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Abstract

Background: RNA sequencing (RNA-Seq) is often used for transcriptome profiling as well as the identification of
novel transcripts and alternative splicing events. Typically, RNA-Seq libraries are prepared from total RNA using poly
(A) enrichment of the mRNA (mRNA-Seq) to remove ribosomal RNA (rRNA), however, this method fails to capture
non-poly(A) transcripts or partially degraded mRNAs. Hence, a mRNA-Seq protocol will not be compatible for use
with RNAs coming from Formalin-Fixed and Paraffin-Embedded (FFPE) samples.

Results: To address the desire to perform RNA-Seq on FFPE materials, we evaluated two different library preparation
protocols that could be compatible for use with small RNA fragments. We obtained paired Fresh Frozen (FF) and
FFPE RNAs from multiple tumors and subjected these to different gene expression profiling methods. We tested
11 human breast tumor samples using: (a) FF RNAs by microarray, mRNA-Seq, Ribo-Zero-Seq and DSN-Seq
(Duplex-Specific Nuclease) and (b) FFPE RNAs by Ribo-Zero-Seq and DSN-Seq. We also performed these different
RNA-Seq protocols using 10 TCGA tumors as a validation set.
The data from paired RNA samples showed high concordance in transcript quantification across all protocols and
between FF and FFPE RNAs. In both FF and FFPE, Ribo-Zero-Seq removed rRNA with comparable efficiency as
mRNA-Seq, and it provided an equivalent or less biased coverage on gene 3′ ends. Compared to mRNA-Seq where
69% of bases were mapped to the transcriptome, DSN-Seq and Ribo-Zero-Seq contained significantly fewer reads
mapping to the transcriptome (20-30%); in these RNA-Seq protocols, many if not most reads mapped to intronic
regions. Approximately 14 million reads in mRNA-Seq and 45–65 million reads in Ribo-Zero-Seq or DSN-Seq were
required to achieve the same gene detection levels as a standard Agilent DNA microarray.

Conclusions: Our results demonstrate that compared to mRNA-Seq and microarrays, Ribo-Zero-Seq provides
equivalent rRNA removal efficiency, coverage uniformity, genome-based mapped reads, and consistently high
quality quantification of transcripts. Moreover, Ribo-Zero-Seq and DSN-Seq have consistent transcript quantification
using FFPE RNAs, suggesting that RNA-Seq can be used with FFPE-derived RNAs for gene expression profiling.
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Background
The development of massively parallel sequencing for use
in gene expression profiling is known as RNA-sequencing
(RNA-Seq). RNA-Seq has had an enormous impact on
gene expression studies. Compared to hybridization-based
technologies like DNA microarrays, it provides consistent
quantification and manifests its superiority in terms of the
dynamic range, sampling depth, and has independence
from pre-existing sequence information [1,2]. RNA-Seq
can be used for traditional transcriptome profiling [3,4],
identification of novel transcripts [5], identification of
expressed SNPs[6,7], alternative splicing, and for the de-
tection of gene fusion events [8-11].
To allow for mRNA/gene detection, highly abundant

ribosomal RNAs (rRNAs) must be removed from total
RNA before sequencing. One standard solution is to en-
rich for the polyadenylated (poly(A)) RNA transcripts
(so called mRNA-Seq) with oligo (dT) primers, similar
to how DNA microarrays are primed; however, this me-
thod eliminates all non-poly(A) RNAs in addition to
rRNAs. Recent studies suggested that certain non-polyA
RNAs, either non-coding or protein coding, are func-
tionally important [12-15]. Moreover, mRNA-Seq poorly
captures partially degraded mRNAs, hence it is not an
optimal method to use when the starting materials are
from Formalin-Fixed and Paraffin-Embedded (FFPE)
samples, because the RNAs from FFPE are degraded to a
small average size [16]. To overcome these challenges,
several rRNA depletion protocols have been developed.
The Ribo-Zero method removes rRNA through hybri-
dization capture of rRNA followed by binding to mag-
netic beads for subtraction. Another method involves
Duplex-Specific Nuclease (DSN) degradation by the C0t-
kinetics-based normalization method to deplete abundant
sequences that reanneal quickly, such as those derived
from the highly abundant rRNAs and tRNAs [17]. In this
study, we examined rRNA-depleted libraries from total
RNA of fresh-frozen (FF) and FFPE samples sequenced by
mRNA-Seq, Ribo-Zero-Seq and DSN-Seq and compared
these results across methods and with conventional DNA
microarrays.

Results
To rigorously evaluate the feasibility of reproducible gene
expression profiling using RNA from clinically relevant
FFPE materials, we collected FFPE and fresh-frozen (FF)
tumor RNAs for matched sets of tumors from two dif-
ferent sources (UNC and TCGA). Most tumors were sub-
jected to gene expression profiling using six different
methods that included: 1) Agilent DNA microarrays using
FF RNA, 2) mRNA-Seq using FF RNA, 3) Ribo-Zero-Seq
using FF RNA, 4) DSN-Seq using FF RNA, 5) Ribo-Zero-
Seq using FFPE RNA, and 6) DSN-Seq using FFPE RNA;
see Figure 1 for a comparison of each RNA-Seq protocol

and the number of samples tested for each protocol. Ana-
lytical comparisons were focused on several features in-
cluding rRNA depletion efficiency, genome alignment
profile, transcriptome coverage, transcript quantifica-
tion accuracy and reproducibility, gene expression pat-
terns and differential gene expression, as well as coverage
of annotated genes at different sequencing depths.

rRNA depletion efficiency
The efficiency of rRNA removal is a key factor to maxi-
mize reads mapping to transcripts, because if left alone,
rRNAs make up >80-90% of the total RNA of an un-
enriched sample [18]. Due the nature of rRNA sequences,
many rRNA short reads will produce poor alignments;
hence, the estimation of absolute abundance of rRNA
based on whole genome alignment tends to underestimate
rRNA amounts. Thus we evaluated the relative level of
rRNA components across protocols by comparing the
levels to those observed in mRNA-Seq. Ribo-Zero-Seq re-
duced rRNA levels to a similar order of magnitude as
mRNA-Seq in both FF and FFPE RNA, while the rRNA
fraction in DSN-Seq libraries were significantly higher
(p < 0.001) and with greater variation, particularly within
the FFPE samples (Table 1). Consistent with the analysis
of the UNC dataset, Ribo-Zero-Seq provided the same
rRNA removal efficiency as mRNA-Seq in the TCGA
samples; the level of rRNA reduction observed here for
the Ribo-Zero-Seq protocol was similar to that reported
by the company that makes the Ribo-Zero kit (data not
shown).

Genome alignment profile
The precision of RNA-Seq gene quantification is directly
dependent on the number of reads that are mapped to
transcripts, thus we first assessed the fraction of reads
aligning to the reference human genome UCSC hg19
(Table 1). In FF samples, mRNA-Seq and Ribo-Zero-Seq
provided comparable percentage of nucleotide bases
mapping to the genome (94.0%, 93.8%), while DSN-Seq
aligned a smaller number (85.5%). In FFPE samples,
Ribo-Zero-Seq and DSN-Seq both had good perform-
ance in alignment on average (81.5% in Ribo-Zero-Seq-
FFPE, 93.5% in DSN-Seq-FFPE); TCGA samples had a
similar result for both FF and FFPE (Table 1). Compared
to FF, the FFPE samples tended to exhibit a greater vari-
ation in the% aligned, most likely related to more vari-
able quality of FFPE RNAs.

Transcriptome coverage
The coverage of the transcriptome directly affects the
accuracy of transcript abundance estimation and the
sensitivity of transcript detection, which are two critical
features of all gene expression studies. Therefore, we
evaluated two features of the transcriptome coverage: (a)
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relative coverage of exons, introns, and intergenic re-
gions, and (b) uniformity of transcript coverage.

(a) Relative coverage of exons, introns, and intergenic
regions
In FF samples, bases mapping to transcripts (i.e. cod-
ing and UTR regions) constituted 62.3% total bases in
mRNA-Seq, while a marked reduction was observed in
the two rRNA-depletion protocols (31.5% in Ribo-Zero-
Seq and 22.7% in DSN-Seq, Figure 2A). Conversely, bases
mapping to intronic and intergenic regions increased from

31.6% in mRNA-Seq to 62.5% in DSN-Seq and Ribo-Zero-
Seq. In FFPE samples, DSN-Seq and Ribo-Zero-Seq pro-
vided similar coverage profiles, where ~20% of bases were
mapped to transcriptome and >60% to intronic or inter-
genic regions. These results were concordant with that ob-
served in the TCGA sample set (Figure 2B).
We further investigated the coverage across individual

genes (Additional file 1: Figure S1A, GATA3 as an ex-
ample). In mRNA-Seq, most reads mapped almost exclu-
sively to exons, and the coverage of intronic regions was
low and comparable to the intergenic background. In

mRNA-Seq

Purified Total RNA

Poly-A Selection

RNA Fragmentation*

cDNA Synthesis

Adapter Ligation & PCR

Ribo-Zero-Seq

Purified Total RNA

RNA extraction:
Hybridization/bead capture 

RNA Fragmentation*

cDNA Synthesis

Adapter Ligation & PCR

DSN-Seq

Purified Total RNA

RNAFragmentation*

cDNA Synthesis

Adapter Ligation & PCR

DSN Normalization

* RNA Fragmentation only applies to fresh-frozen samples.

(A)  

(B)

Sample
source Tissuetype mRNA-Seq Ribo-Zero-Seq DSN-Seq Agilent DNA

microarray

UNC
Fresh-frozen 11 11 10 11

FFPE 8 4

TCGA
Fresh-frozen 10 6 0

FFPE 10+8replicates 10

Figure 1 Schematic overview of the rRNA removal protocols and list of samples tested. (A) mRNA-Seq, Ribo-Zero-Seq and DSN-Seq library
preparation protocols are shown, with the key steps to remove the rRNA from the library show in italics. The full protocol was applied to the
fresh-frozen (FF) samples, and a similar alternative protocol was applied to FFPE samples (omitting steps marked as *). (B) The list of samples
tested by each RNA-Seq library protocol and their source.
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contrast, in Ribo-Zero-Seq and DSN-Seq there was a
more continuous coverage of both exons and introns, al-
though the coverage of intergenic regions was more
similar to what was seen with mRNA-Seq. This unique
profile suggests that the rRNA depletion protocol may
capture pre-mRNAs in addition to mature mRNAs. To
test this hypothesis, we examined the pile-up profile of a
few individual genes and identified reads that spanned
exon-intron boundaries in the Ribo-Zero-Seq and DSN-
Seq protocols (Additional file 1: Figure S1B, see red ar-
rows for spanning reads).

(b) Uniformity of transcript coverage
We next determined the evenness of transcript coverage
by comparing the median coefficient of variation (CV)
for the read coverage of the 1000 most highly expressed
transcripts (Table 1). In FF libraries, mRNA-Seq and
Ribo-Zero-Seq had significantly lower CV than DSN-Seq
(mRNA-Seq: p < 0.001, Ribo-Zero-Seq: p = 0.002), indi-
cating a more uniform coverage across the full length of
transcripts. In the FFPE libraries, there was an increase
in CV in both protocols. Ribo-Zero-Seq-FFPE had slightly
higher variation than the result reported in Adiconis et al.

[19], while DSN-Seq-FFPE had the highest CV among all
protocols.
Another measure of transcript coverage is the vari-

ation at 5′ and 3′ ends. We evaluated the ratio of co-
verage at the 5′ end relative to the 3′ end for the 1000
most highly expressed transcripts (Table 1). Previous
studies have shown that the poly(A)-capture strategy
shows substantially more reads from the 3′ ends of
transcripts. Our analysis revealed that on FF, Ribo-Zero-
Seq provided less biased 5′-to-3′ coverage ratio than
mRNA-Seq (p < 0.001), while DSN-Seq made no signi-
ficant improvement. In FFPE samples, both protocols
performed similar as mRNA-Seq with respect to 5′-
to-3′ bias.

Transcript quantification and reproducibility
RNA-Seq poly(A) enrichment strategies yield an accu-
rate and reproducible measurement of transcript abun-
dance with a wide dynamic range [1,4,20,21]. Given the
advantages of profiling multiple types of RNA species
(i.e. mRNAs, lincRNAs, snoRNAs, etc.), it is critical to
evaluate the performance of mRNA quantification in
total RNA-Seq protocols. To determine the possible

Table 1 Analysis of performance for multiple RNA-Seq methods

mRNA-Seq RiboZero-Seq DSN-Seq RiboZero-FFPE DSN-FFPE

UNC dataset

Sample size 11 11 10 8 4

% rRNA relative to mRNA-seq 1 5.04 116 7.14 585

(1–1) (1.42-8.66) (78.9-154) (3.48-10.8) (−347-1,517)

% Aligned bases 94 93.8 85.5 81.5 93.5

(91.5-96.5) (92–95.5) (82.6-88.4) (71–92) (92.2-94.8)

Median CV coverage 0.533 0.525 0.56 0.744 0.929

(0.506-0.56) (0.505-0.545) (0.549-0.57) (0.713-0.775) (0.814-1.04)

Median 5′ to 3′ bias 0.27 0.64 0.209 0.356 0.242

(0.189-0.35) (0.493-0.788) (0.143-0.275) (0.285-0.427) (0.0329-0.451)

Pearson correlation to microarray 0.851 0.832 0.855 0.636 0.7

(0.825-0.878) (0.809-0.854) (0.84-0.871) (0.601-0.671) (0.628-0.771)

TCGA dataset

Sample size 10 6 NA 18 10

% rRNA relative to mRNA-seq 1 11.2 NA 0.935 41.7

(1–1) (1.51-20.9) (0.631-1.24) (22.1-61.3)

% Aligned bases 96.4 95.0 NA 93.4 93.2

(95.4-97.5) (93.9-96.2) (91.6-95.2) (90.7-95.8)

Median CV coverage 0.534 0.478 NA 0.83 0.953

(0.517-0.551) (0.458-0.499) (0.791-0.869) (0.896-1.01)

Median 5′ to 3′ bias 0.309 0.46 NA 0.417 0.157

(0.244-0.374) (0.37-0.551) (0.253-0.581) (0.0856-0.229)

Five different analyses were performed in order to assess the capabilities of the different RNA-seq protocols. These included: 1) % rRNA relative to mRNA-Seq;
2) % Aligned bases; 3) Median CV coverage; 4) Median 5′ to 3′ bias; 5) The Pearson correlation coefficient between the RNA-Seq libraries methods and the same
samples assayed by DNA microarray in UNC dataset.
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concordance of RNA-Seq with data generated by older
genomic profiling platforms, we compared the gene ex-
pression levels of RNA-Seq data with that of Agilent
DNA microarray data that were assayed using the same
RNAs. With specific and standard gene filtering criteria
[22], we detected 16,975 expressed Entrez genes by cus-
tom Agilent 244,000 feature microarrays, with 15,206
genes detected by both microarray and RNA-Seq across
our paired samples. In FF samples, gene abundance mea-
surements by all protocols of RNA-Seq were highly cor-
related with the microarray data (Pearson > 0.8, Table 1).
In FFPE samples, RNA-Seq measurements were lower
but also significantly correlated with FF microarray
(Pearson ~0.7, Table 1), which is at a level similar to that
observed when comparing concordance between Agilent
and Affymetrix microarrays [23].
We next examined the correlation of transcript abun-

dance across the different RNA-Seq protocols. There
was greater concordance and fewer outliers than when
compared to the microarray data (Figure 3A and B).
Among FF tissues, the correlation was >0.9 for all pair-
wise, sample-matched comparisons. DSN-Seq and Ribo-

Zero-Seq on FFPE were less correlated with FF mRNA-
Seq (>0.8), but still higher than the correlation observed
with microarrays. The two rRNA depletion protocols
were the most highly correlated in both FF and FFPE
samples (Pearson correlation 0.961 in FF and 0.934 in
FFPE). The correlation plots for an individual sample
(breast tumor 020678B) are shown in Figure 3C.
Additional quality assessments were made on the TCGA

dataset, to account for the fact that a much smaller set of
reads were mapped to transcriptome in RNA depletion
protocols. We generated eight technical replicates with
the Ribo-Zero-Seq-FFPE protocol to balance the total
number of transcriptome reads for the comparison with
FF mRNA-Seq. The assessment of technical reproduci-
bility suggested that these FFPE replicates were indis-
tinguishable (Pearson =0.991). The correlation between
Ribo-Zero-Seq on FF and FFPE as well as between Ribo-
Zero-Seq-FFPE replicate pairs has also been confirmed in
Norton et al. [24].
Lastly, we applied Deming regression to estimate a sta-

tistically unbiased slope to determine the relative sen-
sitivity of protocol pairs (Figure 3D). A slope of 1
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Figure 2 Genome alignment profiles. The percentage of nucleotide bases mapping to three different regions of the genome: exonic/protein
coding and UTR (green), intronic (yellow), intergenic (red), and the percentage of unmapped bases (purple). The data is shown separately for the
UNC (A) and TCGA (B) datasets.
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indicates the equivalent sensitivity of the two libraries,
whereas a smaller value is indicative of a higher sen-
sitivity of the first protocol in the pair. mRNA-Seq

exhibited its superiority over all the other protocols
in terms of sensitivity, with a slope less than 1 in all
the pair-wise comparison. In addition, DSN-Seq and
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Figure 3 Comparison of gene quantification concordance across RNA-Seq library protocols. Pearson correlation coefficients of RNA-Seq
libraries pairs in (A) UNC and (B) TCGA dataset. (C) Scatter plots of libraries of each pair of protocols for breast tumor sample 020578B. (D)
Deming regression slope for pairs of RNA-Seq libraries in UNC dataset. A slope of 1 indicates the equivalent sensitivity of the two libraries,
whereas a smaller value is indicative of a higher sensitivity of the first term/method in the pair.
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Ribo-Zero-Seq both have higher sensitivity in FF sam-
ples than in FFPE.

Gene expression patterns and differential gene
expression
Hierarchical clustering analysis provides a global exa-
mination whether biologically relevant expression sig-
natures are consistently measured by distinct protocols.
In this example, we tested whether the same sample
assayed by different protocols “paired” or “partnered” to-
gether; if so, then this is a very high level of assay valid-
ation as not only are the overall subtype expression
profiles maintained, but also the profiles that are unique
to that sample are maintained. We performed hierar-
chical clustering analysis of the RNA-Seq data using a
previously published ‘intrinsic gene list’ [25] (Additional
file 2: Figure S2) and a set of 904 human breast tumor
samples that consists of the 88 UNC and TCGA samples
described here and 725 additional breast tumors and 91
normal breast tissues with mRNA-Seq from TCGA. 41/
44 samples of the UNC tumor dataset were tightly co-
clustered with their partner sample originating from the
same tumor, and these clustered with other TCGA tu-
mors based upon each tumor’s subtype profile. The 3/44
non-clustered samples were all prepared by Ribo-Zero-
Seq on FFPE samples and their partner DSN-Seq sam-
ples on FFPE were not available. In the TCGA dataset,
40/44 samples were tightly co-clustered with their part-
ners (i.e. libraries constructed from the same tumor
using a different sequencing protocol); the four samples
that were not clustered were on a separate branch, but
were moderately correlated with their partner samples
(correlation > 0.6).
To further evaluate the capability of RNA-Seq proto-

cols to detect biologically relevant differential expression
signals, we performed Significance Analysis of Micro-
array (SAM) on three Basal-like and three Luminal sam-
ples of UNC dataset that were sequenced by mRNA-seq,
Ribo-Zero-Seq and DSN-Seq respectively. Comparison
of the top 500 most variably expressed genes between
Basal-like and Luminal tumors revealed that each pair of
RNA-Seq protocols shared about 350 differential ex-
pressed genes, and more than 300 genes were consist-
ently identified by all the protocols (Additional file 3:
Figure S3, Additional file 4: Table S1).
As another test of data quality, we determined the

differentially expressed gene set in FF mRNA-Seq vs.
Ribo-Zero-Seq and FF Ribo-Zero-Seq vs. DSN-Seq using
Significance Analysis of Microarray (SAM). We iden-
tified 410 genes with a FDR of 0 that were differen-
tially expressed between mRNA-Seq and Ribo-Zero-Seq
(Additional file 5: Table S2A and B); this list was enriched
with snoRNAs and histone RNAs that were more highly
expressed in the Ribo-Zero-Seq samples. Many of these

RNAs do not possess poly(A) tails, and therefore, are not
targeted by poly(A) selection in mRNA-Seq. Conversely,
104 genes at a FDR of 0 were identified to be differentially
expressed between Ribo-Zero-Seq and DSN-Seq libraries
(Additional file 5: Table S2C and D); among these, 38
genes were lowly quantified by DSN-Seq and most of
these genes were snoRNAs and histone RNAs, which tend
to exist at high abundance in total RNAs. Since DSN-Seq
removes the most highly abundant components via CoT
kinetics, these RNAs may also be subject to depletion in
the DSN protocol relative to the Ribo-Zero, which uses
beads to capture only the rRNAs.

Coverage of annotated genes at different sequencing
depths
Compared to hybridization-based methods, the cost per
sample by RNA-Seq is still higher. The utilization of
multiplexing techniques provides a strategy to further
lower the costs. However, too much multiplexing will in-
hibit the ability to detect lowly expressed genes; there-
fore, we sought to determine the minimal number of
reads required to provide the same transcriptome co-
verage as provided by an Agilent DNA microarray. The
ENCODE Consortium guidelines and other studies have
provided insights into the sufficient RNA-Seq coverage
and depth for studies of various design goals [26], but
these efforts were primarily focused on experiments with
FF samples prepared by poly(A)-enrichment protocols.
Here we extended the investigation to rRNA depletion
approaches and FFPE samples.
We applied a simulation-based method on the pooled

data of each protocol. The UCSC known gene reference
database (GAF 2.1) includes 20,531 (non-ribosomal)
genes. To reduce the noise, we only counted genes as
present if there were 3 or greater read counts. Using the
average number of genes detected on our Agilent micro-
arrays as the baseline (n = 16,975), 13.5 million reads
from FF mRNA-Seq libraries would allow detection of
the same number of genes (Figure 4), which is consistent
with previous studies [26]. In the DSN-Seq and Ribo-
Zero-Seq FF libraries, and Ribo-Zero-Seq-FFPE libraries,
35-65 M reads were required to provide the same tran-
scriptome coverage. Only the DSN-Seq-FFPE library re-
quired a much larger number of input reads (90 M).

Discussion
The growing popularity of RNA-Seq makes it one of the
more desired methods to explore the transcriptome. Pre-
paring RNA-Seq libraries with poly(A) enrichment pro-
vides an accurate method to characterize mRNAs, which
is functionally equivalent to what DNA microarrays have
been accomplishing for more than a decade. However,
certain biologically relevant RNA species that do not
possess poly(A) tails are largely undetected using a poly
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(A) selection protocol. In addition, FFPE samples, such
as those collected as part of standard medical practice,
also require library preparation methods that do not rely
on the intact poly(A) structure due to the highly de-
graded nature of the FFPE RNA. In this study, we de-
monstrate that a Ribo-Zero-Seq protocol using either
fresh-frozen (FF) or FFPE samples eliminates rRNA with
good efficiency. In evaluation of a possible coverage bias,
5′-to- 3′ bias was reduced in FF Ribo-Zero-Seq libraries
as it does not rely on poly(A) selection step.
One major distinction across these various protocols is

the coverage of the transcriptome. To more directly in-
vestigate the relationship between sequencing depth and
transcriptome coverage, we performed a simulation ap-
proach where mRNA-Seq was the most cost effective
strategy to equal a microarray in terms of total genes de-
tected with a minimum of ~13.5 million reads needed.
For the same transcriptome coverage, the reads required
for Ribo-Zero-Seq in FF and FFPE and DSN-Seq in FF
were 35-65 M reads. However, rRNA depletion proto-
cols also appear to measure immature transcripts (pre-
mRNAs) and therefore provide more information on
splicing patterns and possible splice junctions. Thus to
achieve the same level of exonic reads as FF mRNA-Seq,
one needs to sequence 2–4 times the number of reads in
rRNA-depletion on FFPE RNA libraries.
Despite fewer of the total reads mapping to exonic re-

gions and a greater number of transcripts being detected,
we did not observe a marked decrease in the correlation

between microarray and RNA-Seq in rRNA-depleted li-
braries, where RNA-zero-Seq and DSN-Seq were found to
be highly consistent in gene quantification. Our evaluation
of the quantitative consistency of RNA-Seq on FFPE with
microarray may be limited in two aspects: (a) the quality
of a few UNC FFPE samples was less satisfactory, and (b)
not all the tumors have RNA-Seq data on matched FFPE
samples that passed our quality control available for this
analysis. Yet we still observed very good correlations with
microarray data for those samples with complete FFPE
data, which gave correlation values nearly identical to
those seen when comparing an Agilent microarray versus
an Affymetrix microarray [23].
Given the consistent quantification, mRNA-Seq and

rRNA depletion protocols exhibited their merits in dif-
ferent aspects. In the set of genes detected by all the
protocols, mRNA-Seq provided the highest sensitivity in
detecting differentially expressed genes, which was likely
due to the greater fraction of reads mapping to the
transcriptome. On the other hand, Ribo-Zero-Seq de-
tected about 550 more annotated genes than mRNA-Seq
(Additional file 6: Table S3). With a much greater set of
reads mapping to the intergenic and intronic regions in
rRNA depletion protocols, the number of additional tran-
scripts detected with the new protocols may be expected
to be greater than our conservative estimation here. As
shown in another recent study [26], we also expect more
novel transcripts to be identified from the rRNA depletion
methods.

mRNA−Seq Ribo-Zero-Seq DSN-Seq Ribo-Zero-Seq-FFPE DSN-Seq-FFPE
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# 
ge

ne
s 

de
te

ct
ed

0 50 100 150 200

8,000

10,000

12,000

14,000

16,000

18,000

20,000

microarray

13.5 654535 90

(million)

Figure 4 Determination of the number of reads needed for each RNA-Seq protocol to equal a DNA microarray. The number of detected
genes at different levels of sequencing depth is displayed relative to the number of genes detected via DNA microarray (dashed horizontal line).

Zhao et al. BMC Genomics 2014, 15:419 Page 8 of 11
http://www.biomedcentral.com/1471-2164/15/419



The very good quantification performance of the pro-
tocols on FFPE samples is of significant impact for re-
searchers with clinical samples. Our results demonstrate
that Ribo-Zero-Seq had high technical reproducibility
on FFPE RNAs and high concordance with FF RNAs.
Though the quantification of FFPE was less correlated
to FF mRNA-Seq, the two rRNA depletion methods pro-
vided highly consistent gene profiles on FFPE. Thus, it is
the quality of FFPE RNA samples, rather than the robust-
ness of method, that likely contributes more to the vari-
ation of performance with respect to gene quantification.
The hierarchical clustering analysis also validated that the
biologically-based intrinsic gene profiles were present and
highly correlated between FF and FFPE. Hence, we suggest
that it is possible to apply the rRNA depletion protocols
to FFPE samples and achieve quantitative accuracies com-
parable with standard genome profiling techniques that
use FF tissues and RNAs.

Conclusions
In this study, we demonstrated that compared to mRNA-
Seq, Ribo-Zero-Seq provides equivalent rRNA removal
efficiency, coverage uniformity, genome-based mapped
reads, and reduces 5′- to- 3′ bias. In addition, both Ribo-
Zero-Seq and DSN-Seq provide highly consistent quantifi-
cation of transcripts when compared to microarrays or
mRNA-Seq, and substantially more information on non-
poly(A) RNA. Moreover, the two rRNA depletion methods
have consistent transcript quantification using FFPE
RNAs and show high reproducibility.

Methods
RNA samples
We constructed RNA-Seq libraries using eleven UNC
breast tumor samples using different sample preparation
protocols including: (a) FF RNA samples by mRNA-Seq,
Ribo-Zero-Seq and DSN-Seq and (b) FFPE samples by
Ribo-Zero-Seq and DSN-Seq (Figure 1B). One of the
FF-DSN samples, 3 of the FFPE-Ribo-Zero samples, and 7
of the FFPE-DSN samples failed sequencing QC (i.e. too
few reads) and were not included in the study. To aug-
ment the UNC sample set, we also tested an additional
sample set of FF and FFPE samples collected as part of the
TCGA project, where total RNA of ten tumors, including
6 breast tumors and 4 prostate tumors, were prepared in
three ways: (a) FF samples with mRNA-Seq, (b) FFPE with
Ribo-Zero-Seq and 8 technical replicates, and (c) FFPE
with DSN-Seq. In addition, we prepared FF samples for 6
of the 10 TCGA tumors with Ribo-Zero-Seq protocol
(Figure 1B). All library construction and sequencing were
performed at UNC for both the UNC and TCGA samples.
For fresh-frozen tissues, we isolated total RNA with
Qiagen RNeasy mini kit. For FFPE samples, total RNA

was isolated using Roche High Pure RNA paraffin kit,
Cat# 03270289001. The extent of RNA degradation was
assessed using a BioAnalyzer (Agilent).

Library construction and sequencing
mRNA-Seq library: Illumina TruSeq™ RNA Sample Prep
Kit (Cat# RS-122-2001) was used with 1ug of total RNA
for the construction of libraries according to the ma-
nufacturer’s protocol. Ribo-Zero library: rRNA was re-
moved from FF or FFPE total RNA using Epicentre’s
Ribo-Zero rRNA Removal kit (Cat# RZH11042). For FF
samples, 30-100 ng Ribo-Zero RNA was used for the
construction of the library using the Illumina TruSeq™
RNA Sample Prep Kit (Cat# RS-122-2001) and followed
the manufacturer’s instruction, except for omitting the
purification step before fragmentation. For FFPE sam-
ples, 30-100 ng Ribo-Zero RNA was then incubated with
Random Primers (Invitrogen, Cat# 48190011) at 65°C
for 5 minutes then Illumina TruSeq™ RNA Sample Prep
Kit (Cat# RS-122-2001) was used to construct the library
according to the manufacturer’s protocol from the step
of First Strand cDNA Synthesis. DSN library: Illumina
TruSeq™ RNA Sample Prep Kit (Cat# RS-122-2001) was
used with 100 ng of total RNA for the construction of
libraries following the manufacturer’s protocol, except
for omitting the purification of mRNA step in FF sam-
ples, and the purification and fragmentation step in FFPE
samples. The total RNA libraries went through DSN
treatment and PCR enrichment according to Illumina
DSN Normalization Sample Preparation Guide (http://
supportres.illumina.com/documents/myillumina/7836bd3e-
3358-4834-b2f7-80f80acb4e3f/dsn_normalization_sample-
prep_application_note_15014673_c.pdf). Sequencing: All
cDNA libraries were sequenced using an Illumina
HiSeq2000, producing 48x7x48 bp paired-end reads
with multiplexing.

Read processing and alignment
All samples were processed and filtered as described in
The Cancer Genome Atlas [27]. Bases and QC assess-
ment of sequencing were generated by CASAVA 1.8.
QC-passed reads were aligned to the NCBI build 37
(hg19) human reference genome using MapSplice v12_07
[9]. The alignment profile was determined by Picard Tools
v1.64 (http://picard.sourceforge.net/). The aligned reads
were sorted and indexed using SAMtools, and then trans-
lated to transcriptome coordinates and filtered for indels,
large inserts, and zero mapping quality using UBU v1.0
(https://github.com/mozack/ubu). For the reference tran-
scriptome, UCSC hg19 GAF2.1 for KnownGenes [28] was
used, with genes located on non-standard chromosomes
removed. The abundance of transcripts was then esti-
mated using an Expectation-Maximization algorithm
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implemented in the software package RSEM [29] v1.1.13.
Estimated counts were transformed by upper quartile
normalization prior to comparison of expression across
protocols.

Identification of RNA-Seq library complexity and random
sampling
The RNA-Seq data was filtered by requiring the gross
RSEM count to be ≥3 for each gene. For each proto-
col, the detected gene sets were defined as genes that
were reported in >70% tumor lanes and with 3 or more
reads. To determine the amount of input reads needed
for sufficient transcriptome coverage, a simulation test
was performed on the UNC data. A series of fixed num-
ber of reads were randomly selected from each protocol
in a drawing without replacement method. For all the
resampling levels, the simulated data followed the same
alignment and filtering pipeline as described above.
Gene sets detected were then identified for all the various
levels.

Gene expression comparison methods
For all the FF tumors and the Common Reference Sam-
ple, Agilent 244,000 feature whole genome microarrays
were hybridized with tumor RNAs (Cy5) and a human
common reference (Cy3) and lowess normalized as de-
scribed in Herschkowitz et al. [30]. In the RNA-Seq data,
the detected gene sets were identified as above (i.e. 3 or
more reads in >70% of samples). The log2 ratio of RNA-
Seq tumor samples to RNA-Seq human Common Re-
ference Sample (which was the same RNA used for the
2-color microarrays) was determined. Pearson correl-
ation was determined and a Student’s t-test was applied
to evaluate the difference of RNA-Seq protocols in their
consistency to microarray.
The RNA-Seq gene quantification data was next fil-

tered by gene counts as above. The log2 transformed
abundance of tumor samples was reported and was used
to derive the correlation between RNA-Seq protocol
pairs. Using R package MethComp, Deming regression
was applied to compare the sensitivity in detecting dif-
ferentially expressed genes. An unpaired two-class SAM
analysis was used to identify genes that have differential
expression level in a) mRNA-Seq versus Ribo-Zero-Seq,
and b) Ribo-Zero-Seq versus DSN-Seq.
Gene expression quantification by microarray and

RNA-Seq for all samples new to this manuscript can
be found in GEO database under accession GSE51783.
Aligned BAM files are available at dbGaP under the series
ID of phs000676.v1.p1. TCGA sample RNA-Seq data is
available at cgHub (BAM files, https://cghub.ucsc.edu/)
and DCC (expression level data, https://tcga-data.nci.nih.
gov/tcga/).

Additional files

Additional file 1: Figure S1. Visual display of the reads aligning to
GATA3. (A) Read pile-up plots of GATA3 in Sample 020578B showing data
for five different RNA-Seq libraries. (B) Close-up of the read mapping
identifying reads that span exon-intron boundaries, which identify
unspliced mRNA species.

Additional file 2: Figure S2. Intrinsic gene set clustering analysis.
Hierarchical cluster using a breast cancer intrinsic gene set (~2000 genes)
and 88 breast tumor samples prepared using the multiple protocols, with
an additional 816 samples from the TCGA Breast Cancer Project (725
tumors and 91 normal tissues). The rows above the heat map identify the
88 samples from this study, their RNA-Seq protocol type, and the red
arrows show the location of the few mismatched samples.

Additional file 3: Figure S3. Comparison of the top 500 differentially
expressed genes between Basal and Luminal tumors detected by
mRNA-Seq, Ribo-Zero-Seq and DSN-Seq.

Additional file 4: Table S1. Comparison of the top 500 differentially
expressed genes between Basal and Luminal tumors detected by mRNA-
Seq, Ribo-Zero-Seq and DSN-Seq. The list of 307 differentially expressed
genes that are identified SAM analysis in all the three protocols.

Additional file 5: Table S2. Differentially expressed gene list across
RNA-Seq protocols obtained from Significance Analysis of Microarray.
(A, B) SAM analysis comparison of mRNA-Seq versus Ribo-Zero-Seq
using an FDR = 0. (A) Uniquely expressed genes in Ribo-Zero-Seq.
(B) Lowly expressed genes in Ribo-Zero-Seq. (C, D) SAM analysis
comparison of Ribo-Zero-Seq versus DSM-Seq using an FDR = 0. (C)
Uniquely expressed genes in DSN-Seq. (D) Lowly expressed genes in
DSN-Seq.

Additional file 6: Table S3. Comparison of genes detected by
mRNA-Seq and Ribo-Zero-Seq in FF samples. (A) Genes detected only by
mRNA-Seq and (B) genes detected only by Ribo-Zero-Seq.
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