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Abstract: The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs)
by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain
nanostructured hybrid materials that have been widely used in the formulation of advanced polymer
nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and
ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density
and dielectric loss. This review describes the “grafting from” and “grafting to” approaches commonly
adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various
surface initiated controlled radical polymerization techniques, along with templated approaches for
grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards
applications, an outlook on high-performance polymer nanocomposite capacitors for the design of
high energy density pulsed power thin-film capacitors is also presented.

Keywords: polymer-grafted nanoparticles; dielectric properties; energy density; SiO2; TiO2; BaTiO3;
Al2O3; reversible deactivation radical polymerization; ATRP; RAFT; NMP; click chemistry

1. Introduction

The growing demand for power electronics and energy storage serves as an ex-
cellent motivation for developing next generation dielectrics and electrical insulation
materials [1,2]. Dielectric polymers and polymer nanocomposites stand out as next gener-
ation dielectric materials for many electrical insulation and energy storage applications
owing to their high dielectric strength, high voltage endurance, low dielectric loss, low
equivalent series resistance, a gradual failure mechanism, light weight, low cost and ease
of processability [3–10]. The use of polymer-based dielectric capacitors in various sectors
is summarized in Figure 1A. As a result of numerous emerging potential applications of
polymer-based dielectric materials and capacitors, research on strategies for enhancing
capacitive energy storage methods has experienced significant growth. Figure 1B shows
the number of yearly publications in the last 25 years on the topic of “dielectric polymer
capacitor” as found in the Sci-Finder database. Clearly, over the years the research interest
in the field of polymer dielectric capacitors has grown exponentially.

Apart from the use of polymers in nanocomposites, inorganic materials such as
ceramics are critical components for nanocomposite capacitors due to their extremely large
dielectric constants, often times >1000. Despite their high dielectric constants, inorganic
materials suffer from a low breakdown strength and non-graceful failure mode. Polymer
nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve
the overall dielectric properties [11,12].
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Figure 1. (A) The emerging applications of dielectric capacitors (B) Number of publications on “polymer dielectric ca-
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Several comprehensive review articles including a couple of review articles from
our group have been published in the field of polymer and polymer nanocomposite di-
electrics [13–26]. Our first review article dealt with coverage of the nanoscale strategies in
the field of polymeric and polymer nanocomposites for use in emerging dielectric capacitor-
based energy storage applications [13]. Some of the strategies to address permittivity
contrast between nanofillers and the polymer matrix including potential for developing
gradient permittivity structured nanofillers were presented. Additionally, we had described
approaches to improve the compatibility of nanofiller with polymer, minimize nanofiller
aggregation, and mitigate the permittivity contrast between nanofiller and polymer, In
our second review article, we discussed different chemical routes for surface functional-
ization of ceramic nanoparticles [14]. For instance, the article dealt with the synthesis of
low-k and high-κ nanomaterials [19–24] as well as surface functionalization of nanoma-
terials including treatment with hydrogen peroxide, silane coupling agents, phosphonic
acid and dopamine moieties that improved the interaction between nanomaterials and
polymer matrix.

In the review article published in Nanotechnology [14], it was pointed out that the
selection of the surface modifying coupling agent on the surface of nanoparticles/layer
dictate the dielectric properties of the nanocomposites as well as the performance of
the bilayer as it relates to gate dielectrics. Although, functionalization of nanomaterials
with chemical agents is less cumbersome and less equipment intensive there are several
shortcomings to adopting this method viz., (i) the structure of the chemical modifying
agent is distinctly different from the long chain of polymer matrix (ii) side reaction of
the chemical agent could lead to multilayer formation and (iii) physical adsorption of the
modifying agent. Unlike the surface modification of nanoparticles with chemical agents, the
polymer grafting of the nanoparticles yield nanoparticles with surface energy which closely
matches with that of the polymer matrix. The improved compatibility of polymer-grafted
nanoparticles with polymer matrix often yields nanocomposites with superior properties
compared to nanocomposites with chemical agent-modified nanoparticles. For instance,
maximum energy density and extraction efficiency values for polymethylmethacrylate
(PMMA) grafted BaTiO3 filled PMMA nanocomposites was found to be two fold higher
than that of coupling agent surface-modified BaTiO3 filled PMMA nanocomposites [27].

There are many approaches to improve the compatibility of the nanoparticles with
polymer matrix, the nanoparticles spatial dispersion in the matrix and decrease the per-
mittivity contrast between polymer and nanoparticles. Approaches could be based on
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the use of by external triggers such as a simple control of the film processing conditions
(controlling % loading of filler) [28] or, of the electrostatic repulsion (tuning by change
pH) [29] or with a magnetic field (tuning based on magnetic field) [30] or an internal trigger
such as chemical/polymer grafting approach [31,32]. This article only deals with internal
trigger (by synthesis of polymer-grafted nanoparticles) to address the compatibility of
nanoparticles and polymer. Several recent reviews have comprehensively covered the
topic of polymer grafting of nanoparticles [33–40]. For example, the review by Ameduri
et al., [35] dealt primarily with grafting of polymers on high-K NPs (BaTiO3) for use in the
formulation of high energy storage fluorinated polymer nanocomposites. In the present
review, we cover the synthesis of polymer-grafted high-K and low-K nanoparticles for
the fabrication of nanocomposites for electronics and dielectric application. Unlike, Yang
et al.’s [38] review which discusses only the synthesis of polymer-grafted high and low
K-nanoparticles using surface initiated-polymerization approaches, our review will cover
the broad gamut of approaches available to synthesize polymer-grafted silicon dioxide
(SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), and aluminum oxide (Al2O3)
nanoparticles and their applications as dielectrics and electronics.

The grafting of polymeric chains to nanoparticles can generally be achieved by four
approaches namely (i) “grafting to”; (ii) “grafting from”; (iii) templated and (iv) in situ
polymerization or encapsulation. Figure 2 presents pictorially the various approaches
commonly adopted to prepare polymer-grafted nanoparticles. All the four approaches
yield polymer-grafted nanoparticles of varying shell architecture. The polymer graft con-
formation on the nanoparticles is a result of the covalent bond formation that compensates
for the entropy loss resulting from the polymer chains stretching away from the surface.
If the polymer chains on the grafted nanoparticles have molecular weight lower than the
entanglement molecular weight, then the harvested nanoparticles are commonly blended
with virgin polymer to form polymer nanocomposite. On the other hand, if the molecular
weight of the polymer chains on the polymer-grafted nanoparticles is far greater than the
entanglement molecular weight, a nanocomposite could be formed without the addition of
an external polymer matrix. The former is called multi component system while the latter
is called single component system [37,41–43].
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As represented in Figure 2, encapsulation or in situ polymerization approach is based
on monomers being initially adsorbed on the NPs surface, and initiation of polymerization
of the adsorbed monomer layer, yielding polymer-coated NPs. Sometimes the encapsula-
tion approach could be termed as in situ grafting through approach because the monomers
adsorbed on the NPs undergo polymerization in the presence of initiator in the bulk [44,45].
The second approach uses block copolymer-based micelle-template in the synthesis of
hairy nanoparticles (HNPs). In this method, a precursor, commonly a metal salt or an
organometallic compound, is loaded into the core of polymer micelles based on either
multi-molecular block copolymer or unimolecular star block copolymer. The reduction of
(complex) metal ions in the micelle core yields core–shell NPs [46,47]. The third approach
is based on grafting-to which involves the attachment of end-functionalized polymer chains
on the surface of NPs via suitable chemical reactions. A variety of reactions such as es-
terification, silylation, click reactions including thiol-ene, alkyne-azide cycloaddition, etc.
have generally been utilized in the grafting to approach. The fourth approach is based on
grafting-from/SI-CRP which consists of growing polymer chains directly from the surface
of nanoparticles functionalized with suitable initiator/CTA functionalities. There have
been remarkable developments in the surface-initiated controlled radical polymerization
(SI-CRP) route for the synthesis of polymer-grafted nanoparticles [33,48–52]. Pioneering
work from Matyjaszewski [53], Mueller [54], Benicewicz [55], Takahara [56], Hawker [57]
and coworkers have paved the road for progress in SI-CRP methods. SI-CRPs (ATRP,
SI-RAFT and SI-NMP) have been successfully employed for the generation of plethora of
polymer grafted nanoparticles (PGNPs) because of its tolerance towards various functional
groups [48].

Table 1 summarizes the advantages and disadvantages of the four approaches outlined
in the synthesis of PGNPs. Among the various approaches, grafting from approach is
widely employed in the polymer functionalization of nanoparticles because of its ability
to synthesize well-defined polymer architectures of desired composition and molecular
weight, and a shell of controlled thickness on the nanoparticle surface. Given the enor-
mous data available on grafting from technique, this article will predominantly cover this
approach. Examples of other approaches in the polymer functionalization of ceramic oxide
NPs are also covered.

Table 1. Comparison of advantages and disadvantages of polymer grafting methods.

Grafting Methods Advantages Disadvantages

Grafting to

A number of coupling reactions and click reaction are
available.

Well-defined end-functionalized polymers can be
obtained from CRPs.

Clean approach, less labor intensive [33]

Due to the steric hindrance high grafting
density could not be achieved.

The approach is limited to polymer grafts
with defined end groups.

The surface of nanoparticles may have
unreacted functionality

Grafting from High grafting density, tuning of thickness with
molecular weight of growing chain is possible [48]

The stringent reaction conditions have to
be maintained.

Templated Well-defined size of nanoparticles can be obtained [58] Scalability is difficult.
Not cost effective

In situ polymerizations The technique is scalable and similar to conventional
free radical polymerization [59]

Difficulty in controlling grafting density
and molecular weights.

Well defined structures such as block
copolymers cannot be synthesized.
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2. Grafting from Approach

Grafting from approach may entail the use of anionic or cationic or free radical poly-
merization in the functionalization of NPs. SI-anionic and cationic polymerizations are
excellent routes in providing polymer grafted nanoparticles (PGNPs) with predetermined
molecular weights of narrow dispersity [60–63]. However, the complexity of the experi-
mental techniques limits their broad use [64–67]. Alternatively, initiator immobilized NPs
have been subjected to free radical polymerization to yield graft NPs [68,69]. Conventional
free radical polymerization suffers from poor control of molecular weights, chain-end
functionality, and polydispersity [31]. Therefore, surface initiated controlled radical poly-
merization techniques such as atom transfer radical polymerization (ATRP), reversible
addition−fragmentation chain-transfer polymerization (RAFT) and nitroxide mediated
polymerization (NMP) have been pursued for the synthesis of well-defined PGNPs. Con-
trolled radical polymerization (CRP) technique involves reversible activation–deactivation
equilibrium between active chain propagating species and dormant species which lower the
rate of chain propagation than that of conventional free radical polymerization. Thus, CRP
polymerization offers a route to synthesize PGNPs with well-defined molecular weights
and low dispersity. Figure 3 gives a general scheme for the various SI-CRPs methods.
Typically, the synthesis of PGNPs is based on the surface modification of NPs, then anchor-
ing/immobilization of initiator/chain transfer agent attachment on the surface-modified
NPs and finally polymerization using the surface initiator attached to NPs to obtain PGNPs.
Surface modification of NPs is often accomplished with coupling agents such as silane,
phosphonic acids, dopamine, etc. More details about the surface modification of NPs
with reagents such as silane agent, phosphonic acid, and dopamine can be found in our
recent review article [14]. The second step is introducing initiator functionality on the
surface agent modified NPs. Alternatively, initiator functionality and coupling agent are
pre-reacted to form initiator functionalized coupling agent which is then subsequently
reacted with NPs [70]. The merits and demerits of various surface initiated controlled
radical polymerization techniques have been presented in Table 2.
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Table 2. Comparison of advantages and disadvantages of grafting from methods.

Grafting from Methods Advantages Disadvantages

ATRP

Control of molecular weights and dispersity.
Variation to ATRP technique broaden the

applicability of the technique to a range of surface
initiated polymer grafting [48]

Small amount of copper persists along
with polymer, its removal is difficult and
affects the properties of the final product.

Not suitable for acidic monomers
Difficulty in synthesizing high molecular

weight grafts [71]

RAFT

Adaptability of RAFT to a range of polymerization
conditions high degree of fidelity, ability to work
in the presence of oxygen, compatibility with a

broad range of functional groups [48]

Because of the presence of sulfur
containing moiety RAFT polymers are

often colored and have foul odor and the
synthesis of RAFT agents involves

multiple steps [48]

NMP NMP is one of the successfully used SI-CRP
techniques for polymer grafting [72]

However, it is not applicable for most of
monomers and functional groups [48]

It requires high temperatures and longer
time due to slow polymerization kinetics.

There are difficulties associated with
synthesis and stability of nitroxide and

alkoxy amine [73]

3. Atom Transfer Radical Polymerization (ATRP)

Atom transfer radical polymerization (ATRP) is one of the most versatile polymer-
ization techniques adopted towards the synthesis of PGNPs because the technique can be
used under broad experimental conditions and can be adapted to synthesis of polymers
with a wide range of functional groups [74,75]. The polymerization of activated vinyl
monomer by ATRP process generally requires alkyl halide initiator and a transition metal
complex as catalyst (e.g., CuBr/ligand). ATRP involves reversible activation—deactivation
equilibrium between a metal-ligand complex and halide end-capped chain to form radical
species which propagates the polymerization. Mechanistic details of ATRP can be found in
the literature [71,74,76–78].

Several modifications to ATRP have been studied such as, activator regenerated by
electron transfer ATRP (ARGET ATRP), reverse ATRP, UV Light mediated ATRP, and elec-
trochemical mediated ATRP, etc. In ARGET ATRP a reducing agent viz., 2-ethylhexanoate
or ascorbic acid or glucose is employed to regenerate the active transition metal complex
via reduction of the higher oxidation state transition metal complex [79]. On the other
hand, “reverse” ATRP consists of the addition of transition metal complexes in the higher
oxidation state and the generation of the lower oxidation state activator by reaction with a
conventional free radical initiator [76,80,81]. Initially, alkyl halide initiators are immobi-
lized onto the NP surface. Using CuBr/ligand system, the polymerization proceeds like
the classical ATRP polymerization in bulk or solution and monomers are polymerized on
the surface of the NPs in a controlled manner.

3.1. SI-ATRP Polymerization to Prepare Polymer-Grafted SiO2 Nanoparticles

ATRP reactions have been extensively used to grow polymer/block copolymer brushes
from the surface of silica with controlled graft densities [82–84]. For example, poly-
mer/copolymer brushes of PMMA [83,85], polystyrene (PS) [86,87], poly(glycidyl methacry-
late) (PGMA) [88,89], poly(2-hydroxyethyl methacrylate) (PHEMA [90], poly(4-vinylpyridine)
(PVP) [91], poly(N-isopropylacrylamide) (PNiPAAm) [92], poly(sodium 4-styrene sul-
fonate) (PSS) [93], poly((ethylene glycol)methyl ether methacrylate) (POEGMA) [94], poly(2-
(dimethylamino)ethyl methacrylate) (PDMAEMA) [95,96], etc. have been successfully
grafted on SiO2 surface via SI-ATRP. Pinto et al. [97] employed SI-ATRP for grafting of
PMMA brushes thinner than 50 nm on SiO2 substrate for tunnel emitter transistor appli-
cation at operating voltage below 5 V (which is an important requirement for industrial
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adoption). Hwang et al. [98] employed SI-ATRP for grafting PS brushes on silica sur-
face with controlled molecular weight (24,600–135,000 g/mol) as well as grafting density
(0.34–0.54 chains/nm2). The performance of pentacene-based thin-film transistor fabri-
cated from PS-grafted SiO2 as a gate dielectric was evaluated as a function of polymer
brush thickness viz. 12.4, 47.5 and 113.1 nm. The device fabricated from 47 nm thickness
of PS brush exhibited highest mobility (µFET = 0.099 cm2/V·s) indicating that optimum
molecular weight polymer brushes need to be grown from the surface of dielectric for
achieving best performance. The OTFTs with the PS-grafted SiO2 layer showed 2 times
higher mobility (µFET = 0.099 cm2/V·s) than that of bare SiO2 layer (µFET = 0.05 cm2/V·s).
The electrode/active layer interface showed enhanced mobility which could be attributed
to grafted PS influencing the morphology of pentacene by enhancing the crystalline struc-
ture [98]. Li and coworkers synthesized PMMA-g-SiO2 NPs with ~10 nm PMMA brush
onto the SiO2 layer (~9 nm) via SI-ATRP. PMMA brush/SiO2 bilayer dielectrics showed
the lowest leakage compared to bare SiO2 and spin coated PMMA/SiO2 dielectrics which
could be attributed to improved interfacial morphology, a smaller number of pinholes at
the interface due to the close packing of polymer brush (Figure 4). The surface-grafted
PMMA brush (10 nm)/SiO2 (9nm) on silicon wafer exhibited lower leakage and higher
breakdown strength than that of surface-grafted PMMA brush (20 nm) on silicon wafer
(free of 9 nm SiO2 layer) (Figure 4A,B). The authors attributed the enhancement in the
breakdown strength of PMMA brush (10 nm)/SiO2 (9 nm) on silicon wafer over PMMA
brush (20 nm) grafted on silicon wafer (free of 9 nm SiO2 layer) due to the presence of
bilayer and improved interaction between polymer brush and SiO2 layer [99,100]. The
PMMA-g-SiO2 nanodielectric exhibited good operational stability, and good compatibility
with organic semiconductors, which enabled OFETs to work at high performance and low
voltage [101].
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Reproduced with permission from Ref. [101].
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Similar observations were also made by Li and coworkers by operating copper ph-
thalocyanine (CuPc) transistors at an operational voltages of 2.0 V using surface-grafted
~10 nm PMMA brush on silica [70]. Additionally, it was noted that the thickness of the
polymer brush on silica could be modulated based on the activity of the catalyst, the reac-
tant concentration and reaction time. The PMMA brushes on silica showed high-quality
dielectric property, including excellent insulating characteristics, large capacitance, and
low charge-trapping density. Field-effect transistors with PMMA brush as the dielectric
layer demonstrate excellent charge transport. Table 3 summarizes dielectric and electronic
properties of transistors fabricated from surface-grafted polymer brushes.

Table 3. Summary of dielectric and electronic properties of polymer brushes grafted from SiO2 using ATRP.

Polymer
Grafted Filler

Mean
Diameter

Polymer
Diameter/Graft

Density

Active
Semiconductor

Layer

Molecular
Weight

Capacitance
(nF/cm2)

Eb
(MV/cm) VT µFET

cm2/(V·s)

PS-g-SiO2 (WF)
[98] 300 nm 113 nm Pentacene 135,000

g/mol 7.5 @ 100 Hz NA −38 0.094

PMMA-g-SiO2
[101] ~9 nm ~10 nm Pentacene NA 142 @ 1 MHz 7 −1 ~0.2

PMMA-g-SiO2
[70] 2–3 nm 10 nm CuPc NA 220 @ 1 MHz NA −0.75 0.12

3.2. SI-ATRP Polymerization to Prepare Polymer-Grafted TiO2 Nanoparticles

ATRP has also been widely used to grow PMMA [102–106], PS [107–110], poly(styrene
sulfonic acid) (PSSA) [111,112], poly(oxyethylene methacrylate) (POEM) [113,114], PNI-
PAAm, [115,116], PHEMA [117] on the surface of TiO2. For example, Krysiak et al.; [118]
performed the SI-ATRP grafting of poly(di (ethylene glycol) methyl ether methacrylate) on
the surface of TiO2 (rutile) so as to yield polymer brushes with thickness of 10–15 nm (as
measured by TEM) and molecular weight, Mn of ~60,000 g/mol. Similarly, Park et al. [114]
utilized ATRP for the synthesis of TiO2 nanoparticles grafted with POEM and PSSA. In the
first step, the -OH groups on the surface of TiO2 nanoparticles were converted to -Cl groups
by the reaction of TiO2 with 2-chloropropionyl chloride (CPC) (ATRP initiator) which was
used to initiate POEM and PSSA grafting on the surface of the TiO2 nanoparticles. The mod-
ified TiO2 nanoparticles showed better dispersion in alcohol than unmodified nanoparticles.
X-ray diffraction (XRD) studies of polymer-grafted-TiO2 nanoparticles revealed that there
was no significant change in the crystalline structure of the TiO2 nanoparticles. There are
number of reports on utilization of SI-ATRP for grafting of polymer on TiO2 nanoparticles,
however no significant studies have been reported on the dielectric properties of SI-ATRP
polymer grafted TIO2 nanoparticles filled polymer nanocomposites.

3.3. SI-ATRP Polymerization to Prepare Polymer-Grafted BaTiO3 Nanoparticles

The initial reporting about the use of SI-ATRP approach to graft polymer on BaTiO3
nanoparticles was based on performing hydroxylation, sialylation, grafting of the anchoring
group, followed by chain growth polymerization [119]. Table 4 summarizes the conditions
used to synthesize various polymer-grafted BaTiO3 nanoparticles. Figure 5 presents the
scheme for synthesis of PMMA-grafted BaTiO3 nanoparticles. This study showed that the
thickness of the PMMA shell could be varied by changing the feed ratio of BaTiO3 (76%
to 0%) to MMA resulting in grafted nanoparticles with dielectric constant ranging from
14.6 to 3.49 (pure PMMA). The PMMA-grafted BaTiO3 nanoparticles showed dielectric loss
below 0.04, which was slightly lower than that of PMMA.
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Likewise, You et al. [120] demonstrated an approach to tune the dimension of BaTiO3
nanoparticles and vary the polymer shell thickness using ATRP method in the absence
of metal catalyst. Initially, the BaTiO3 nanoparticles were formed by polycondensation of
precursors (barium hydroxide (Ba(OH)2) and titanium(IV) tetraisopropoxide (Ti(OiPr)4)
and HBPA) followed by calcination. (Figure 6) The NPs were then modified by bi-functional
ligands (12-hydroxydodecanoic acid and 2-bromophenylacetyl bromide) followed by MMA
polymerization using white light and photocatalyst. Using this approach, the authors
demonstrated that the dimensions of BaTiO3 nanoparticles could be adjusted based on
the molar ratio of HBPA and precursors, while the thickness of polymeric shell could be
adjusted based upon the duration of white LED irradiation. The dielectric properties of
core/shell BaTiO3/PMMA hybrid nanoparticles were found to depend upon the dimension
of BaTiO3 core and the molecular weight of PMMA shell. For example, the dielectric
constant of core/shell BaTiO3/PMMA hybrid nanoparticles with larger core size (core
size: ~39 nm, ε = 22.23 ± 1.09, shell thickness: 6 nm) was found to be higher than that of
smaller core size sample (core: ~17 nm, ε = 17.06 ± 0.58, shell thickness: 6 nm). This is
due to the increased contribution of BaTiO3 to the overall dielectric constant with increase
in the core size of BaTiO3 and changes in the crystallinity from cubic (paramagnetic) to
tetragonal (ferromagnetic). Similarly, the dielectric constant of core/shell BaTiO3/PMMA
hybrid nanoparticles with varying molecular weight of PMMA shell were studied and
it showed an inverse relationship to the thickness of the PMMA shell. For example, the
dielectric constant of core/shell BaTiO3/PMMA hybrid nanoparticles with smaller shell
thickness (shell thickness: 6 nm core size ~39 nm, ε = 22.23 ± 1.09) was found to be higher
than that of larger shell thickness (shell thickness: 8 nm core size ~39 nm, ε~13). This is
because larger shell thickness corresponds to the higher proportion of PMMA contribution



Molecules 2021, 26, 2942 10 of 44

to the overall dielectric constant of core-shell nanoparticles, especially given that PMMA
has lower dielectric constant than that of core BaTiO3.
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Apart from BaTiO3 core size, polymer shell thickness, also the composition of polymer
shell can influence the dielectric properties of nanocomposites. In this regard, Zhang et al. [121]
studied core-shell structured PMMA@BaTiO3 (brush thickness, 7–12 nm) and PTFEMA@BaTiO3
(brush thickness, ~5 nm) nanoparticles that were synthesized by reacting (3-aminopropyl)
trimethoxysilane (APTMS) and α-bromoisobutyrylbromide (BIBB) with BaTiO3 nanoparti-
cles followed by reaction with methyl methacrylate (MMA) or 1,1,1-trifluoroethyl methacry-
late (TEFMA). At 1:1 weight feed ratio, (BaTiO3 and MMA or TFEMA), the polymer
brush thickness for PMMA@BaTiO3 and PTFEMA@BaTiO3 was found to be 7 nm and
4.5 nm, respectively with grafting density of 5.5% and 1.5%, respectively. MMA formed
larger shell due to its enhanced reactivity than TFEMA. The study of the dielectric prop-
erties of PMMA@BaTiO3 and PTFEMA@BaTiO3 exhibited significant improvement in
dispersity of polymer-grafted BaTiO3 nanoparticles in polyvinylidene fluoride (PVDF)
matrix leading to decreased dielectric loss. Furthermore, PMMA@BaTiO3/PVDF and
PTFEMA@BaTiO3/PVDF nanocomposites exhibited attenuation of dielectric constant of
16.6% and 5.5% at grafted density of 5.5% and 1.5%, respectively compared to controls. A
comparison of the performance of PTFEMA@BaTiO3 nanoparticles in PVDF matrix showed
90% decrease in dielectric loss as compared to BaTiO3/PVDF while PMMA@BaTiO3
nanoparticles/PVDF nanocomposites showed 80% decrease in dielectric loss as compared
to BaTiO3/PVDF. This could be attributed to the stronger interaction between PFTEMA
with PVDF matrix resulting in an enhancement in the interfacial polarization and stabiliza-
tion of electric field (Figure 7).
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Figure 7. Fluorine-fluorine and hydrogen-fluorine interactions in the nanocomposites of PVDF and
BaTiO3 grafted with PTFEMA and PMMA, respectively. Reproduced with permission from Ref. [121].

Alternatively, PMMA can be grafted on BaTiO3 nanoparticles by coating of a highly
polarizable tetrameric metallophthalocyanine (TMPc) as ATRP initiator on the surface of
BaTiO3 nanoparticles instead of conventional ATRP initiator followed by polymerization
of MMA (Figure 8). As control, R2-PMMA@BaTiO3 nanoparticles without TMPc interfacial
layer were synthesized via phosphonate coupling of (R2-Br) followed by ATRP polymer-
ization of MMA. Due to the high polarizability of the TMPc interfacial layer and the high
dielectric constant of TMPc [122,123], poly(vinylidene fluoride-co- hexafluoropropylene)
(PVDF-HFP)/PMMA-TMPc@BaTiO3 films exhibited higher dielectric constant (26% higher
than nanocomposite without TMPc), and improved higher energy density (20% higher
than neat (PVDF-HFP)) at nanofiller filling ratios of 4.69 vol% [124].
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Table 4. Details about various polymer-grafted nanoparticles using ATRP.

Polymer-Grafted Nanomaterial Anchoring Moiety Polymerization Conditions Ref.

PPMA BaTiO3
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polyacrylate-b-poly(2-h
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methacrylate) 

BaTiO3 
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Poly(1H,1H,2H,2H-per
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BaTiO3 

 

CuBr, PMDETA, DMF 
70 °C, 24 h [126] 

PMMA BaTiO3 
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60 °C, 24 h [119] 
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Poly(Trifluoroethyl 
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White Light,
Photocatalyst5,10-di(1-

naphthyl)-5,10-
dihydrophenazine

DMF, RT

[120]

Poly(2- hydroxyl ethyl
methacrylate)-b-poly (methyl

methacrylate);
Sodium polyacrylate-b-
poly(2-hydroxyl ethyl

methacrylate)

BaTiO3
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Xie et al. [125] synthesized a core@double-shell structured PMMA@HBP@BT nanocom-
posite via a two-step process as depicted in Figure 9. In the first step, the hyperbranched
aromatic polyamide was grafted on the surface of BaTiO3 nanoparticles, and in the second
step, the hyperbranched amine was used for grafting of PMMA shell via SI-ATRP. The
thickness of the second shell was controlled by adjusting the ratio of MMA and macro
initiator, BT@HBP-Br. The SEM morphology of PMMA@HBP@BT revealed improved ad-
hesion between BT nanoparticles and polymers (HPB and PMMA, covalently attached) as
compared to BT@HBP/PMMA nanocomposite. The PMMA@HBP@BT/PMMA nanocom-
posite exhibited high dielectric constant (39.3, 10 times higher than that of PMMA) as
well as low dielectric loss (0.0276). The nanocomposite of BT@HBP in PMMA matrix
(56.7% loading) resulted in high dielectric constant of 113 while loss was increased to
0.485 (16.6 times higher than that of PMMA@HBP@BT). Thus, double core-shell structured
PMMA@HBP@BT provides another approach for preparing nanocomposites with higher
dielectric constant and low dielectric loss.
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Figure 9. Schematic illustrating the preparation of PMMA@HBP@BT. Reproduced with permission from Ref. [125].

The attachment of phosphonic acid-based ATRP initiator on BaTiO3 nanoparticles
followed by growth of PMMA on BaTiO3 nanoparticles via activated regenerated by
electron transfer (AGRET) ATRP approach (Figure 10) was reported to compare and
contrast the dielectric performance of single- and multi-component nanocomposites [27].
A comparison of PMMA@BaTiO3 one component nanocomposite and phosphonic acid-
modified BaTiO3 mixed PMMA two component nanocomposite, at same loading of 16 vol%,
showed that the two-component nanocomposite has energy density of ~1.9 J/cm3 at
256 V/µm while one component nanocomposite has energy density of ~2 J/cm3 at a 25%
lower field strength (220 V/µm) which implies a 2-fold enhancement in energy density
due to the covalent attachment of PMMA to BaTiO3 nanoparticles.
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Zhang et al. [126] synthesized core-shell structured poly(1H,1H,2H,2H-perfluorooctyl
methacrylate) (PPFOMA )@BaTiO3 nanoparticles via SI-ATRP and was used for the for-
mulation of single component nanocomposite. One of the distinct advantages of single
component nanocomposite is the ability to load high % of ceramic nanofiller with minimal
effect on dispersibility. The dielectric properties of single component nanocomposites
(various core-shell nanoparticles were formed by changing the feed ratio of PFOMA and
BaTiO3) were evaluated over a broad frequency from 40 Hz to 30 MHz at room temper-
ature. The results revealed that the dielectric constant (k) increased and dielectric loss
reduced significantly with the addition of BaTiO3. The k of the composite was up to 7.4 at
100 kHz at room temperature when the BaTiO3 loading was up to 70 wt% which is almost
three times greater that of pure PPFOMA (k = 2.6). However, the dielectric loss (0.01)
of PPFOMA@BaTiO3 composite of one component polymer nanocomposite for 70 wt%
loading was much lower than that of the pure PPFOMA (0.04). It is interesting to highlight
that the nanocomposite despite high loading of nanofiller exhibited low loss even less than
that of pure polymer at 70% nanoparticle loading.

The structure-property relationship study of polymer-grafted BaTiO3 nanoparticles
(synthesized by ATRP technique) filled polymer nanocomposites [27,119–121,124–126]
clearly indicates that several factors influence the dielectric performance of the nanocom-
posite including the thickness of the core and the shell of the core-shell nanoparticles and
the type of polymer-grafted on the nanoparticles, interfacial separation between core NPs
and polymer shell, the composition of nanocomposite (single or multicomponent type of
nanocomposite), the type of interfacial layer and double shell coverage of nanoparticles.

3.4. SI-ATRP Polymerization to Prepare Polymer-Grafted Al2O3 Nanoparticles

Sanchez et al., [128] reported the modification of aluminum oxide nanoparticles by
poly(lauryl methacrylate) (PLMA) using surface-initiated ATRP (SI-ATRP) technique. The
molecular weight of grafted polymer ranged between 23,000 and 83,000 g/mol. PLMA-
grafted nanoparticles filled LDPE matrix resulted in lower dielectric loss-tangent (~0.0008
to ~0.0003 with 1 wt% at 100 Hz) compared to LDPE filled with bare Al2O3. This may
be a result of the enhanced adhesion between LDPE and the lauryl chains of the grafted
polymer on the nanoparticles. Table 5 summarizes of dielectric properties of polymer
nanocomposites fabricated from polymer brushes-grafted ceramic nanoparticles obtained
using different grafting techniques.



Molecules 2021, 26, 2942 15 of 44

Table 5. Summary of dielectric properties of polymer nanocomposites fabricated from polymer brushes-grafted ceramic nanoparticles.

Polymer@filler Mean Diameter Shell Thickness
(nm) % Loading Matrix Grafting

Approach εr tan δ Eb (kV/mm) Energy Density U
(J/cm3)

PS@BaTiO3 [129] ~7 nm NA 22% v/v PS Grafting to 5.8 NA 143 NA

PTFMPCS@BaTiO3 [130] 100 nm 11 nm 5 vol% PVDF-TrFE-CTFE SI-RAFT ~58 NA 459 36.6 @514 kV/mm

PVDF@BaTiO3 [131] ~100 nm NA 30 vol% PVDF Grafting to 27.9 0.08872 117.3 NA

PS@Al2O3 [132] 50 nm 0.13 25 wt% PS Grafting to 2.63 NA NA NA

PS@Al2O3 [132] 50 nm 0.13 25 wt% PMMA Grafting to 3.19 NA NA NA

PS@BaTiO3 [131] ~100 nm NA 30 vol% PVDF Grafting to 23.6 0.0866 107 NA

P(VDF-HFP)@BaTiO3 [133] 100 nm NA 50 vol% NA Grafting to 34.8 0.128 20 MV/m 0.3 @20 MV/m

PGMA@BaTiO3 [134] <100 nm ~20 nm NA PGMA SI-ATRP 54 0.039 ~3 MV/m ~21.51 @3 MV/m

PHEMA@PMMA @BaTiO3 [127] 100 nm 10 nm 38 vol% NA SI-ATRP NA ~0.025 NA ~0.061 @70 kV/cm

PANa@PHEMA@BaTiO3 [127] 100 nm 10 nm 21 vol% NA SI-ATRP NA ~0.022 NA ~0.09 @70 kV/cm

PMMA@ BaTiO3 [27] 50 nm NA 22 vol% NA SI-ATRP 11.4 NA 218 3 @~220 V/µm

PTTEMA@BaTiO3 [135] ~50 nm 14–15 nm 20 vol% PTTEMA SI-RAFT ∼20 <0.02 ~220 ~3.4 @210 V/µm

PMMA@BaTiO3 [119] 100 nm 10 nm 76 wt% NA SI-ATRP 14.6 0.0372 NA NA

PMMA@BaTiO3 [121] ~200 nm 7 nm 80 wt% PVDF SI-ATRP ~28.5 0.025 @100 kHz NA NA

PTFEMA@BaTiO3 [121] ~200 nm 4.5 nm 80 wt% PVDF SI-ATRP ~35 0.022 NA NA

PPFOMA@BaTiO3 [126] 30–50 nm 5 nm 70.70 wt% NA SI-ATRP 7.4 0.01 NA NA

PMMA@TiO2 [136] 50 to 100 nm 5 nm 1 vol% PVDF-HFP In situ 10.5 <0.04 560 14.2 @500 V/µm

PS@TiO2 [137] 40–50 nm NA 27 wt% NA Grafting to 6.4 0.04 NA NA

PS@TiO2 [129] 18 nm NA 39% v/v NA Grafting to 12.8 0.1 114 NA

PS@TiO2 [138] 25–30 nm NA 36.9 vol% PS SI-RAFT ~65 ~0.03 NA NA

PS@Al2O3 [139] 50–200 nm 0.12 30 wt% iso-Al NPs@PS Grafting to 9.50 0.01 175 1.70

PEB@Al2O3 [140] 100 nm 2–5 nm 25.0 vol% PP Grafting to 5.7 NA 37.5 NA

HBP@Al2O3 [141] 30 nm NA 20 wt% Epoxy In situ 5.0 <0.025 32.83 NA

PP@Al2O3 [142] 140 nm NA 10.4 vol% NA In situ 10.5 0.24 120 14.4 @120 V/µm
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4. Reversible Addition−Fragmentation Chain-Transfer Polymerization (RAFT)

Living free-radical polymerization by reversible addition−fragmentation chain trans-
fer (RAFT), is one of the most versatile and powerful technique for controlled radical
polymerization which was invented in 1998 by Moad and co-workers [143] RAFT poly-
merization involves a degenerative chain transfer method to control polymerization [144]
unlike ATRP and NMP which has a persistent radical in the system [76,145–147]. The
control in RAFT polymerization is derived from the chain transfer agent (CTA) and the
details about RAFT mechanism can be found in the following references [144,148–150]. In
comparison to other CRPs, RAFT polymerization has number of advantages such as being
adaptable to almost all free radical polymerizable monomers, the ability to synthesize
multi-block copolymers with a high degree of fidelity, the ability to work in the presence
of oxygen, no need of inorganic catalysts and mild polymerization conditions, similar
to that of conventional free radical polymerization [151–156]. SI-RAFT has been widely
used for the preparation of polymer-grafted nanoparticles by attaching CTA functionality
to the surface of nanoparticles. In SI-RAFT polymerization, the attachment of the CTA
moiety to the NP surface could be done via “Z” group or “R” group. If the NP is attached
to the “Z” group of the CTA then growing polymer chains will detach propagate, and
then reattach to the NP surface, just like a “graft to” approach [157,158]. Thus, “Z” group
attachment of CTA lead to decreased graft density because of the bulky nature of the
polymer chains being grafted to nanoparticles using graft to approach. However, if the NP
is attached to the “R” group of the CTA then the monomer gets sequentially added to the
propagating polymer radicals present on the NP surface. This approach is the preferred
pathway to synthesize core-shell NPs using SI-RAFT. Table 6 summarizes some examples
of the anchored CTA structures and polymerization conditions used to synthesize various
polymer grafted nanoparticles via SI-RAFT.

4.1. SI-RAFT Polymerization to Prepare Polymer-Grafted SiO2 Nanoparticles

A variety of polymers such as PMMA, PS, PNiPAAm, PAA, PHEMA, P4VP, polyiso-
prene have been grown from the surface of silica nanoparticles through ”grafting from”
approach via SI-RAFT polymerization [48,159–165]. For example, the amino-functionalized
SiO2 (SiO2–NH2) nanoparticles served as the precursor for RAFT polymerization and were
synthesized by reacting amino propyl triethoxysilane (APTES) with the bare SiO2 nanopar-
ticles. Subsequently, the RAFT-CTA viz, 4-cyano-4-(dodecylsulfanylthiocarbonyl) sulfanyl
pentanoic acid (CDP) agent was immobilized on the surface of SiO2–NH2 nanoparticles by
amide forming reaction. The CDP immobilized SiO2 nanoparticles were then used in the
surface-initiated RAFT polymerization of HEMA with AIBN as the free radical initiator, to
form PHEMA-g-SiO2 nanoparticles [164].

There are several other examples of immobilization of RAFT-CTA on the surface
of SiO2 nanoparticles. For example, dopamine is reacted with silanized nanoparticles
followed by dicyclohexyl carbodiimide (DCC) coupling, [160] or silanization of nanopar-
ticles with modified RAFT-CTA agent where the RAFT-CTA agent was precoupled with
silane agent [166–168], or silanization of nanoparticles with chloro functionality so as to
eventually react with sodium/potassium ethyl xanthate to form xanthate [162,163].
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Table 6. Details about various polymer grafted nanoparticles using SI-RAFT.

Grafted Polymer Nanoparticle Anchoring CTA Polymerization
Conditions Ref.

Poly(vinylidene fluoride) BaTiO3
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Literature presents several examples of the use of unimodal polymer grafted SiO2
nanoparticles to enhance the breakdown strength of polymer grafted SiO2 filled nanocom-
posites [177,178,180]. For example, SI-RAFT technique has been used in the synthesis of
poly(stearyl methacrylate) (PSMA) (Mn = 45 kg/mol and the graft density = 0.04 chain/nm2)
grafted SiO2 (10–15 nm diameter) nanoparticles [177]. The dielectric performance of
PSMA-grafted SiO2 nanoparticles/XLPE was compared with XLPE, pure PSMA/XLPE
and unmodified SiO2/XLPE. Among the systems evaluated, the unmodified SiO2 nanopar-
ticles filled/XLPE exhibited lowest dielectric breakdown strength while PSMA grafted



Molecules 2021, 26, 2942 18 of 44

SiO2 nanoparticles dispersed in XLPE showed the highest dielectric breakdown strength.
(Figure 11A) The internal field distortion of PSMA grafted SiO2 nanoparticles in XLPE was
found to be the least (less than 10.6%) among the nanocomposites (Figure 11B) studied
over a wide range of DC fields from −30 kV/mm to −100 kV/mm indicating tremendous
potential for improving HVDC power cable insulation. The long alkyl chain of PSMA
present on nanoparticles appears to have enhanced the interaction of nanoparticles with
XLPE matrix hence the improved breakdown strength of nanocomposite [177].
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The use of bimodal polymer grafted nanoparticles in polymer nanocomposite offers
an attractive alternative approach for achieving improved breakdown strength and better
nanoparticle dispersion in polymer nanocomposites. The synthesis of bimodal polymer
grafted nanoparticles was explored by Benicewicz, Schadler and coworkers [181–184].
Bimodal polymer grafted SiO2 nanoparticles were synthesized by sequential attachment
of electroactive conjugated surface ligands followed by surface-initiated RAFT polymer-
ization of GMA (Figure 12) to form PGMA. The electroactive functionality (anthracene,
thiophene, and terthiophene) was also grafted on the nanoparticles. Grafting of conjugated
molecules (anthracene, thiophene and terthiophene) to the nanoparticle surface offers an
approach to promote electron trapping at isolated regions of the composite while restricting
the formation of conductive pathway [185], while the grafted PGMA chains promoted
improved dispersion of the multifunctional SiO2 nanoparticles in epoxy resin. Bimodal
terthiophene-PGMA functionalized SiO2 nanoparticles filled composites showed the high-
est enhancement in dielectric breakdown strength followed by bimodal anthracene-PGMA
functionalized nanoparticles filled epoxy sample and the least was for thiophene-PGMA
functionalized nanoparticles filled epoxy sample. The role of substituted aromatics grafted
on nanoparticles in improving the dielectric breakdown strength of nanocomposite was
explained on the basis of the Hammett relationship [186].
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Similarly, bimodal anthracene-PSMA grafted SiO2 nanoparticles were dispersed in
polypropylene. The dispersion of bimodal modified SiO2 nanoparticles in polypropylene
resulted in the enhancement of dielectric permittivity by 20% and an improvement in
the dielectric breakdown strength under both AC and DC test conditions by about 15%
compared to neat polypropylene [178]. As noted earlier, the long alkyl chain of PSMA on
grafted nanoparticles appears to have improved the compatibility of nanoparticles with
XLPE matrix hence the improved dielectric properties of nanocomposites.

Alternatively, the bimodal functionalized nanoparticles can be synthesized with long
brushes of PS chains and short P2VP chains using SI-RAFT technique. The combined effect
of interaction of PS brushes of the grafted nanoparticles with the matrix and the reduction
in silica core-core NPs interaction because of the dense short grafts of P2VP present in the
grafted nanoparticles, contributed to the improved dispersion of nanoparticles in PS matrix.
Unlike the earlier papers on bimodal grafted nanoparticles which dealt with dielectric
properties of nanocomposites, the emphasis of Kumar et al. publication [188] was on the
dispersion of nanoparticles in polymer matrix and the impact of microstructure on the
mechanical properties of nanocomposites.

4.2. SI-RAFT Polymerization to Prepare Polymer Grafted TiO2 Nanoparticles

SI-RAFT has been employed for growing polymers such as PMMA [189,190], PS [138], poly-
acrylic acid (PAA) [191,192], poly(n-vinylpyrrolidone) [193], poly(chloromethyl styrene) [194],
poly(2-hydroxyethyl acrylate) [195], PMMA-b-PS, [179,196], etc. on the surface TiO2. PS
(Mn = 4800 g/mol) was grown from rutile TiO2 nanoparticles via SI-RAFT polymerization
and dispersed in PS matrix at various concentrations to investigate the dielectric properties
of nanocomposites. The PS chains attached to the surfaces of TiO2 (PS@TiO2) nanoparti-
cles maintained a “brush-like” structure and resulted in chestnut-burr (Figure 13C) self-
assembled NP aggregates. With increase in the amount of PS@TiO2-, the composite showed
a higher dielectric constant (~65) which could be attributed to the self-assembled chestnut-
burr aggregates of the nanoparticles where a number of rutile crystals shared lateral faces
and formed capacitive microstructures. The crystals in these aggregates are separated by a
polymer thin layer and allow a high percolation threshold, 41% v/v of filler amount, before
the formation of a continuous network responsible for the sudden change of the dielectric
characteristics, (from random orientation to conductive pathways to conductive network)
as depicted in Figure 13. Despite the high content of inorganic filler, the dissipation factor
remained low, even approaching the lower frequencies.
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4.3. SI-RAFT Polymerization to Prepare Polymer Grafted BaTiO3 Nanoparticles

Ming Zhu et al. [197] synthesized core-shell structured polymer@BaTiO3 nanoparticles
of varying polymer composition (PMMA@BT, PGMA@BT, and PHEMA@BT) and constant
shell thickness (Figure 14) using SI-RAFT technique. The synthesized nanoparticles were
used to study the compositional effect of the polymeric shells of PGNPs on the dielectric
properties of the nanocomposites i.e., breakdown strength, leakage currents, energy storage
capability, and energy storage efficiency of the nanocomposites. The differences in the
dielectric properties of the various core-shell NPs (with PHEMA, PGMA and PMMA shell)
were attributed to the differences in the dipole moment of pendant groups in the shell. The
hydroxyethyl pendant group in PHEMA was responsible for the larger dipole moment
and higher moisture absorption, resulting in the higher dielectric constant and higher loss
as compared to PGMA and PMMA. Among the systems studied, PHEMA@BT/PVDF
nanocomposite exhibited highest storage energy density due to the high dielectric constant
of PHEMA@BT while the PGMA@BT/PVDF nanocomposite exhibited highest discharge
density due to the high breakdown strength and low dielectric loss of PGMA@BT (20%
loading), while PMMA@BT/PVDF (20% loading) nanocomposite exhibited highest energy
storage efficiency with moderate dielectric constant and moderate breakdown strength.

Some studies have systematically studied the role of pendant groups in the polymeric
shell of encapsulated nanoparticles on the dielectric properties of nanocomposite. For ex-
ample, Zhang and workers [170] varied the number of fluorine substituents present on the
molecular structure of polymer shell of core shell structured rigid-fluoro-polymer@ BaTiO3
nanoparticles by performing RAFT polymerization with styrenic monomers containing
different number of fluorine (M-3F, M-5F and M-7F) (Figure 15A), Evaluation of dielectric
performance of the nanocomposites of rigid-fluoro-polymer nanoparticles@ BaTiO3 (P-3F,
P-5F and P-7F) and poly (Vinylidene fluoride-trifluororethylene-chlorotrifluoroethylene
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(PVDF-TrFE-CTFE) indicated a strong dependance of permittivity and energy densities on
the molecular structure of fluorinated styrenic monomer. For 5% loading, the nanocom-
posite formulated with fluorinated styrenic monomer containing 3F exhibited the highest
breakdown strength (542 kV mm−1) and highest energy density (14.5 J cm−3) which could
be attributed to compact interfacial interactions of P-3F with PVDF-TrFE-CTFE matrix.
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Figure 15. (A) Synthetic route for formation of TFMPCS monomer (B) schematic illustration of
rigid-fluoropolymer@ BaTiO3/PVDF-TrFE-CTFE dielectric nanocomposite films (C) The permittivity
of PVDF-TrFE-CTFE nanocomposites films with BT-3F0, BT-3F1, BT-3F2, and BT-3F3 at 1 kHz.
(D) Variation of characteristic breakdown strength from Weibull distribution for samples with
various volume fractions of fillers. Reproduced with permission from Ref. [130].
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Other studies have explored the effect of shell thickness on the dielectric properties
of nanocomposite while maintaining similar composition of the polymer shell of core-shell
nanoparticles. Zhang et al. [130] synthesized core shell structured rigid-fluoro-polymer@BaTiO3
nanoparticles via SI-RAFT polymerization of 2,5-bis[(4-trifluoromethoxyphenyl)oxycarbonyl]
styrene (TFMPCS) with RAFT agent anchored to BaTiO3 nanoparticles. TFMPCS was syn-
thesized starting from 2-vinylterephthalic acid as depicted in Figure 15A. The PGNPs were
incorporated in PVDF-TrFE-CTFE matrix to study the dielectric properties of the nanocom-
posite. A careful analysis of the results revealed that the dielectric constant, breakdown
strength and energy density of the polymer nanocomposites were significantly affected by
the thickness of rigid-fluoro-polymer shell around the BaTiO3 nanoparticles. For instance,
nanocomposite with higher shell thickness (i.e., obtained from BT-3F3) exhibited higher
breakdown strength while dielectric permittivity showed an inverse relationship with shell
thickness (Figure 15). This is expected because polymers in general have higher breakdown
strength while bare nanoparticles have higher permittivity. The energy density for 5 vol%
BT-3F3/PVDF-TrFE-CTFE nanocomposite (36.6 J cm−3 at the electric field of 514 kV mm−1)
was significantly higher compared to pure PVDF-TrFE-CTFE (15.4 J cm−3 at the electric
field of 457 kV mm−1).

Similarly, Yang et al. [176] studied the effect of shell thickness of PGNPs on the dielec-
tric properties of nanocomposite while keeping the polymer composition of core-shell NPs
constant. The RAFT agent (EDMAT) was initially immobilized on the surface of silanized
BaTiO3 nanoparticles by conducting reaction with n-hydroxysuccinimide activated ester of
EDMAT (NHS-EDMAT). A series of PS @BaTiO3 nanoparticles were prepared by RAFT
polymerization where, the shell thickness was tuned by changing the feed ratios of styrene
and BaTiO3-EDMAT. The dielectric constant of single component core-shell (shell thickness
varying from 7 to 12 nm) nanocomposite ranged from 14–24 depending upon the shell
thickness (7 to 12 nm) and the dielectric loss ranged from 0.009–0.13. Additionally, the
dielectric constant as well as the dielectric loss of all the nanocomposites showed a weak
frequency dependence over a wider range of frequencies (1 Hz to 1 MHz).

BaTiO3-EDMAT nanoparticles have not only been utilized for surface-initiated RAFT
polymerization of styrene but also for the polymerization of fluoroalkyl acrylates viz.,
1H,1H,2H,2H-heptadecafluorodecyl acrylate (HFDA) and trifluoroethyl acrylate (TFEA) [175].
The surface energies of poly(fluoroalkyl acrylate)are generally lower than those of hydro-
genated polymers e.g., PS. Several fluoroalkyl acrylate monomers with different structures
were grafted on BaTiO3 nanoparticles and surface-initiated RAFT polymerization was
conducted so as to synthesize polymer grafted BaTiO3 nanoparticles with the least sur-
face energy. Dielectric evaluation of fluoro-polymer@BaTiO3/PVDF-HFP nanocomposites
revealed that the energy density of 50% PTFEA@BaTiO3/PVDF-HFP/nanocomposites
(6.23 J.cm−3) was 150% greater than that of the pure PVDF-HFP (~4.10 J.cm−3). Fur-
ther, nanocomposite derived from PTFEA@BaTiO3 exhibited slightly better dielectric
performance over that derived from poly(1H,1H,2H,2H-heptadecafluorodecyl acrylate)
PHFDA@BaTiO3 because PTFEA has pendent trifluoroethyl group which promotes a more
compact interface compared to PHFDA which has long perfluoroalkyl pendant group.

The structure-property relationship study of polymer-grafted BaTiO3 nanoparticles
(synthesized by RAFT technique) filled polymer nanocomposites clearly indicates that
several factors influence the dielectric performance of the nanocomposite including the
polymer composition of the shell, the pendant groups of the polymer shell, and the shell
thickness of the core-shell nanoparticles.

5. SI-Nitroxide-Mediated Polymerization (SI-NMP) to Prepare Polymer
Grafted Nanoparticles

Nitroxide-mediated polymerization (NMP) involves reversible activation−deactivation
of propagating polymer chains by a nitroxide radical [198]. NMP polymerization has been
widely used for grafting styrenic monomers however, other monomers methyl methacry-
late, n-butyl acrylate, N-isopropylacrylamide, acrylic acid, etc. have also been grafted
on the surface of NPs [32,199–205]. The initiators used for NMP polymerization include
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2,2,6,6-tetramethylpiperidinyloxy (TEMPO) [57], N-tert-butyl-N-[1-diethylphosphono-(2,2-
dimethylpropyl)] nitroxide (DEPN) [206] and TIPNO [207]. The, SI-NMP of grafting
polymer chains on NPs involves initially immobilizing TEMPO or DEPN or TIPNO ini-
tiator functionalities on the NP surface [48]. The beauty of NMP polymerization is in
that the nitroxide radical endcaps the polymer chain to form a persistent radical effect
without the need for a separate initiator or catalyst (The propagating species are formed
via dissociation of a nitroxide radical). During polymerization, the equilibrium between
dormant and active species shifts towards the dormant species and limits the number of
active radical species present and also restrict possible termination reactions.

5.1. SI-NMP Polymerization to Prepare Polymer Grafted SiO2 Nanoparticles

Yang et al. [208] utilized SI-NMP polymerization for the preparation of polystyrene
grafted SiO2 nanoparticles. The SiO2 nanoparticles were initially treated with thionyl
chloride, and the modified nanoparticles were then reacted with tertiary butyl hydroper-
oxide (TBHP) to introduce peroxide groups on the surfaces of nanoparticles. Then NMP
polymerization was initiated in the presence of TEMPO agent to graft polystyrene on the
surface of SiO2 particles [208]. Alternatively, Chevigny and coworkers employed APTMS
modified SiO2 nanoparticles and grafted MAMA-SG1 (BlocBuilder), (NMP initiator) for
subsequent SI-NMP grafting of PS to SiO2 nanoparticles. The SI-NMP polymerization
of styrene was carried out in the presence of free MAMA-SG1 as a sacrificial initiator to
ensure a better control of the polymerization (Figure 16).
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5.2. SI-NMP Polymerization to Prepare Polymer Grafted TiO2 and BaTiO3 Nanoparticles

SI-NMP has also been employed for grafting of PS [209,210] and poly(4-chloromethyl
styrene-g-4-vinylpyridine) (PCMSt-g-P4VP) [211] on TiO2 as well as poly(4-hydroxystyrene)
(PVP) [212] and poly(styrene-co-maleic anhydride) (PSMA) copolymers [213] on BaTiO3
nanoparticles to obtain surface modified NPs. However, there has been no dielectric data
reported of polymer grafted nanoparticles synthesized using SI-NMP technique.

6. Grafting to Method to Prepare Polymer Grafted Nanoparticles

The grafting to method is based on the use of polymer chain with functional groups
that is randomly distributed along the chain or attached at the end of the polymer chain.
The attachment of the graft polymer on nanoparticle surface requires coupling reaction
of the functionalized backbone or the end-group functionalized polymer chain with the
surface functionalized nanoparticles. Common reaction techniques used to synthesize
functional polymers for grafting to method include free-radical polymerization, anionic
polymerization, ATRP, and RAFT. The coupling reactions generally used in grafting to
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methods are click reactions, silanization, phophonate coupling, esterification, etherfica-
tion, etc.

6.1. Grafting to Method to Prepare Polymer-Grafted SiO2 Nanoparticles

The combination of CRP techniques (ATRP, [214] RAFT, [215] etc.) and coupling
reactions has been useful in grafting PMMA, PS, PNiPAAm, poly(N-vinylcarbazole),
poly(7-(6-(acryloyloxy) hexyloxy) coumarin), etc. on SiO2 nanoparticles. Initially, silane-
terminated polymer or phosphonate-terminated polymer is synthesized so as to graft
polymer on nanoparticles [216–218]. For example, PS samples with end-functionalized
dimethylchlorosilane of different molecular weights (8 kDa, 26 kDa, 108 kDa, and 126 kDa)
were grafted on SiO2 bilayer. The bilayer was then used as organic-oxide hybrid gate di-
electrics to fabricate solution-processed triethylsilylethynyl anthradithiophene (TES-ADT)
organic field-effect transistors (OFETs). The molecular weights of PS chains significantly
altered the areal grafting densities (due to steric hindrance), the interfacial structure and
the dielectric properties as well as the performance of the OFETs. The lower molecular
weight PS-g-SiO2 surface exhibited smoother brush like structure while higher molecular
weight PS-g-SiO2 surface exhibited pancake like structure. The smoother surface of 8 kDa
PS-g-SiO2 surface showed the highest mobility (2.12 cm2·V−1·s−1) whereas the pancake
surface of 135 kDa PS-g-SiO2 showed the lowest mobility (0.85 cm2·V−1·s−1) [219].

6.2. Grafting to Method to Prepare Polymer Grafted TiO2 Nanoparticles

Phosphonic ester end capped PS has been synthesized using ATRP technique (Figure 17).
The phosphonic acid end-functionalized PS was then coupled with oleic acid stabilized
cylindrical shaped titanium oxide nanoparticles (TiO2-OLEIC) to obtain PS@TiO2. The
PS@TiO2 nanoparticles thus prepared were used for the fabrication of capacitors as well
as pentacene thin film transistors. The dielectric constant of single component PS@TiO2
nanocomposite was ~9 (which is nearly 3.6 times higher than that of polystyrene) at 18.2 vol-
ume % loading of PS @TiO2, while the mobilities of PS@TiO2/ITO (bilayer) approached
0.2 cm2/V·s. [220] showing the importance of synthesized PS grafted TiO2 nanoparticles
via grafting to approach in electronics and dielectric applications.
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Using “grafting to” approach, block copolymer has been grafted to TiO2 nanoparticles
with hydroxyl group as the end functionality of the anchoring block copolymer. Hailu and
coworkers [221] demonstrated using “grafting-to” approach the ability to graft PMMA-
b-PS-OH to silylated TiO2 nanoparticles to form block copolymer grafted nanoparticle
(Figure 18). It was observed that the dispersion of PMMA-b-PS-g-TiO2 nanoparticles in
PMMA and PS-PMMA BCP films was far better compared to that in PS films which could
be attributed to the improved interactions of the outer corona of the PMMA-b-PS-g-TiO2
NPs with the PMMA component of BCP. The addition of 2.6 vol% of BCP-g-TiO2 NPs
resulted in 18% enhancement in the permittivity and lower dielectric loss compared to the
bare TiO2 nanoparticles filled BCP nanocomposite [222].
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Similarly, using “grafting to” approach, block copolymer was grafted onto TiO2
nanoparticles with dopamine as the anchoring group. Obata et al. synthesized copolymer
containing dopamine as pedant groups via RAFT technique and subsequently coupled
it with TiO2 nanoparticles to yield block copolymer grafted TiO2 nanoparticles [223]. Al-
ternatively, silylation approach can also be used to graft PMMA on TiO2 nanoparticles by
coupling of TiO2 with preformed trimethoxysilyl functionalized PMMA that was synthe-
sized via ATRP technique [224].

6.3. Grafting to Method to Prepare Polymer Grafted BaTiO3 Nanoparticles

The silylation route has also been used in the grafting to approach of polymer grafted
BaTiO3 nanoparticles. Xie et al. [133] formed PVDF-HFP@BaTiO3 nanocomposites by
initially synthesizing) P(VDF-HFP) with glycidyl methacrylate (GMA) functionality via
ATRP (Fluorine atom of the PVDF-HFP was utilized to initiate the ATRP of the GMA)
technique. The functionalized polymer was then reacted with the APTMS-functionalized
BaTiO3 nanoparticles. The coupling reaction between PVDF-HFP-GMA (epoxy functional-
ity) and amino-functionalized BaTiO3 yielded PVDF-HFP@BaTiO3 nanocomposite with
superior dielectric properties. For example, the nanocomposite with 50% nanoparticle
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loading exhibited dielectric constant of 34.8 at 1 MHz, about 3.9 times greater than that of
pristine PVDF-HFP while dielectric loss observed was 0.128 at 1 MHz.

Alternatively Yang and coworkers [225] synthesized core-shell structured polymer@BaTiO3
nanoparticles for dielectric applications via “grafting to” route using a combination of “thiol-
ene” and silylation chemistry. Thiol-terminated PS or PMMA (molecular weight of PS1 and
PMMA1~10K, PS2 and PMMA2~40K and PS3 and PMMA3~80K) were prepared by RAFT
polymerization and was allowed to react with vinyl-functionalized (methacryloxypropy-
ltrimethoxy) silanized BaTiO3 nanoparticles to form a series of polymer grafted nanoparti-
cles PS@BaTiO3 and PMMA@BaTiO3 (Figure 19). It was observed that the graft density
decreased with increase in the molecular weight of the grafted polymer. The dielectric con-
stant of PS@BT (k = 30–33) and PMMA@BT (k = 34–38) single component nanocomposites
was greater than that of pure polymers (k for PS = 2.74 and k for PMMA = 3.69) while the
low dielectric loss (for PS@ BT = 0.013 and for PMMA@ BT = 0.032) was maintained over a
wider range of frequency. Compared to PMMA@BT nanocomposites, PS@BT nanocompos-
ites exhibited higher energy efficiency due to lower remnant polarization. Furthermore,
the energy efficiency of both PS@BT and PMMA@BT nanocomposites exhibited a strong
dependence on the molecular weight of the grafted polymer chains and the grafting density
indicating that the design of core-shell nanoparticle filled polymer nanocomposites with
high energy density and high energy efficiency is intricately related to the shell structure.
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Figure 19. Schematic illustration for (A) synthesis of thiol-terminated PS and thiol-terminated PMMA via RAFT poly-
merization and (B) preparation of core-shell structured polymer@BaTiO3 nanocomposites by thiol−ene click reaction.
(C) The relationship between the molecular weight of grafting polymer and grafting density of the core-shell structured
nanoparticles (D) Energy efficiency of the core-shell structured polymer@BT nanocomposites under the electric field of
10 kV/mm. Reproduced with permission from Ref. [225].
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Similarly, Ma et al. [131] synthesized core-shell structured PVDF@BT and PS@BT nanopar-
ticles via thiol-ene coupling. Where thiol-terminated poly(vinylidene fluoride) (PVDF-SH) and
thiol-terminated polystyrene (PS-SH), was reacted with γ-methacryloxypropyltrimethoxysilane
(MPS) functionalized BaTiO3 nanoparticles (as depicted in Figure 20). It was observed that the
dielectric permittivity and Eb of PVDF@BT/PVDF (117 kV/mm) and PS@BT/PVDF composites
(107 kV/mm) was better than that of unmodified-BT/PVDF composites (58.5 kV/mm). The
superior εr of PVDF compared to PS resulted in higher dielectric constant of PVDF@BT/PVDF
(εr = 33 at 30% loading) over PS@BT/PVDF composites (εr = 25 at 30% loading). Further-
more, PVDF@BT NPs exhibited better compatibility with PVDF matrix compared to PS@BT
resulting in improved breakdown strength of nanocomposite. In other words, PVDF shell
act as a buffer layer and reduced the electrical mismatch between the matrix and core
nanofillers compared to the PS hell.
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6.4. Grafting to Method to Prepare Polymer Grafted Al2O3 Nanoparticles

The “grafting to” techniques has also been used to graft PS with -COOH end groups
by reacting with –OH groups on the surface of Al2O3 nanoparticles (Al NPs) [139]. The PS
with -COOH end group was initially synthesized by free radical polymerization initiated
by 4,4′ -azobis (4-cyanovaleric acid) (ACVA) in toluene. The grafting of high surface energy
Al NPs with PS having -COOH end group greatly reduced the aggregation of Al NPs in
comparison to the bare Al NPs in PS matrix. When the Al NPs and PS grafted Al NPs were
mixed with PS to form PS nanocomposite films, the results showed larger voids for agg-Al
NPs filled PS composite film but a more homogeneous composite film for PS grafted Al
NPs. The dielectric constant of the pristine PS film, the PS films doped with 30 wt% agg-Al
NPs and PS grafted Al NPs at 105 Hz were found to be 2.80, 4.75 and 9.50, respectively.
The breakdown strength and energy density of the PS film doped with PS grafted Al NPs
(211–175 kVmm−1 and 1.70 J/cm3 at 1000 Hz) was greater than PS film doped with agg-Al
NPs (183.77 to 30 kVmm−1 and 0.26 J/cm3 at 1000 Hz) and this was ascribed to the good
compatibility and good dispersion of the PS grafted Al NPs in the PS film.

PS-g-Al2O3 nanoparticles were also synthesized by silanization of Al2O3 NPs with
dimethylchlorosilane-end-capped polystyrene (PS) to obtain grafted nanoparticles with
graft density of 0.13 chains/nm2. The different wt% of PS-Al2O3 nanoparticles were
blended with PS to fabricate nanocomposites with dielectric constant in the range 2.59
to 7.79. The nanocomposite film was found to be an efficient surface passivator for the
oxide dielectric layer in organic field-effect transistors (OFETs). The field-effect mobility
(1.4 × 10–3 cm2/V·s) and threshold voltage (4.4 V) of OFETs with PS-Al2O3 nanoparti-
cles were found to be significantly better than that of nanocomposite with bare Al2O3
nanoparticles (field-effect mobility = 1.7 × 10–4 cm2/V·s threshold voltage = 6.7 V) [132].
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7. In Situ Polymerization to Prepare Polymer Grafted Nanoparticles

In situ polymerization has been widely used for producing well-dispersed metal oxide
nanoparticle/polymer composite. In this technique, nano-sized metal oxide particles are
mixed with organic monomers either in the presence or absence of a solvent followed
by polymerization of the respective monomers. The nanoparticles are encapsulated in
polymer shell via physical or chemical adsorption by taking advantage of the reactive
functionality (e.g., acrylate functionality, it can be termed as “grafting through” or “grafting
onto”) on NP surface. Both emulsion and suspension polymerization methods or in situ
synthesis of both NPs (sol-gel synthesis) and polymers (free radical polymerization) have
been employed [45,59,226–230].

Morales-Acosta and coworkers performed sol–gel and in situ polymerization using
tetraethyl orthosilicate (TEOS) as SiO2 precursor, methyl methacrylate (MMA) as monomer,
and 3-(trimethoxysilyl)propyl methacrylate (TMSPM) as coupling agent to improve the
compatibility between PMMA and SiO2. Various core-shell nanoparticles with equimolar
proportion of TEOS and MMA and varying concentrations of coupling agent, TMSPMA
were prepared so as to study the effect of coupling agent concentration on the properties
of fabricated nanocomposite films. All of the PMMA–SiO2 hybrid films exhibited higher
dielectric constant (5.7 to 14) than that of PMMA (κ = 3.2 at 1 MHz) and bare SiO2 (κ = 3.9
at 1 MHz). The enhancement in the permittivity was attributed to residual solvents (-OH
groups) and MMA (-C=C-groups, due to incomplete conversion into PMMA) present in
the nanocomposite films [230].

Morales-Acosta and coworkers utilized low-temperature sol-gel and in situ polymer-
ization to obtain PS- or PMMA-grafted-metal oxide (SiO2, TiO2, ZrO2) hybrid films for gate
dielectric applications in the thin film transistors [231–234]. Similarly, Sánchez-Ahumada
et al. synthesized PS-TiO2 hybrid dielectric films by performing sol-gel process with tita-
nium butoxide (TB) as precursor and in situ polymerization of styrene in presence of the
coupling agent, 3-trimetoxy-silyl-propyl-methacrylate (TMSPM) simultaneously. The di-
electric constant of the hybrid film was 5.2 at 1 MHz, which is higher than that of pristine PS
(2.74). PS-TiO2 hybrid dielectric films exhibited leakage current of 1 × 10−6 A/cm2 which
is low enough to qualify the hybrid material as a dielectric gate in electronic devices [235].

PMMA embedded TiO2 nanoparticles were also synthesized via in situ free radical
polymerization of methyl methacrylate using benzyl peroxide as an initiator in aqueous
solution of polyvinyl alcohol (PVA) and sodium phosphate along with preformed TiO2
nanoparticles. The dielectric properties of PMMA embedded TiO2 nanoparticle filled
PMMA nanocomposite showed high dielectric constant with low dielectric loss, [236].

Wang and coworkers reported the synthesis of PMMA-g-TiO2 via in situ emulsion
polymerization technique. The dielectric study of PMMA-g-TiO2/PVDF-HFP nanocom-
posite film showed that the permittivity of the nanocomposite was enhanced by 13.9%
compared to the pristine PVDF-HFP film whereas the breakdown field strength of the
nanocomposite was nearly doubled compared to bare TiO2/PVDF-HFP nanocomposite.
The enhanced dielectric performance of the nanocomposite resulted the improvement in the
energy density of the PMMA-g-TiO2/PVDF-HFP nanocomposite (at 1 vol.% nanoparticle
loading) by 14.4% w.r.t pristine PVDF-HFP (from 12.4 to 14.2 J/cm3) and an improvement
in charge-discharge energy efficiency of 47% below 500 MV/m electric field [136].

Recently, Zhou et al. synthesized polyurea-grafted core-shell nanoparticles (PUA@BaTiO3)
via in situ polymerization using 4,4′-methylene diphenyl diisocyanate and 4,4’-oxydianiline
as monomers. The PUA@BaTiO3 nanoparticles were subsequently blended with PVDF-
CTFE to fabricate nanocomposite films for evaluation of dielectric properties. The incorpo-
ration of PUA@BaTiO3 in PVDF-CTFE matrix resulted in 1.65 times higher energy density
(8.94 J/cm3) than that of pristine PVDF-CTFE (5.41 J/cm3). Further, the energy density of
PUA@ BaTiO3/PVDF-CTFE nanocomposite was also 1.45 times higher than that of pristine
BaTiO3/PVDF-CTFE nanocomposite [237].

Similarly, Jinhong et al., [141] reported the grafting of hyperbranched aromatic polyamide
on Al2O3 nanoparticles (HBP@Al2O3) and the use of functionalized nanoparticles to en-
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hance the dielectric properties of epoxy nanocomposite. The incorporation of HBP@Al2O3
nanoparticles to epoxy matrix resulted in an enhancement in the glass transition tempera-
tures (176.3 to 208.1 ◦C with 20 wt% of the filler). Furthermore, the dielectric constant of
the HBP@Al2O3/epoxy nanocomposite was reported to be 5.0, compared to neat epoxy
(3.5) and that of composite formed with 20 wt% bare Al2O3 nanoparticles (4.75). It was
concluded that the improvement of Tgs (176.3 to 208.1 ◦C), dielectric strength (29.40 to
32.83 KV/mm) and the reduction of dielectric loss (0.024 to 0.020) were due to the good
dispersion of the grafted NPs in the polymer matrix and also because of good interfacial
adhesion of the grafted hyperbranched aromatic polyamide Al2O3 nanoparticles with the
epoxy matrix.

8. Templated Approach to Prepare Polymer Grafted Nanoparticles

Template-assisted method involves the formation of nanoparticles within the specific
area of the template and the method can be efficiently used for fabrication of well-defined
core-shell nanomaterials. Especially, template-assisted polymer grafting approach has
been employed to control the size and shape (spherical, cylindrical, nanotubes, etc.)
of core nanostructure as well as the structure of graft present on the surface of the
nanoparticles [58,238–250].

Template-assisted polymer grafting which offers an easier way to synthesize nanopar-
ticles (in situ) through micelle formation is a relatively straightforward technique. However,
Gou et al. noticed bimodal distribution of PS/PMMA-g-CdS quantum dots on the core
of the self-assembly of PS-b-PAA-b-PMMA triblock copolymer micelles [46]. This aspect
was addressed by the selection of unimolecular star block copolymer micelles which often
yields hairy nanoparticles with uniform sizes, various shapes, and sometimes unusual
morphologies [47].

Matyjaszewski and coworkers demonstrated the utilization of poly(styrene-co-acrylonitrile)-
b-poly (acrylic acid)-poly(divinylbenzene) (PSAN-b-PAA-PDVB) star-shaped copolymers
obtained via activator regenerated by electron transfer atom transfer radical polymer-
ization (ARGET ATRP) (as depicted in Figure 21) as template for the synthesis of TiO2
nanoparticles. PMMA gate dielectrics layers fabricated with 0.4% wt. of the hybrid TiO2
nanoparticles was used in the measurement of organic field effect transistors (OFETs). The
efficiency of OFETs was significantly better than OFETs based of pure PMMA as gate dielec-
tric (charge carrier mobility has increased nearly 10-fold from ~0.06 to ~0.5 cm2/V·s). The
improved performance of OFET could be ascribed to a significant decrease of roughness of
dielectric layer (root mean square roughness was reduced from 15.3 nm to 0.43 nm) and
changes to the surface energy (from 32.4 to 45.5 mN/m) of the gate dielectric layer after
incorporation of hybrid nanoparticles [251].
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Guo et al. synthesized PS-grafted BaTiO3 nanoparticles with sizes of 11 nm and 27 nm us-
ing amphiphilic star-like poly(acrylic acid)-b-polystyrene (PAA-b-PS) diblock copolymer tem-
plates. PAA-b-PS was obtained by sequential atom transfer radical polymerization [252,253].
The dielectric performance with respect to temperature was studied for PS-BaTiO3 nanopar-
ticles of 11 nm and 27 nm.

Lin and coworkers also prepared PS-functionalized BaTiO3 NPs with different sizes
(~27 nm and ~11 nm) by exploiting amphiphilic unimolecular star-like PAA-b-PS diblock
copolymer as template. The synthesized nanoparticles were dispersed in low molecular
weight PS-b-PMMA (MPS = 45,900 and MPMMA = 138,000) and high molecular weight
PS-b-PMMA (MPS = 315,000 and MPMMA = 785,000) to fabricate PS@BaTiO3/PS-b-PMMA
nanocomposite thin film. The incorporation of PS@BaTiO3 NPs into PS-b-PMMA, resulted
in the preferential location of the BaTiO3 NPs in the PS nanocylinders. PS grafting to
BaTiO3 NPs not only prevented aggregation by van der Waals forces, but also offered
selective chemical affinity to the PS block of BCP. The measurements of dielectric properties
of nanocomposite thin film revealed that the dielectric performance of the film was de-
pendent upon the molecular weight of PS-b-PMMA and the size of PS@BaTiO3 NPs. BCP
nanocomposite of 27 nm PS@BaTiO3 NP exhibited higher permittivity than that of 11 nm
PS@BaTiO3 NP due to higher dielectric constant of large sized 27 nm NPs. Moreover, it
was noticed that the nanocomposites of low molecular weight BCP exhibit higher dielectric
constant than that of nanocomposite of high molecular weight due to lower permittivity of
high molecular weight BCP. The low permittivity of higher molecular weight polymers
could be attributed to the higher degree of chain coiling of longer polymer grafts than the
low molecular weight polymer grafts [254].

Jiang and coworkers [58] synthesized PVDF-functionalized BaTiO3 nanoparticles by
template-assisted approach. Firstly, they synthesized amphiphilic star diblock copolymer,
by ATRP technique (Figure 22). PAA-b-PVDF (PAA as inner hydrophilic block while
PVDF as outer hydrophobic block with well-controlled molecular weight of narrow disper-
sity) was dissolved in a mixture of DMF and benzyl alcohol followed by the addition of
BaCl2.2H2O and TiCl4 as precursor and NaOH. Precursors assemble in the space of PAA
blocks and PVDF chains serve as the arm of the self-assembled structure. The size of the
nanoparticles was tuned based on the molecular weight of the PAA and PVDF blocks of
the star copolymer. Notably, PVDF-BaTiO3 nanocomposites (single component) displayed
not only high dielectric constant (~80 at 100 Hz) but also low dielectric loss (<0.2) over
broad frequency range as compared to PVDF.
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However, one of the challenges of unimolecular star block copolymer micelles using
template approach in formulating core shell nanoparticles is the low graft density of the
polymer grafted nanoparticles. Like the grafting to method, template assisted polymer
grafting is not as widely sought-after technique for the synthesis of core-shell nanoparticles.

9. Discussion

Current technologies for pulsed power applications utilize polymers as the dielectric
material of choice due to their high electrical resistance, low dielectric loss, self-healing
capability, formability and flexibility. However, the most widely used polymeric system
namely metallized biaxially oriented polypropylene (BOPP) and its variants do not meet
the demands of next generation film dielectrics. Composite dielectrics offer an unique
opportunity to combine the high εr of inorganic fillers with the high Ebd of a polymer
matrix to achieve high energy density capacitors. For significant gains in permittivity in
polymer composites so as to achieve higher energy density, loadings of dispersed fillers
in the composite need to be above 20% v/v. At these loading levels, achieving good
NP dispersion—especially in non-polar polymer matrices—is challenging due to particle
agglomeration during film preparation. Aggregated nanoparticles of high permittivity
act as electrical field expulsion defect centers in filled polymers. Such defect centers
effectively distort the distribution of electric field, making the local electrical field in the
matrix much higher than the average electric field and also lower the overall energy
storage of the nanocomposite. The extent of the field distortion is adversely influenced
by the discontinuous (sharp and large) permittivity contrast between the NPs and the
polymer matrix. An approach to address the field distortion is to consider high permittivity
nanoparticles with core-shell architectures so that the nanoparticles permittivity gradually
approaches that of the polymer matrix.

We discuss various approaches to synthesize polymer grafted nanoparticles. Among
the three commonly used SI-CRPs, SI-ATRP has been shown to be one of the most versatile
polymerization techniques because it can be used under broad experimental conditions
and can be adapted to synthesize nanoparticles with polymer grafts having a wide range
of functional groups. Additionally, ATRP can be used to synthesize core@ double-shell
structured nanoparticle via a two-step process. It was noted that the thickness of the second
shell can be controlled by adjusting the ratio of monomer and macro initiator. The polymer-
ization of activating monomer by ATRP process requires the use of alkyl halide initiator
and a transition metal complex as catalyst (e.g., CuBr/ligand). However, the persistence of
small amount of copper catalyst in the grafted nanoparticle can pose challenges because of
the potential adverse effect the copper ions could have on the dielectric properties of the
nanocomposite. In this regard, ATRP techniques with extremely low amounts of copper
have been investigated for the synthesis of polymer grafted nanoparticles. For example, PS
and PMMA were grafted from phosphonic acid functionalized BaTiO3 NPs via activated
regenerated by electron transfer (AGRET) ATRP approach using only ppm amount of the
copper catalyst [27]. Alternatively, efforts have focused on conducting ATRP using light
without the addition of any metal catalyst and the thickness of polymeric shell was tunable
based on the duration of white LED irradiation. These approaches to conduct ARGET
ATRP with limited Cu species or light mediated ATRP offer novel opportunities and new
routes for engineering surfaces and interfaces of nanoparticles with polymer grafts without
significant copper residues.

In contrast to ATRP, RAFT can be considered as a conventional radical polymerization
with the addition of a chain transfer agent (CTA), which mediates the polymerization.
The RAFT CTAs can be bound on nanoparticle surfaces via two main approaches. In
the first approach, the CTA is synthesized with a reactive anchoring group (chlorosilyl
group, phosphonic acid group) and then covalently bound to an unmodified NP. The
second approach relies on grafting a functional RAFT agent to pre-modified nanoparti-
cles. There are several examples in the literature where RAFT polymerization has been
successfully used to synthesize unimodal or bimodal brush modified nanoparticles so as to
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achieve optimum dielectric performance of nanocomposite [177,178,186,187]. Using RAFT
technique, the shell thickness, polymer composition and the aerial density of polymer
brush in the core-shell nanoparticles have been successfully tuned and used for energy
storage applications.

Despite SI-ATRP being the most predominant and sought after technique for polymer
grafting on nanoparticle surface, RAFT technique too has steadily gained popularity
over the years. This is because of the adaptability of RAFT to a range of polymerization
conditions. Further advances in RAFT polymerization include the ability to synthesize
multi-block copolymers with a high degree of fidelity, conducting reactions in the presence
of oxygen and its compatibility with a broad range of functional groups and the absence of
copper residues after polymer grafting have clearly contributed to the recent drive for use
of RAFT technique in the synthesis of core-shell nanoparticles.

The “grafting to” approach, on the other hand, involves surface modification of
nanomaterials with functionality which is complimentary to the end-group functionality
of polymer followed by coupling via suitable conjugation or click chemistry. In particular,
chloro silyl-terminated polymer or phosphonate-terminated polymer or click chemistry
has been used to graft polymer on nanoparticles. Because of the ability to precisely control
the molecular weight of grafts in the grafting to technique, a study of low molecular weight
grafts on NP revealed a relatively smooth surface while high molecular weight grafts on
NP revealed a pancake like structure suggesting the ability of grafting to technique to
control microstructure of the polymer shell at the expense of polymer graft molecular
weight. Although “grafting-to” approach is easy and efficient, it presents challenges such
as decreased graft density with increase in the molecular weight of the grafted polymer.
Therefore, grafting to technique is not as widely sought after method for the synthesis of
core-shell nanoparticles.

Template-assisted polymer grafting which offers an easier way to synthesize nanopar-
ticles (in situ) through micelle formation is a relatively straightforward technique. An issue
that has been observed is the formation of multiple NPs in the core of multi-molecular
micelles [46]. To overcome this challenge, the use of unimolecular star block copolymer mi-
celles has been tried out with a greater success in the synthesis of hairy nanoparticles with
uniform sizes, various shapes, and sometimes unusual morphologies [47]. However, one
of the challenges of unimolecular star block copolymer micelles using template approach
is the low graft density of the polymer grafted nanoparticles. Like the grafting to method,
template assisted polymer grafting is not as widely sought after graft technique for the
synthesis of core-shell nanoparticles.

In in situ polymerization method, metal oxide nanoparticles are usually mixed with or-
ganic monomers, either in the presence or absence of a solvent, and then the monomers are
polymerized. There is a thermodynamic compatibility at the polymer matrix-nanoparticle
reinforcement interface and thus provide stronger matrix dispersion bond with very good
miscibility of the nanocomposite.

Several structure-property relationship studies of polymer grafted nanoparticles filled
polymer nanocomposites [27,119–121,124–126] using SI-CRP technique have been con-
ducted and they clearly indicate that a number of factors influence the dielectric per-
formance of the nanocomposite including the thickness of the core and the shell of the
core-shell nanoparticles and the type of polymer grafted on the nanoparticles, interfacial
separation between core NPs and polymer shell, the composition of nanocomposite (single
or multicomponent type of nanocomposite), the presence of polarizable interfacial layer
and double shell coverage of nanoparticles. For establishing clear structure-property re-
lationships, an efficient initiator and control of polymer brush graft density is important.
At present, the techniques for facile determination of polymer brush grafting density and
the initiator efficiency are scarce. More importantly, a simple, versatile and accurate tech-
nique for determining the number of initiator units per square nanometer present on the
nanoparticle surface is not available. This information would be highly relevant for the
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development of composition-structure-property relationship paradigm of single or multi
component nanocomposite.

Another interesting application of core-shell structure is in the pursuit of all-polymer
field-effect transistors in the generation of polymer brush-based gate dielectrics. Especially
SI-CRP technique has drawn significant attention for design of polymer field effect transis-
tors. The attractiveness in the use of SI-CRP technique is in the ease of device preparation
and the avoidance of expensive fabrication facilities. The performance of pentacene-based
thin-film transistor fabricated from PS-grafted SiO2 and PMMA-grafted SiO2 using ATRP
technique as a gate dielectric showed the importance of interfacial material and its structure
in the design of OFET [97,98]. The device fabricated from 47 nm thickness of PS brush
exhibited highest mobility (µFET = 0.099 cm2/V·s) indicating that optimum molecular
weight polymer brushes need to be grown from surface of dielectric for achieving desirable
performance. On the other hand, the surface-grafted PMMA brush (10 nm)/SiO2 (9 nm)
on silicon wafer exhibited lower leakage than that of surface-grafted PMMA brush (20 nm)
on silicon wafer (free of 9 nm SiO2 layer). Additionally, it was noted that the thickness of
the polymer brush on silica could be modulated based on the activity of the catalyst, the
reactant concentration and reaction time. The PMMA brushes on silica showed excellent
insulating characteristics, large capacitance, and low charge-trapping density. Field-effect
transistors with PMMA brush as the dielectric layer demonstrate excellent charge transport.
However, the field of polymer brush-based hybrid materials in OFET is still in its infancy
stage [43] and it needs further exploration.

10. Summary and Future Outlook

In this review article, we described various synthetic approaches for preparation of
core-shell structures of polymer grafted nanoparticles. The grafting of polymeric chains to
nanoparticles can generally be accomplished by four approaches namely (i) ‘grafting to’;
(ii) ‘grafting from’; (iii) templated and (iv) in situ polymerization or encapsulation. All the
four approaches yield polymer grafted nanoparticles of varying shell architectures. Unlike
grafting to method, grafting from method allows to synthesize nanoparticles with high
grafting density and polymer shells of varied composition. The “grafting from” method
is also termed the surface-initiated controlled radical polymerization where the initiator
functionality (SI-ATRP) or CTA functionality (SI-RAFT) or alkoxy amine functionality
(NMP) is anchored to the surface of nanomaterials followed by growth of polymer chains.

Recent progress in the various synthetic strategies for formulation of core-shell
nanoparticles has created a myriad of architectures of core-shell nanoparticles. Inter-
esting polymer architectures with unique features such as polymer loops, bottlebrushes
have made the polymers synthesized by SI-CRP technique a valuable toolkit that can be
used for a broad range of applications. Notably, the opportunity to synthesize BCP-g-NPs
in formulating single-component hybrid materials has largely been unexplored and needs
to be tapped for the design of nano-dielectrics. A high-performance core-shell hybrid mate-
rial in which the polymer is directly grown from the nanoparticles provides an opportunity
to synthesize single component nano-dielectrics. This subject need further exploration
because it is possible to have high ceramic loading in the one component polymer-ceramic
system with minimal negative effect of ceramics towards electrical discharge due to con-
trolled minimal aggregation, i.e., high degree of dispersion. From an academic perspective,
little is known about the structure and dynamics of self-assembling of single component
BCP-g-NP system, i.e., whether a block copolymer tagged to nanoparticle can microphase-
separate and self-assemble. There is also significant interest for developing molecular
level understanding of non-centrosymmetric materials from fundamental perspective, and
the parameter space it presents in terms of grafting density, and copolymer length and
composition is wide open. Under the appropriate processing conditions, symmetric BCPs
can microphase separate to form parallel lamellae [255–257]. This arrangement presents a
unique opportunity to advance the field of core-shell nanoparticles in the formulating next
generation nano-dielectrics of unprecedented performance.
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