALT HAO

profiling
references

125 ADH1B down 3E-05 0.002 0.0119 3/4 22.3 22.1 23.6

126 ADH1C down 2E-12 — 8E-07 0.0072 3/3 24.8 — 22.1 26.7

760 CA2 down 3E-08 — 3E-09 0.0323 3/3 25.1 — 23.6 24.3 [15,17,34,36]

957 ENTPD5 down 2E-07 — 3E-06 0.0118 3/3 22.2 — 23.5 222.5

1159 CKMT1A down 0.0022 0.0064 2E-06 0.007 4/4 21.9 22.1 22.0 22.3

1646 AKR1C2 down 0.002 0.0047 0.0219 3/4 24.0 22.1 22.7

3248 HPGD down 7E-06 0.0008 2E-08 3/4 25.3 27.8 26.1

3373 HYAL1 down 4E-11 — 4E-08 0.0165 3/3 22.9 — 23.8 27.2 [30]

4588 MUC6 down 2E-11 — 6E-05 0.043 3/3 213.1 — 24.2 211.6 [21,30]

4640 MYO1A down 3E-11 5E-06 0.0365 3/4 22.3 22.9 25.2

5873 RAB27A down 3E-08 3E-05 0.005 3/4 22.3 22.2 22.5

6819 SULT1C2 down 3E-10 2E-09 0.0086 3/4 22.2 22.8 213.3 [19]

7031 TFF1 down 2E-08 — 3E-10 0.0049 3/3 25.7 — 23.2 25.1 [19,20,21,34,35,36]

8513 LIPF down 5E-08 — 0.0001 0.0447 3/3 232.2 — 25.2 2154.0 [36]

11199 ANXA10 down 1E-11 — 4E-09 0.0089 3/3 26.5 — 23.1 211.1 [15,19,35,36]

23584 VSIG2 down 3E-09 1E-08 0.012 3/4 26.0 22.3 23.5

54474 KRT20 down 2E-10 4E-07 0.0145 3/4 24.2 27.5 22.8 [14,34,35,36]

57016 AKR1B10 down 1E-06 0.0003 0.018 3/4 25.7 22.4 24.3

1278 COL1A2 up 0.0007 — 4E-07 0.0287 3/3 2.8 — 3.8 2.2

1282 COL4A1 up 7E-05 7E-06 0.0078 0.046 4/4 4.8 3.2 3.2 10.3

1284 COL4A2 up 0.0003 — 3E-07 0.0105 3/3 2.1 — 2.4 5.2 [17]

1290 COL5A2 up 0.0007 — 0.0074 0.0266 3/3 2.4 — 17.5 5.8

1293 COL6A3 up 0.0012 1E-06 0.0396 3/4 2.0 2.1 7.3

3490 IGFBP7 up 0.0001 — 3E-08 0.0366 3/3 2.5 — 2.2 5.0 [17,36]

5328 PLAU up 2E-05 0.0047 0.0004 3/4 4.1 3.5 4.9

6772 STAT1 up 0.0005 — 2E-05 0.0442 3/3 2.1 — 3.7 3.7

23636 NUP62 up 2E-05 3E-05 0.0485 3/4 2.6 4.0 2.4

*For Hao-34 p,0.05 was required for any genes to pass threshold in the presence of B&H FDR.
#‘‘—’’ represents genes not present on the array in question while blanks represent non-significant genes for a given study.
‘Extreme fold change values may be the result due to rounding of non-expressed values (.0.01 = 0.01).
doi:10.1371/journal.pone.0022513.t003
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Table 4. Genes reported in at least 3 of the 16 esophageal expression profiling studies which compare squamous, BE and EAC
tissue groups.

HGNC ID SYMBOL* Description* Symbol# allias1‘ allias2‘ Ref count Profiling refs

6441 KRT4 keratin 4 KRT4 CYK4 CK4 8 [13,15,16,17,20,30,34,35]

6415 KRT13 keratin 13 KRT13 MGC3781 CK13 7 [15,16,20,21,30,34,35]

6442 KRT5 keratin 5 KRT5 EBS2 KRT5A 7 [15,18,20,21,34,35]

11755 TFF1 trefoil factor 1 TFF1 HPS2 D21S21 7 [18,19,20,21,34,35,36]

6446 KRT8 keratin 8 KRT8 CARD2 CYK8 6 [16,17,19,30,34,35]

534 ANXA10 annexin A10 ANXA10 ANX14 5 [15,18,19,35,36]

1373 CA2 carbonic anhydrase II CA2 CAII CA-II 5 [15,17,18,34,36]

3555 FABP1 fatty acid binding
protein 1, liver

FABP1 L-FABP 5 [14,17,19,20,35]

6443 KRT6A keratin 6A KRT6A KRT6C CK6C 5 [15,17,20,34,35]

6444 KRT6B keratin 6B KRT6B KRTL1 5 [15,16,20,34,35]

10492 S100A2 S100 calcium binding
protein A2

S100A2 S100L CAN19 5 [15,17,18,20,36]

11757 TFF3 trefoil factor 3 (intestinal) TFF3 5 [18,19,21,34,35]

3333 EMP1 epithelial membrane
protein 1

EMP1 TMP CL-20 4 [15,17,18,36]

6187 IVL involucrin 4 [15,18,20,30]

6412 KRT1 keratin 1 KRT1 EHK1 KRT1A 4 [17,20,34,35]

6416 KRT14 keratin 14 KRT14 EBS3 EBS4 4 [15,20,34,35]

6427 KRT17 keratin 17 KRT17 PCHC1 4 [16,20,34,35]

20412 KRT20 keratin 20 KRT20 CK20 K20 4 [14,19,34,35]

6445 KRT7 keratin 7 KRT7 K2C7 CK7 4 [30,34,35,36]

6565 LGALS4 lectin, galactoside-binding,
soluble, 4

LGALS4 GAL4 4 [18,19,20,35]

7512 MUC2 mucin 2, oligomeric
mucus/gel-forming

MUC2 4 [14,18,30,34]

7515 MUC5AC mucin 5AC, oligomeric
mucus/gel-forming

MUC5AC 4 [18,21,30,34]

9273 PPL periplakin 4 [13,15,17,18]

10498 S100A8 S100 calcium binding
protein A8

S100A8 CFAG 4 [15,16,20,36]

10499 S100A9 S100 calcium binding
protein A9

S100A9 CAGB CFAG 4 [15,18,20,36]

11244 SPINK1 serine peptidase inhibitor,
Kazal type 1

SPINK1 Spink3 PCTT 4 [16,18,19,21]

11263 SPRR2C small proline-rich protein 2C
(pseudogene)

SPRR2C 4 [15,16,17,18]

11756 TFF2 trefoil factor 2 TFF2 SML1 4 [21,34,35,36]

328 AGR2 anterior gradient homolog 2
(Xenopus laevis)

AGR2 XAG-2 HAG-2 3 [16,17,18]

533 ANXA1 annexin A1 ANXA1 ANX1 LPC1 3 [15,17,18]

546 ANXA8 annexin A8 ANXA8 ANX8 3 [15,17,18]

1805 CDX1 caudal type homeobox 1 CDX1 3 [20,30,34]

2481 CSTA cystatin A (stefin A) STF1 3 [16,17,18]

2500 CTGF connective tissue
growth factor

CTGF IGFBP8 CCN2 3 [14,16,36]

2530 CTSE cathepsin E CTSE 3 [15,18,19]

3153 ECM1 extracellular matrix protein 1 ECM1 3 [17,18,36]

3690 FGFR3 fibroblast growth factor
receptor 3

FGFR3 JTK4 CEK2 3 [15,18,21]

4164 GAST gastrin 3 [13,20,36]

4174 GATA6 GATA binding protein 6 GATA6 3 [15,18,19]

5476 IGFBP7 insulin-like growth factor
binding protein 7

IGFBP7 MAC25 IGFBP-7 3 [16,17,36]
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identifiers (see Figure 1), to create a single gene list (n = 2240) with

sub-threshold Welsh test p values in at least 75% (3/3, 3/4 or 4/4)

of tested studies to characterize the differences between squamous,

BE and EAC tissues. To better define the involvement of key

pathways, we applied fold change filters to this list (Figure 1) to

distinguish the most active genes within the tissue group

comparisons, and noted the direction of these changes. We

selected those genes for which, in at least 3 studies, there was a fold

change difference of 1.2 or greater for either the squamous to BE,

or BE to EAC comparison (n = 851; Table S1) and subdivided this

list based on the fold change direction for each comparison as

shown in Figure 1. We used these sub-lists as the basis from which

to investigate gene ontology changes, in order to identify the most

important biological processes in the progression from squamous

epithelium to BE and then EAC.

The Entrez identifiers for each of these lists were then passed

through the DAVID ontology website tool (using default settings),

to catalog gene clusters overrepresented in each list. All ontology

groups with Benjamini FDR adjusted scores less than 0.05 were

considered. Given the frequent overlap between these networks of

gene groups, we summarized the groupings in Figure 3 with the

use of DAVID as a guide, and reported the most significant p

value for each grouping. Any ontology groups that were present on

both increasing and decreasing fold change lists were considered to

be altered, as opposed to increased or decreased.

Peak discriminating genes
When discussing ontology groups listed in Figure 3, we wanted

to identify those genes with the strongest differences within our

study as examples of each key gene group. By limiting the

differentially expressed genes to those with the strongest group fold

change differences, as shown in Figure 1, we have identified the

most informative genes in the squamous to BE comparison (n = 76;

Table 1 & 2) using a 3 fold cutoff and a .2 fold difference when

BE was compared to EAC (n = 27; Table 3). Given the more

pronounced tissue differences, as evident from the clustering

experiments in Figure 2, there were more genes that consistently

discriminated between BE and squamous tissues when compared

to EAC and BE, hence the need for differential fold-change filters.

It is of interest that a number of genes (ADH1C, ANXA10, CA2,

HYAL1, KRT20, LIPF, MUC6, MYO1A, SULT1C2 and TFF1)

appear on both the peak squamous to BE (Table 2) and BE to

EAC (Table 3) comparison lists. In each case the expression level

for these genes increased between squamous and BE, then

decreased when BE was compared to EAC.

Gene ontology
As the genes listed in Tables 1 and 2 provide the best indicators

of particular ontology groups, their inclusions have been noted in

the following summary of ontologies presented in Figure 3.

Epidermis development (CRABP2, BNC1 & EMP1), cornifica-

tion (EVPL & PPL) and keratinocyte differentiation (AQP3) are all

specific features of the stratified squamous epithelium. Figure 3

shows that genes from these ontology groups are overrepresented

amongst mRNAs more highly expressed in normal esophageal

squamous tissue, compared to BE, as previously reported

[13,15,20,30].

When BE and normal squamous expression profiles were

compared, many more genes were up-regulated in BE, as were

ontology groups related to the production of excreted glycopro-

teins. As seen in the upper left of Figure 3, we observed an increase

in the mRNA levels of functional elements of the endoplasmic

reticulum (ER) (ACSL5, AGR2, ANTXR2, ATP2A3, KDELR3,

PDIA5 & PLOD3) and to a lesser extent Golgi apparatus (DPP4 &

HGNC ID SYMBOL* Description* Symbol# allias1‘ allias2‘ Ref count Profiling refs

6361 KLK13 kallikrein-related peptidase 13 KLK13 KLK-L4 3 [13,15,18]

6413 KRT10 keratin 10 KRT10 KPP CK10 3 [18,34,35]

6421 KRT15 keratin 15 KRT15 K15 CK15 3 [15,20,34]

7511 MUC13 mucin 13, cell surface
associated

MUC13 DRCC1 3 [13,19,34]

7517 MUC6 mucin 6, oligomeric
mucus/gel-forming

MUC6 3 [18,21,30]

17190 OLFM4 olfactomedin 4 OLFM4 OlfD GW112 3 [19,20,36]

8890 PGC progastricsin (pepsinogen C) PGC 3 [14,20,36]

9053 PLAUR plasminogen activator,
urokinase receptor

PLAUR CD87 3 [15,17,30]

16 SERPINA3 serpin peptidase inhibitor,
clade A, member 3

SERPINA3 AACT 3 [14,18,36]

10569 SERPINB3 serpin peptidase inhibitor,
clade B, member 3

SERPINB3 SCCA1 3 [15,17,18]

9490 TMPRSS15 transmembrane protease,
serine 15

TMPRSS15 3 [14,20,30]

17274 TRIM29 tripartite motif-containing 29 TRIM29 ATDC FLJ36085 3 [15,17,18]

20657 TSPAN1 tetraspanin 1 TSPAN1 TSPAN-1 NET-1 3 [19,21,36]

11855 TSPAN8 tetraspanin 8 TSPAN8 TM4SF3 CO-029 3 [13,15,17]

*Capitalized HGNC gene symbols and descriptions were used as search parameters through each manuscript, excluding methods and supplementary material.
#For gene symbols not present as text strings within the English language, a separate case insensitive search was conducted of each manuscript.
‘Additional searches were conducted using the previous gene symbols or abbreviations as listed in these ‘‘alias’’ columns.
doi:10.1371/journal.pone.0022513.t004
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Figure 2. Supervised clustering in 4 cohorts to distinguish squamous, BE and EAC mRNA profiled samples. Cluster diagrams for a) the
SDH-54 sample set introduced here and b) three previously published EAC cohorts for which raw data were publically available. Each dataset was
clustered using the Genespring ‘Standard’ Algorithm. The gene lists used to cluster each cohort were generated using a Welsh ANOVA test to select
genes that discriminate squamous, BE and EAC with a p value threshold ,0.01. The Hao-34 sample set required a less stringent (p,0.05) threshold in
order to generate genes. For each cohort squamous samples (s) are represented by grey boxes, BE (B) samples by green boxes and EAC (T) tumors by
pink boxes. Samples highlighted in red indicate those that did not cluster as expected based on their expected pathology and are referred to in the
text as ‘misclassified’.
doi:10.1371/journal.pone.0022513.g002
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ITM2C), for which ontology was just below significance (data not

shown), indicating increased glycosylation capacity within BE

tissue, as well as a significant increase in secreted glycoproteins

(ANTXR2, AZGP1P1, CFB, FMOD, HYAL1, LIPF, LUM,

MUC3B & MUC6). Enlarged Golgi apparatus and prominent ER

are required for increased glycoprotein biosynthesis, and electron

microscopy studies have identified these features in BE [41,42],

providing physical support for the expression changes seen here.

Perhaps the decreased expression of organelle size control genes,

such as CDA and CRYAB (Table 1), reflect the need for these

prominent structures in BE.

It has been proposed that, as with gastric epithelium, a key

function of BE tissue is to protect against damage from luminal

acid [43]. While there is not a designated ontology category for

mucosal defense, our discriminating gene list (Table S1) includes

several factors known to be involved in mucus barrier formation

(MUC3B, MUC6 & TFF1), tight junction formation (CLDN11,

CLDN15 & CLDN18), as well as carbonic anhydrases (CA2,

CA9 & CA12) and solute carriers (SLC4A2 and SLC26A6)

capable of generating and transporting HCO3- to protect

against acidification [44] all of which are critical elements of a

mucosal defence system [43]. Together these data support the

hypothesis that a major role of BE tissue within the lower

esophagus is to provide enhanced mucosal defense against the

effects of erosive reflux [10,21,43], as evidenced by a much

thicker mucosal barrier [45] and higher level of active ion

transport [43,46] compared to normal esophageal squamous

epithelium.

Electron microscopy studies indicate that EAC tumors, and

indeed advanced stage BE samples, appear to lose the well-

developed Golgi apparatus and are not as adept at glycoprotein

vesicle production [41]. While we note that the tumor tissue from

patients with EAC showed evidence of reduced Golgi (RAB27A,

AKR1B10) and ER (ENTPD5) activity compared with that of BE

biopsies, neither of these ontology clusters were significantly over-

represented amongst under-expressed EAC genes (data not

shown). In fact there was an over-representation of secreted

glycoproteins in EAC (Figure 3), including 7 of the 9 most over-

expressed genes (COL1A2, COL4A1, COL4A2, COL5A2,

COL6A3, IGFBP7 & PLAU) presented in Table 3, most of which

(all but PLAU listed above) also showed altered expression levels in

the squamous to BE comparisons (Table S1) and relate to the

extracellular matrix (ECM). While it is true that ECM manipu-

lation is an important aspect of tumor growth and invasion, it

should be noted that there was very little support for these genes

from amongst the other 13 expression profiling studies (Table 3).

Figure 3. Gene ontology clusters significantly overrepresented in squamous to BE and BE to EAC comparisons across 4 cohorts.
Genes with a .1.2 fold mean sample group comparisons for squamous (s) to BE and BE to EAC comparisons in at least 3 of the 4 cohorts were used,
as presented in Figure 1. Statistically overrepresented ontology clusters were identified using DAVID, with all standard settings and a Benjamini false
discovery adjusted p value threshold less than 0.05. Gene lists for squamous to BE and BE to EAC comparisons were subdivided on the basis of fold
change direction (up or down regulated) and passed through DAVID separately. Gene clusters over-represented amongst genes over expressed in BE
(left) and EAC (right) are presented on the top, while over-represented ontology groups amongst the under expressed genes in BE (left) and EAC
(right) are tabulated on the bottom. Clusters in the middle of each comparison represent those over-represented on both the over and under
expressed gene lists, indicating expression change.
doi:10.1371/journal.pone.0022513.g003
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We noted a reduced activity in gene ontology groups that relate

to metabolic and xenobiotic activities (HPGD, LIPF, SULT1C2,

ADH1B, ADH1C, ALDH3A1, AKR1C1, AKR1C2, AKR1B10)

within EACs, as have other profiling studies [13,15,18,19,36].

These changes may signify dedifferentiation, a feature of cancer,

and perhaps indicate that EAC cancer cells maybe more

susceptible to the DNA damaging effects of smoking and reflux,

although we could not find literature to support this.

Both MUC6 [47] and TFF1 [48] proteins are frequent

constituents of adherent mucus and within BE tissue their

decreased expression (in combination with other secreted mucins

and trefoil factors) have previously been noted as an indication of

early progression towards tumor development [20,49,50,51,52].

TFF1 is suspected of playing a direct role in mucus polymerization

[48] and mucus viscosity [53], while CA2 is a key enzyme for

reducing acidity through bicarbonate buffering [44]. Given that

gastric acid can cause double-stranded DNA damage within

exposed BE tissue [54], a breakdown in the mucosal defence

system could contribute to the frequent chromosomal damage seen

in EAC [24,55,56,57]. More research is required in this regard.

Within the current 4 cohort study, we saw an over-represen-

tation of genes involved in growth factor binding (COL1A2,

COL4A1, IGFBP7) and the regulation of cell proliferation

(IGFBP7, NUP62, PLAU, STAT1), similar to several other

expression profiling studies, although involving different subsets of

genes [14,15,17,39]. While cell cycle abnormalities are frequent

events in cancer, Chao and coworkers demonstrated that they are

not a feature of the progression from BE to EAC using a large,

prospectively followed cohort of patients with BE [58]. It has been

suggested that these and related observations indicate that

abnormal cell cycle entry or exit may be responsible [59]. The

p53 tumor suppressor protein is pivotally placed to control cell

cycle entry/exit in response to DNA damage. Several studies

indicate that the TP53 gene is frequently affected by mutation

[60,61,62,63] and copy number variation [24,55,64,65,66] within

EAC, and that these changes are likely to increase protein stability,

rather than mRNA levels, resulting in abnormal entry into the cell

cycle without stopping for DNA repair (reviewed by Fitzgerald

2006 [59] and Reid 2010 [10]). It should also be noted that most

of the above listed genes appear to have multiple functions, with

many also active within the ECM. So while this result may be an

indication of cell cycle/proliferation changes the listed genes are

not well represented amongst other EAC profiling studies and the

mode of their involvement is unclear.

Comparison to other profiling studies
We have examined 13, independent array studies involving

mRNA extracted from BE and EAC tissues to gauge how well

represented our peak gene lists are within other papers (Table 1, 2

and 3). Over 45% (43/93) of the combined genes from our two

peak lists were mentioned, either by name or official gene symbol,

in at least one independent published BE-related array study. Of

these, only 7 genes were described within 3 or more of the 13

independent profiling studies: EMP1, CA2, LGALS4, TFF1,

TSPAN1, ANXA10 and KRT20 (Table 1, 2 and 3) plus another 6

genes (ANXA1, CDX1, CSTA, ECM1, KRT1 and KRT4)

present within Table S1, suggesting their potential importance

within this tissue progression. The most frequently implicated gene

families across all 16 previous mRNA profiling studies were

keratins, mucins, trefoils, annexins and S100 calcium binding

proteins, described in 12, 7, 6 and 6 studies respectively (Table 4),

all of which are represented within the peak lists of the current

study, with the exception of S100 proteins, although S100A7 is

present on the 851 gene list used for ontology testing (Table S1).

Conversely, while collagen genes (COL1A2, COL4A1, COL4A2,

COL5A2 & COL6A3) were well represented amongst the peak

genes amplified in EACs within the current study (Table 2), this

gene family was poorly represented amongst previous studies

(Table 4). Several genes not in our peak list (FABP1, IVL,

SPRR2C, S100A2, S100A8, S100A9, TFF2, TFF3, MUC2,

MUC5AC, along with KRT 5, 6A, 6B, 7, 8, 13, 14 and 17) were

also frequently discussed across the 16 previous profiling studies.

Secreted mucins and trefoil factors are well represented amongst

these frequently reported genes. When combined with the 4 study

data analysis presented here, these results confirming the

importance of mucosal defense related factors in the squamous-

BE-EAC tissue progression, as originally reported by Ostrowski

and co-workers [21].

Support vector machine discriminator analyses
Using the above described 11 genes that overlap between our 4

cohort analysis, and the 13 independent profiling studies (CA2,

ANXA10, CDX1, EMP1, IGFBP7, KRT1, KRT4, KRT20,

LGALS4, TFF1 and TSPAN1) we have conducted SVM based

analyses with the two largest cohorts (SDH-54 and Greenawalt-

102). In each cohort LOOCV analysis resulted in high (.88%)

sensitivity and specificity for discriminating BE from squamous,

and while the specificity of determining EAC (cancer) from BE or

squamous (non-cancer) was equally high, the sensitivity for each

cohort was 73%. In each case this translates into an unacceptably

high false negative rate with 5/23 and 9/37 EAC samples

predicted to be BE for SDH-54 and Greenawalt-102 cohorts

respectively. Thus for a clinically useful mRNA based discrimina-

tor additional genes are required to specifically distinguish these

two tissue groups. An important aspect, and one that has not been

taken into consideration in the current study, is to assess transcript

levels across a broad range of BE samples with regards to cancer

risk. Several reports have begun this task [51,67] but large,

dedicated cohorts are required.

This study represents the most powerful genome-wide EAC

related expression study to date, combining data from 4 study

cohorts, with a total of more than 70 samples in each tissue group.

In order to combined these data we have employed the Welsh test

with standard 0.01 (or 0.05 for the smaller Hao-34 cohort) B&H

FDR-adjusted thresholds to each cohort before applying cross-

platform informatics to align each set of chip features to Entrez

gene IDs and tissue group fold-change filters to enable the

compilation of unified gene lists for squamous/BE and BE/EAC

comparisons (Figure 1). The fact that these samples were collected

by 4 independent groups across three countries using very different

criteria, and each profiling study was done with a different set of

methodologies means the combined results are more universally

applicable than any one study. However, the need to indepen-

dently analyze samples from each study (due to the broad set of

both technical and experimental differences) does weaken the

study design and reduces the number of considered genes to less

than half the number of currently active human Entrez IDs. Thus

the gene lists presented should be considered as inclusive, rather

than exclusive. Lastly, given the broad base of included BE

material used for the combined analysis, particularly with respect

to histological typing and patient origins (cancer versus non-cancer

subjects), the importance of identified genes within the context of

the BE-dysplasia progression needs to be the focus of subsequent,

well-defined studies.

In summary we have described a new, whole-genome

expression dataset focused on comparing esophageal squamous,

BE and EAC tissue types. We have combined this dataset with the

raw data from three previously published cohorts to allow
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comparable analyses of the same basic sample groups. We have

used these four datasets to generate a list of genes differentially

expressed between these three esophageal tissue states. We present

ontology studies demonstrating that many of these discriminating

genes are in biologically plausible pathways involved in the

progression from normal squamous epithelium to BE, or BE to

EAC. We further stratify this gene list to identify those with the

strongest profiling capabilities, and that are broadly discussed in

other EAC-related genome-wide mRNA expression papers,

generating a list of 93 genes most likely to be useful as expression

markers. These genes and pathways provide a basis for subsequent

work, which will attempt to provide expression profiling

discriminators specific for each tissue type. We believe the

following design factors need to be considered in future studies

which seek to develop gene-based tests to discriminate between the

squamous, BE and EAC tissue types:

1. Address the primary confounding issues involved in sample

preparation: i.e. cell type heterogeneity within samples,

expression heterogeneity between samples

2. Address the secondary confounding issues involved in patient

selection: i.e. disease stage, site of lesion, patient risk factor

profiles (obesity, reflux and smoking). Overcoming these issues

will require detailed patient eligibility criteria and considerably

larger sample sizes, ideally using long-term, prospective cohort

studies.

3. Use complementary data from converging technologies on the

same tissue samples (mRNA expression, copy number,

methylation and DNA sequencing data) to gain a deeper

understanding of the key molecular events in esophageal

carcinogenesis.

In time, we foresee molecular tests will be developed with

sufficient specificity and sensitivity to augment, or perhaps replace,

histological classification of tissues within the esophagus. To ensure

translation into clinical practice, there will always be a need to

reduce the complexity of high dimensional procedures and gene-

sets, and so future studies must bear this in mind.

Supporting Information

Table S1 ANOVA and Fold-change Data for Discrimi-
nating Genes in Squamous to BE and BE to EAC
Comparisons Across 4 Cohorts. For inclusion genes must

show a sub threshold (p,0.01 in SDH-54, Gomes-41 & Green-

awalt-102, and p,0.05 in Hao-34, as described in the Methods)

false discovery rate (FDR) adjusted p value, as well as a .1.2 fold

mean sample group comparisons for squamous to BE and BE to

EAC comparisons in at least 3 of the 4 cohorts. Columns A to C

contain gene details, columns E to H contain Benjamini &

Hochberg FDR adjusted Welsh p values for each study, columns J

to M contain squamous to BE mean group fold change values for

each study, columns O to R contain BE to EAC mean group fold

change values for each study, columns T to W show the number of

probes on each chip for a given gene for each study and column Y

shows the fraction of studies that meet the p value + fold change

requirements out of the total number of studies with representative

probes for a given gene.

(XLSX)
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