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Microglia are resident immune cells that fulfill protective and homeostatic functions in 
the central nervous system (CNS) but may also promote neurotoxicity in the aged brain 
and in chronic disease. In multiple sclerosis (MS), an autoimmune demyelinating disease 
of the CNS, microglia and macrophages contribute to the development of white matter 
lesions through myelin phagocytosis, and possibly to disease progression through diffuse 
activation throughout myelinated white matter. In this review, we discuss an additional 
compartment of myeloid cell activation in MS, i.e., the rim and normal adjacent white 
matter of chronic active lesions. In chronic active lesions, microglia and macrophages 
may contain high amounts of iron, express markers of proinflammatory polarization, are 
activated for an extended period of time (years), and drive chronic tissue damage. Iron-
positive myeloid cells can be visualized and quantified with quantitative susceptibility 
mapping (QSM), a magnetic resonance imaging technique. Thus, QSM has potential 
as an in vivo biomarker for chronic inflammatory activity in established white matter MS 
lesions. Reducing chronic inflammation associated with iron accumulation using existing 
or novel MS therapies may impact disease severity and progression.

Keywords: multiple sclerosis, microglia, magnetic resonance imaging, quantitative susceptibility mapping, 
myelin, iron

iNtrODUctiON tO MicrOGLiA

Microglia are resident immune cells of the central nervous system (CNS) responsible for homeostatic 
functions, including neurogenesis and clearance of cellular debris, and for responding to injury and 
infection (1–3). In a resting state, microglia have a ramified appearance with thin processes that 
survey the surrounding microenvironment (4–6). Following activation, microglia and macrophages 
can adopt a spectrum of phenotypes composed of pro-inflammatory (M1) and anti-inflammatory 
(M2) functions (7–11). The classically activated M1 phenotype is characterized by expression of 
pro-inflammatory cytokines (e.g., IL-1β, TNF-α), and induction of nitric-oxide synthase (6, 12, 13), 
while the M2 phenotype is characterized by secretion of anti-inflammatory cytokines (e.g., IL-10), 
and neurotrophic and angiogenic factors (6, 12, 13). Changes in activation status and cell signaling 
induce morphological changes, motility, and phagocytosis (14). Even though microglia and mac-
rophages express similar cell surface markers and can be morphologically indistinguishable (13, 
14), they originate from distinct progenitors: macrophages are monocyte-derived, while microglia 
arise from differentiated yolk sac erythromyeloid precursors (15–17). Macrophages have been widely 
studied in vivo and in vitro; however, the functions of microglia are still not well defined, including 
their roles in inflammatory diseases such as multiple sclerosis (MS).
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FiGUre 1 | Schematic of white-matter lesion development and its representation with quantitative susceptibility mapping (QSM). Acutely demyelinating lesions are Gd 
enhancing on T1w imaging and contain M2-activated macrophages. Acute lesions eventually progress to chronic active lesions that may contain iron+ microglia/
macrophages at the lesion rim and express M1 activation markers. These lesions are typically non-enhancing and appear hyperintense with respect to normal appearing 
white matter (NAWM) on susceptibility weighted imaging. Chronic silent lesions lack inflammatory cells and their susceptibility is similar to that of nearby NAWM.

2

Gillen et al. Iron-Laden Microglia in MS

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 255

Ms LesiON PAtHOLOGY

Multiple sclerosis is a chronic inflammatory disease of the CNS, 
characterized by focal demyelination, that is caused by an auto-
immune response to self-antigens (18). MS is the most common 
cause of non-traumatic neurological disability in young adults, 
affecting more than 2.3 million people worldwide. The disease 
usually starts with episodes of neurological dysfunction that 
remit spontaneously, a course that is termed relapsing remitting 
MS (RRMS). One to two decades into RRMS, most MS patients 
enter a secondary progressive phase, where relapses are replaced 
by slow, irreversible progression of neurological disability (19). 
Significant strides have been made in understanding the patho-
physiology of relapses; however, progression remains largely 
unexplained. Multiple lines of evidence suggest that progressive 
MS is associated with chronic activation of the CNS innate 
immune system (20–22).

Inflammatory demyelinating lesions are a pathological hall-
mark of RRMS. Acutely demyelinating lesions are characterized 
by a breach of the blood–brain barrier (BBB), infiltration with 
leukocytes, and breakdown and phagocytosis of myelin (23). 
Acute lesions evolve into chronic active lesions, which contain a 
demyelinated, gliotic lesion center, and activated microglia and 
macrophages at the lesion edge. Depending on the activation 
status and phagocytotic activity of myeloid cells at the lesion rim, 
chronic active lesions may stay dormant or continue to slowly 
expand (Figure 1) (24). Eventually, chronic active lesions become 
chronic silent, i.e., they no longer contain inflammatory cells (25). 
Myelin-laden, foamy macrophages in the center and inner rim 
of acute lesions express anti-inflammatory cytokines (26), sug-
gesting that myelin phagocytosis induces an anti-inflammatory 
phenotype, which may contribute to the eventual resolution of 
inflammation. The M2-inducing properties of myelin uptake 
have been confirmed in cultured monocyte-derived macrophages 
and in mouse models of spinal-cord injury (26–29).

A more recent study posits that myelin-containing mac-
rophages in actively demyelinating areas exhibit a mixed 

phenotype expressing both M1 and M2 markers, including 
CD40, CD86, CD64, and CD32 (M1), as well as mannose recep-
tor and CD163 (M2) (30). Moreover, at the rim of chronic active 
lesions, microglia lack expression of M2 markers, suggesting 
that the M2 component becomes extinguished once the lesion 
progresses from acutely demyelinating to chronic active (30). M2 
markers are also expressed by microglia and macrophages during 
remyelination (31).

tHe rOLe OF irON iN tHe cNs

A striking feature of chronic active MS lesions is that iron is 
highly enriched in activated microglia and macrophages at the 
lesion edge (27), which has implications for their function and 
in  vivo detection in MS patients, as discussed below. Iron acts 
as a cofactor for various enzymatic reactions, and is essential for 
normal brain function, specifically the synthesis and mainte-
nance of myelin (32, 33). Accordingly, in the CNS, iron is present 
primarily in oligodendrocytes and myelin (34), where it is stored 
predominantly in the redox-inactive ferric (Fe3+) form within 
ferritin. Unbound ferrous iron (Fe2+) can catalyze production 
of reactive oxygen species (ROS) through the Fenton reaction 
(35, 36). This cytotoxic process is minimized through a highly 
coordinated process that involves specific iron transport, uptake, 
and storage proteins, including transferrin, transferrin receptor, 
hepcidin, divalent metal transporter 1, ferroportin, and ferritin 
(37, 38).

In the normal aging brain, iron levels increase in the cortex, 
cerebellum, and deep gray matter (39, 40). Accelerated accumu-
lation of iron in the basal ganglia and motor cortex have been 
demonstrated in several CNS disorders such as Parkinson’s dis-
ease (41), Alzheimer’s disease (42), Huntington’s disease (43, 44), 
amyotrophic lateral sclerosis (45), and MS (46–52). While iron 
accumulation correlates with disease progression, the pathologi-
cal processes have not been well delineated. Iron accumulation 
may be associated with excess ferrous iron and ROS production 
(53), but it is unknown whether iron accumulation is the cause 
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of tissue damage or occurs secondary to neurodegeneration. 
Oligodendrocytes, oligodendrocyte progenitors, and neurons are 
particularly sensitive to ROS, as they are unable, unlike astrocytes, 
to produce high levels of the free-radical scavenger glutathione 
(54–56). Glutathione also inhibits an iron-dependent form of 
programmed cell death, ferroptosis, triggered by iron overload 
(57–60). Furthermore, high iron induces glutamate release by 
neurons (61, 62), which potentially leads to excitotixicity in 
neurons and oligodendrocytes.

In MS, increased iron in deep gray matter has been inferred 
from T2 hypointensities on magnetic resonance imaging (MRI), 
although changes in T2 signal can be caused by multiple factors, 
including inflammation and edema. Clinically, deep gray mat-
ter T2 hypointensities correlated with brain atrophy, disability 
progression, and cognitive impairment (47–50, 63). In a study 
that used quantitative susceptibility mapping (QSM) rather 
than T2 signal to map iron content, magnetic susceptibility in 
basal ganglia of MS patients correlated with decreased perfor-
mance on basal ganglia–reliant neuropsychological tasks (64). 
Histologically, iron was present in deep gray matter primarily 
in oligodendrocytes and myelin fibers, and to a lesser extent, in 
microglia and astrocytes; In contrast to imaging studies, a statisti-
cally significant iron increase in deep gray matter of MS patients 
compared with controls could not be demonstrated (65).

irON is A MArKer OF cHrONic 
iNFLAMMAtOrY Ms LesiONs

A second site of iron accumulation in MS is in activated micro-
glia/macrophages at the rim of chronic active lesions (27, 66, 67). 
Myeloid cells play important roles in iron homeostasis, including 
iron recycling through erythrophagocytosis (68) and induction 
of inflammatory hypoferremia (69), which bolsters resistance to 
infectious diseases. Since microbes depend on iron for growth 
and survival, its sequestration by macrophages is an important 
inflammatory response (70, 71). In activated macrophages, accu-
mulation of iron is promoted by IL-6 and IL-1β, which induce the 
iron regulatory hormone hepcidin (69, 72, 73). Thus, iron accu-
mulation is partially regulated by pro-inflammatory cytokines, 
consistent with the observation that iron uptake correlates with 
functional polarization of macrophages/microglia. Classically 
activated (M1) macrophages in vitro take up more iron than M2 
or M0 macrophages (27, 74, 75), in keeping with the low iron 
levels in myelin-laden, M2-polarized macrophages in vitro and in 
acutely demyelinating lesions (26, 27). We have recently confirmed 
that iron uptake is enhanced in human-induced pluripotent stem 
cell-derived microglia following M1 polarization (unpublished 
data). Moreover, iron induces a persistent pro-inflammatory state 
in macrophages in chronic venous ulcers and spinal-cord injury, 
thus preventing the physiologic switch from M1 to M2 activation 
associated with wound healing (74, 75). While the direct effects of 
iron accumulation on macrophage activation are not completely 
understood, one proposed mechanism is that high intracellular 
iron activates nuclear factor-kappa B (NF-κB), leading to expres-
sion of NF-κB target genes including pro-inflammatory cytokines 
(76). In additional preliminary data, we found that iron-positive, 

chronic active lesions contained substantially more activated 
microglia/macrophages that expressed iNOS, ferritin, and the 
phagocytosis marker, MerTK, compared with iron-negative, 
chronic active lesions.

The source of iron in MS lesions is unknown, but it is tempt-
ing to speculate that the destruction of iron-rich myelin and 
oligodendrocytes during lesion formation leads to iron release 
into the extracellular space and eventual uptake by myeloid cells. 
Hametner and colleagues have shown that iron is decreased in 
oligodendrocytes within NAWM in patients with longstanding 
disease (67), suggesting a shift of iron from oligodendrocytes to 
microglia, which may impair the ability of oligodendrocytes to 
maintain myelin or to remyelinate.

DetectiNG cHrONic iNFLAMMAtiON iN 
Ms PAtieNts

Magnetic resonance imaging is a valuable tool for diagnosing MS 
and monitoring inflammatory activity in MS patients. Acutely 
demyelinating lesions can be visualized through gadolinium that 
accumulates within lesions with temporary breakdown of the BBB 
(77–79). However, gadolinium enhancement offers only a small 
window into early inflammatory activity, as the BBB closes within 
weeks of lesion formation (Figure 1). Gadolinium enhancement in 
MS lesions is preceded and outlasted by infiltration with immune 
cells. This has been demonstrated in MS patients with positron 
emission tomography (PET) imaging studies using radioactive 
ligands for the 18-kDa translocator protein (TSPO) (80), and 
with MRI of ultra-small iron-oxide particles that were injected 
peripherally and detected in activated monocytes/macrophages 
infiltrating the lesions (81). These imaging results are consistent 
with histological studies indicating that significant inflammatory 
activity occurs behind a closed BBB (82).

The therapeutic goal of managing MS patients is to completely 
suppress CNS inflammation. Thus the inability to detect chronic 
inflammation in MS with conventional MRI techniques is a 
significant, unmet need in clinical practice. While TSPO-PET 
imaging allows for assessment of glial cell activation, PET imaging 
requires significant infrastructure, is costly, and involves patient 
exposure to radioactivity, all of which make this method unsuit-
able for broad use in clinical practice. A solution to the problem 
of visualizing activated microglia/macrophages in lesions is to 
exploit their high iron content using novel MRI techniques.

QsM iN Ms

Tissue can become magnetized in response to a magnetic field, 
and the extent of magnetization is known as susceptibility, which 
arises from unpaired electrons in iron or external sources such 
as contrast agents. MRI permits visualization of tissue suscep-
tibility through gradient echo (GRE) and phase imaging. These 
techniques have been used to monitor MS lesions (27, 66, 83, 
84), but they cannot quantify or localize iron (85). QSM permits 
visualization of the sizes and shapes of iron sources, delivers pre-
cise estimates of iron concentrations, and distinguishes between 
susceptibility sources such as iron and calcification (85). QSM 
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FiGUre 2 | Iron deposition in chronic active lesions corresponding to regions of hyperintensity on quantitative susceptibility mapping (QSM). (A) Iron-positive lesions 
contain CD68+ Perls+ microglia and macrophages at the lesion rim whose distribution corresponds to hyperintensities on QSM. (B) Iron-negative lesions contain few 
Perls+ microglia and have low-tissue susceptibility on QSM. Black rectangles in low magnification images identify the location of higher magnification images. Scale 
bar in low magnification images = 1,000 µm. Scale bar in high magnification images = 100 µm. QSM scale bar is the same for both images and is in ppm (parts per 
million).

4

Gillen et al. Iron-Laden Microglia in MS

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 255

maps both ferrous (Fe2+) and the substantially more common 
ferric (Fe3+) iron, but cannot distinguish between the two sources. 
In addition, the presence of lipid macromolecules such as myelin 
reduces tissue susceptibility, resulting in increased susceptibility 
in demyelinated lesions. QSM is now widely used by the imaging 
research community in applications to detect iron, map bone 
mineralization and monitor drug bio-distribution delivered by 
magnetic-core nanocarriers (38, 44, 86–103).

Several studies, including our own, combined QSM or phase 
imaging of MS autopsy tissue with histological analysis, and 
confirmed that high tissue susceptibility at the rims of MS lesions 
correlated approximately with the distribution of iron and CD68+ 
microglia/macrophages (Figure  2) (24, 27, 66, 83, 104, 105), 
which contain predominantly ferric iron. In addition, elemental 
tissue analysis with laser ablation mass spectrometry combined 
with QSM and IHC of autopsied lesions has established that posi-
tive susceptibility values were associated with iron deposition in 
activated microglia/macrophages (104). In a separate study, X-ray 
fluorescence imaging and histochemical techniques on autopsied 
MS brains demonstrated that iron accumulated in microglia/
macrophages in chronic lesions (106). These results demonstrate 
that white matter lesions with high tissue susceptibility at the 
lesion rim are indicative of iron-positive microglia/macrophages.

An unresolved challenge regarding QSM is the inability to 
distinguish between the contributions of iron accumulation and 
myelin loss to lesion susceptibility (107, 108). Both can cause an 
increase in susceptibility, which generates the need to develop 
a method to separate the two sources. Birkl et al. addressed the 
confounding effect of myelin on iron quantification in MS tissue 
by exploiting the temperature dependency of the susceptibility of 
paramagnetic iron, which decreases with temperature, while the 
susceptibility of the diamagnetic myelin remains constant (109). 
While this technique is well suited for ex vivo research, it cannot 

be applied to patients. In addition, a study of lesions in MS tissue 
by Wiggermann et al. (108) that determined the sources of lesion 
contrast on QSM, found a poor correlation between lesional iron 
content and QSM. While these findings may be explained in part 
by the low iron content in the examined lesions, their data sug-
gest that the QSM contrast between lesions and the surrounding 
NAWM may be driven by pathological changes known to be 
present in NAWM. Therefore, using NAWM as susceptibility 
reference, as is common in current practice, can lead to an incor-
rect interpretation of QSM change. A more reliable reference is 
cerebrospinal fluid, which consists essentially of water and can 
provide a uniform zero-reference (110).

In the first study that applied QSM to MS, Langkammer et al. 
demonstrated in patients with established MS or with clinically 
isolated syndrome, an isolated MS-like neurological episode, 
that QSM is more sensitive than R2* in the detection of tissue 
changes in the basal ganglia (107). The authors interpreted the 
increase in susceptibility as a consequence of increased iron 
content, but noted that demyelination may play an additive role. 
In a small clinical imaging study, we demonstrated that patients 
with active RRMS contained significantly more lesions with 
high susceptibility on phase imaging than patients with chronic, 
stable disease (27). Furthermore, we found in a retrospective 
study, where susceptibility was quantified in white matter 
lesions of different ages, tissue susceptibility was isointense in 
Gd-enhancing lesions, and increased rapidly after enhance-
ment subsided, suggesting that lesions acquired iron as they 
transitioned from an acute to a chronic active state. The elevated 
susceptibility was stable for approximately 4  years and then 
decayed to levels similar to that of NAWM (Figure 1) (111). This 
time course of tissue susceptibility was recently confirmed in a 
separate longitudinal study with MS patients (112). On a cellular 
level, the isointense susceptibility in enhancing lesions may be 
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explained by the reduced capacity of myelin-phagocytosing 
macrophages to take up iron (27), consistent with the M2-like 
phenotype of myelin-laden macrophages (26). As the lesion 
evolves, myelin-laden macrophages continue to break down 
ingested myelin and eventually exit the lesion center. Activated 
non- or slowly phagocytosing myeloid cells at the lesion rim 
accumulate iron and adopt a chronic inflammatory state (75) 
that may persist for several years (111, 112).

In a recent prospective imaging study using phase imaging, 
persistence of phase rims in white matter lesions was associ-
ated with increased lesion T1 hypointensities, a marker for 
tissue damage (113). In addition, Dal-Bianco et al. reported that 
white matter lesions with phase-positive rims slowly expanded 
over time, supporting the idea that iron-positive microglia/
macrophages are associated with chronic, slow inflammatory 
demyelination (24). It is tempting to speculate that high preva-
lence of lesions with hyperintense rims is associated with a more 
severe disease course and/or disease progression; however, these 
data are not yet available. Prospective studies examining these 
correlations are currently ongoing at our centers.

The prevalence of white matter lesions with hyperintense 
rims on QSM and phase imaging varies widely, ranging from 
0 (113) to 32% (114). This variability is unsurprising given the 
different imaging techniques,  resolutions, and patient cohorts 
used in these studies. An imaging study on MS patients from 
our group revealed that 21% of lesions visible on QSM had a 
hyperintense rim, and 79% displayed homogenous or heterog-
enous distribution patterns (115). Our preliminary data from a 
combined imaging and histology study of MS brain tissue sug-
gest that heterogenous QSM patterns were typically associated 
with the presence of heme within enlarged blood vessels in MS 
lesions. We have currently no data to explain homogenously 
increased susceptibility throughout lesions, but hypothesize 
that absence of myelin drives the susceptibility increase in these 
lesions.

In summary, although susceptibility weighted imaging cannot 
distinguish between iron accumulation and myelin loss, increased 
susceptibility at the lesion rim likely represents chronically 
activated, iron-positive microglia and macrophages. Moreover, 
longitudinal imaging studies of MS patients using QSM suggest 
that iron-positive lesions persist for many years and are associ-
ated with increased tissue loss and slow expansion (24, 113).

cLiNicAL iMPLicAtiONs

Based on the above studies, high tissue susceptibility in 
white-matter lesions may be useful as a biomarker for chronic 
active lesions. Although the detrimental effect of smoldering, 
low-grade inflammation on the surrounding parenchyma has 

been demonstrated (24, 113), it is unknown if the presence of 
hyperintense susceptibility rim lesions predict a more severe 
clinical course; studies are ongoing that examine this association. 
Moreover, we are testing the ability of current MS treatments to 
remove iron from existing white matter lesions in MS patients. Of 
particular interest are MS medications that penetrate the BBB and 
act directly on microglia, such as dimethyl fumarate (Tecfidera™), 
fingolimod (Gilenya™), and Laquinimod (116–118).

Since QSM can be rapidly and reliably acquired with standard 
field strength (3T) MRI scanners, it can easily be implemented in 
clinical settings and broadly used for MS patient care. Thus, iron-
sensitive imaging may become an important imaging modality to 
detect chronic inflammation in MS patients that appear stable on 
conventional MRI but have a high burden of lesional microglial 
activation.

sUMMArY AND OUtLOOK

We reviewed iron metabolism in macrophages/microglia, iron 
accumulation in MS lesions, and iron-sensitive imaging stud-
ies in MS tissue and patients. Iron is taken up by M1-polarized 
macrophages/microglia, which may further increase their 
pro-inflammatory properties. Iron can be visualized with MR 
sequences sensitive to tissue susceptibility. In MS patients, high 
susceptibility in white matter lesions can persist for several years 
after lesion formation, suggesting that iron-positive myeloid cells 
are present in MS lesions for prolonged periods of time. In addi-
tion, high susceptibility is associated with increase tissue loss and 
lesion expansion.

Therefore, the emerging picture suggests that iron-positive 
microglia and macrophages in chronic active MS lesions constitute 
a distinct, previously unappreciated inflammatory compartment 
that may be a significant contributor to tissue damage, disease 
severity, and/or progression. Reducing chronic inflammation 
associated with iron deposition in MS lesions with existing or 
novel MS therapies may be of high benefit to patients.
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