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Abstract: This paper proposes the hypothesis that cytoplasmic organelles directly interact with
each other and with gap junctions forming intracellular junctions. This hypothesis originated over
four decades ago based on the observation that vesicles lining gap junctions of crayfish giant axons
contain electron-opaque particles, similar in size to junctional innexons that often appear to directly
interact with junctional innexons; similar particles were seen also in the outer membrane of crayfish
mitochondria. Indeed, vertebrate connexins assembled into hexameric connexons are present not
only in the membranes of the Golgi apparatus but also in those of the mitochondria and endoplasmic
reticulum. It seems possible, therefore, that cytoplasmic organelles may be able to exchange small
molecules with each other as well as with organelles of coupled cells via gap junctions.
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1. Introduction

In most tissues, neighboring cells directly exchange cytosolic molecules as heavy as ~1 kD via
cell-to-cell channels aggregated at gap junctions [1–4]. Direct cell–cell communication (cell coupling)
is a very efficient mechanism for coordinating numerous cellular activities. Indeed, abnormal cell
communication is known to cause several diseases.

Cell-to-cell channels are made of the interaction of two hemichannels (connexons/innexons),
each made of six proteins (connexins/innexins) that create a hydrophilic pore spanning both apposed
plasma membranes and a narrow extracellular space (gap). A gating mechanism driven by nanomolar
cytosolic Ca2+-concentrations [Ca2+]i [3,5] via calmodulin (CaM) activation is believed to regulate
channel permeability [6,7].

It is generally thought that the only function of gap junctions is to directly connect electrically
and metabolically neighboring cells. It is also known that these gap junction proteins can form
non-junctional hemichannels in plasma membranes. However, connexins (innexins) assembled into
connexons/innexons are also present in the Golgi apparatus, mitochondria and, in some cases,
the endoplasmic reticulum (ER); indeed, connexins are ubiquitously expressed in intracellular
organelles [8].

The questions then are as follows: 1. Are the intracellular connexons/innexons capable of
forming functional intracellular hemichannel? 2. Do intracellular connexons/innexons interact with
each other to form intracellular junctions? 3. Do intracellular connexons/innexons interact with
plasma-membrane gap junctions? Indeed, some intriguing findings, published over the last four-plus
decades, have raised the possibility that connexin/innexin-mediated communication might also occur
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intracellularly between organelles, as well as between organelles and plasma membrane gap junctions
via “inverted” gap junctions.

2. Direct Interaction between Crayfish Gap Junctions and Intracellular Vesicles

The gap junctions of crayfish lateral giant axons are coated with 500–800 Å vesicles that line both
junctional surfaces in single rows (Figure 1A) [9]. Since these junctions are electrical (electrotonic) and
so, unlike chemical synapses, transmit the electrical impulse virtually without delay, these vesicles
are unlikely to contain a neurotransmitter. Therefore, what could be their function? Significantly,
the vesicles’ membranes often display electron-opaque particles, similar in size and spacing to junctional
innexons (Figure 1A) [9] that occasionally appear to precisely interact with the cytoplasmic end of
junctional innexons (Figure 1A and inset a, red arrows), forming what appear to be small intracellular
junctions (Figure 1A, a and b) [9,10]. Particles similar to plasma membrane innexons are also seen
in freeze-fractured vesicles (Figure 2A,B); note that particles and complementary pits (Figure 2A,B,
red arrows) are similar in size to junctional particles and often display a similar central dimple
(Figure 2B, double-headed red arrow) [9–11]. Occasionally, neighboring vesicles also appear to directly
bind to each other via particle–particle interactions (Figure 1A, inset a) [9], suggesting that they may be
interconnected as well.
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Figure 1. A. Electron micrograph showing the profile of a gap junction between crayfish lateral
giant axons (A). The membranes display a beaded profile created by particles (innexons) that are in
register, protrude from both membrane surfaces and bind to each other across the extracellular gap (A).
The membranes are coated with 500–800 Å vesicles (A, black arrow) whose membrane also contains
particles (A, red arrows), similar to junctional particles that often come in direct contact with junctional
particles (A and insets a and b). Occasionally, neighboring vesicles appear to bind to each other via
particle–particle interactions (A, inset a). The vesicles may directly communicate with each other and
with vesicles lining on the other side of the junction (B). A from [9].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 10 
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Figure 2. Freeze-fracture images of gap junctions between crayfish lateral giant axons (A and B).
The neighboring vesicles contain particles and pits (A and B, red arrows) similar in size to the junctional
particle (B). Often, the particles of the vesicles display a central dimple similar in size to that of the
junctional particles (B, double-headed red arrow). P, Protoplasmic face; E, Exoplasmic face. A from [10].
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We proposed that the vesicles contain innexons that may interact with plasma membrane innexons
to establish direct communication with vesicles lining the other side of the junction (Figure 1B) [9–11].
If this were the case, the vesicles’ contents could be transferred to vesicles of the adjacent axon via three
junctions, namely two intracellular and one intercellular. Significantly, in crayfish rectifying junctions
between motor axons and either median or lateral giant axons [12–14], vesicles are only seen lining
the gap junction of the (presynaptic) median and lateral giant axons [15,16]. This may suggest that in
this case intra-vesicular molecules of the giant axon are directly transferred from presynaptic vesicles
into the motor-axon’s cytosol and vice versa. Interestingly, in axons treated with chemical uncouplers,
junctional membranes with tight innexon arrays, thought to contain closed channels, do not display
vesicles [9,16].

3. Direct Interaction between Gap Junctions and Cytoplasmic Organelles

Over the years we have also reported images of cytoplasmic cisternal membranes tightly attached
to gap junction membranes of rat liver (Figure 3A) and stomach (Figure 3B) [17,18] epithelial cells.
Indeed, the close interaction between gap junctions and cytoplasmic membranes, such as smooth
endoplasmic reticulum (ER) [17,19–22], rough ER (RER) [23,24] and mitochondria [23–27] has also
been reported in various other mammalian cells. In Garant’s words [24]: “... Close association of
mitochondria with the gap junctions was repeatedly observed in papillary cells and to a somewhat
lesser degree in reduced ameloblasts. The most dramatic examples of this association were provided
by the location of mitochondria inside the circular junctional profiles (Figures 9–11)...”. Note the
bridging structures tightly connecting mitochondria and gap junction membranes in Figure 9 in [24],
Figures 2, 7–9 in [25] and Figure 5c,e in [27]. In Forbes and Sperelakis’ words [25]: “... bridging
structures between mitochondrial and gap junctional membranes are demonstrable in thin sections,
and the appearance of replicas in which mitochondrial fragments are superimposed on gap junctions
is a further indication of adhesive connection between the two structures...”.
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Figure 3. Freeze-fracture images of gap junctions between rat liver (A) and stomach (B) epithelial cells
showing membranes of cytoplasmic cisterns (C) apparently attached to gap junction membranes. P,
Protoplasmic face; E, Exoplasmic face. A from [18]; B from [17].

Early on, we reported the presence of electron-opaque particles in the outer membrane of crayfish
mitochondria (Figure 4A–C) [28]. These particles are similar to gap junctions’ innexons in size and
spacing (~200 Å; Figure 4B). In our words [28]: “... While in most of the cross sections (of mitochondrial
outer membranes) the dense strata appeared very compact and did not display granularity, in tangential
sections the membranes were granular because of the presence of dense particles (Figure 10). In the
best preparation these particles (150 Å in size) were clearly seen separated by a distance of ~200 Å
(Figures 11 and 12) and seemed to be located on the axoplasmic side of the unit membranes (Figure 11).
In septal electrical synapses (lateral giant fibers) particles (innexons) of the same size were seen more
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clearly (Figure 13). Here, in membranes seen in face view, they were organized in a hexagonal array in
which the center-to-center distance between adjacent particles was 200 Å...”.
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Figure 4. Thin sections of mitochondria in crayfish lateral giant axons. Note that the cross-sectioned
outer membrane shows images of electron-opaque particles (A and B, black arrows) that are similar to
gap junction particles in size and spacing (~200 Å; B, inset). Similar electron-opaque particles are seen
in tangential sections (C, red arrows). From [28].

Indeed, in recent years, connexins have been found in the inner membrane of cardiac mitochondria
and in other tissues’ mitochondria [29–33]. A study reported that Cx43 is expressed in the outer
mitochondrial membrane as well [32]. Cx32 is also present in mitochondrial membrane [34];
the mitochondrial Cx32 is thought to interact with the Cx32 of plasma membranes by an accessory
protein (SFXN-1; siderioflexin-1) [34].

Gap junctions may also interact with cisterns of the Golgi apparatus because most connexins
oligomerize into connexons in the Golgi apparatus. Perhaps there are also interactions with cisterns of
the ER. Indeed, for some connexins this might be the case because there is evidence that Cx32 and Cx37,
at least, oligomerize in the ER [35,36]. If indeed gap junctions interact with cytoplasmic organelles,
perhaps organelles might interact with each other as well.

4. Potential Intracellular Connexin–Connexin Interactions

If indeed intracellular gap junctions exist, possible “inverted” connexin–connexin interactions
might occur between opposite cytoplasmic domains such as cytoplasmic loops (CL) or COOH-termini
(CT), forming CL–CL, CT–CT or CL–CT interactions. If so, this would create inverted/intracellular gap
junctions (connexins linked by cytoplasmic rather that extracellular domains).

Figure 5 shows a hypothetical CL–CL interaction between Cx32 monomers; the CL–CL interaction
could involve six hydrophobic residues: four valine (V) and two tryptophan (W) residues. Note that
this interaction, if present, could also involve the calmodulin (CaM) binding site located in the second
half of the cytoplasmic loop (CL2; Figure 5), which is close to the “32gap 24” amino acid chain [37]
(Figure 5). If so, CaM would not be able to interact with its CL site, and the channels would be
insensitive to Ca2+

i. For a review of CaM binding sites in connexins, see [7]; the CaM-binding sites in
connexins were identified by a computer program that rates the probability of CaM–Cx interactions
from 0 to 9 [38].
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Figure 5. Hypothetical CL–CL interaction between Cx32 sequences. If present, the interaction might
involve numerous hydrophobic residues and include the CL2′s calmodulin (CaM) binding site, which
is close to the “32gap 24” amino acid chain. If this were the case, CaM would not bind to the CL2
domain. Above is the predicted secondary structure of this sequence, performed by SCRATCH Protein
Predictor, School of Informatics and Computer Sciences (ICS), University of California, Irvine (UCI).

Similar CL–CL interactions could also occur with Cx43 (Figure 6) innexin-1 (Figure 7) and other
connexins/innexins. As for Cx32, in Cx43 and innexin-1, this potential CL–CL interaction would also
interfere with CaM binding (Figures 6 and 7).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 10 
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Figure 6. Hypothetical CL–CL interaction between Cx43 sequences. If present, the interaction might
involve several hydrophobic residues and include the CL2′s calmodulin (CaM) binding site. Based
on the prediction of the secondary structure (see above), the potential CL–CL interacting sequence
(R148–K162) is believed to be in alpha-helical conformation. The secondary structure prediction
was performed by SCRATCH Protein Predictor, School of Informatics and Computer Sciences (ICS),
University of California, Irvine (UCI).
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Figure 7. Hypothetical CL–CL interaction between innexin-1 sequences (in squares). If present,
the interaction might involve hydrophobic and charged residues and include part of the CL2′s
calmodulin (CaM) binding site. The prediction of the secondary structure shown above was performed
by SCRATCH Protein Predictor, School of Informatics and Computer Sciences (ICS), University of
California, Irvine (UCI).

We do realize that the CL–CL interactions are very hypothetical. One of the reasons why we favor
the CL–CL interaction is that in this case the pores of the two connexons would be relatively well
aligned. However, there is evidence that COOH-terminus (CT) tails can dimerize [39–41], suggesting
that CT–CT interactions may be possible as well. In addition, evidence that the CL’s peptides Gap
24 [37] and Gap 19 [42–44] (Figures 5 and 6, respectively) bind to CT suggests that CL–CT interactions
could very well be involved as well.

5. Future Perspectives

These provocative findings should encourage one to explore in detail the largely unknown field of
intracellular connexin function. One may question: Are there connexin-mediated interactions between
intracellular organelles? Are there interactions between gap junctions and cytoplasmic organelles?
If so, what could their function be? Would connexons/innexons be capable of interacting with other
connexons/innexons by means of their cytoplasmic molecular domains? Would intracellular organelles
be able to exchange molecules across gap junctions with organelles of the coupled cell? Would there
be intra-mitochondrial junctions to establish communication between their matrix and the cytosol
and/or other organelles? As we have proposed for crayfish vesicle/gap junction and vesicle/vesicle
interactions, it might be possible that gap junction permeable molecules such as ions, amino-acids,
second messengers, micro-RMAs and other nucleotides could be shared among organelles and adjacent
cells via intracellular junctions. In addition, small cytosolic molecules could diffuse from cytosol to
organelles and vice versa via organelles’ connexin/innexin hemichannels.

Recently, Gemel and coworkers [45] have reported that exosomes, small extracellular vesicles
containing Cx43 hemichannels, are secreted by cells and could fuse with each other and/or with plasma
membrane hemichannels. This would create pathways for exchange of small molecules, including cell
signaling molecules, between exosomes and between exosomes and recipient cells.

A first step in testing whether intracellular junctions might form could be to study the possible
molecular interaction between cytoplasmic domains. The potential interaction between gap junctions
and cytoplasmic sequences could be tested by immunofluorescent microscopy and with mimetic
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peptides by in vitro methods, such as those used for testing the CaM binding to peptides matching
potential CaM sites in connexins [37,46,47], or by other methods such as surface plasmon resonance
and/or microscale thermophoresis.
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