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Abstract: The recovery of scandium (Sc) from wastes and various resources using solvent extraction
(SX) was discussed in detail. Moreover, the metallurgical extractive procedures for Sc recovery
were presented. Acidic and neutral organophosphorus (OPCs) extractants are the most extensively
used in industrial activities, considering that they provide the highest extraction efficiency of any
of the valuable components. Due to the chemical and physical similarities of the rare earth metals,
the separation and purification processes of Sc are difficult tasks. Sc has also been extracted from
acidic solutions using carboxylic acids, amines, and acidic β-diketone, among other solvents and
chemicals. For improving the extraction efficiencies, the development of mixed extractants or
synergistic systems for the SX of Sc has been carried out in recent years. Different operational
parameters play an important role in the extraction process, such as the type of the aqueous phase
and its acidity, the aqueous (A) to organic (O) and solid (S) to liquid (L) phase ratios, as well as the
type of the diluents. Sc recovery is now implemented in industrial production using a combination
of hydrometallurgical and pyrometallurgical techniques, such as ore pre-treatment, leaching, SX,
precipitation, and calcination. The hydrometallurgical methods (acid leaching and SX) were effective
for Sc recovery. Furthermore, the OPCs bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and
tributyl phosphate (TBP) showed interesting potential taking into consideration some co-extracted
metals such as Fe(III) and Ti(IV).

Keywords: scandium recovery; hydrometallurgy; red mud; solvent extraction; organophosphorus
extractants

1. Introduction

Scandium, along with yttrium and lanthanide, is sometimes categorized as a rare
earth element [1]. Scandium is rarely found in concentrated amounts because it readily
substitutes by major elements such as iron and aluminum [2]. Instead, it is found spar-
ingly in trace amounts in rocks containing ferromagnetic minerals, with an abundance of
5–100 mg/kg [3]. Because of its poor distribution and the difficulty of extraction, Sc is a
rare and expensive metal [4]. In aqueous solutions, scandium exclusively occurs in the III
oxidation state (Sc3+) that tends to hydrolyze and form polymeric species [5].
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The scandium hydrated ions are Pearson’s hard acids, which mean that they prefer to
form complexes with hard ligands, including hydroxide, fluoride, sulfate, and phosphate
ions, due to their high charge [6]. Scandium is primarily used to produce aluminum–
scandium alloys, which typically contain 2% scandium by weight [7]. These alloys are
significantly stronger than the conventional high-strength alloys, with great grain refine-
ment, high strength, no hot cracking in welds, and exceptional corrosion resistance [8].

Furthermore, it is used in some modern applications such as high-intensity metal
halide lamps, analytical standards, electronic components, oil well tracer, and fuel cells [9].

The involvement of scandium in the development of solid oxide fuel cells (SOFC) is
also very appealing due to the strong oxygen-ion conductivity of Sc2O3-stabilized ZrO2
materials [10,11].

According to Jeong et al. [12], the Sc(III) doping into the layered perovskite material
PrBaCo2O5+α (PBCO) has a significant impact on the electrochemical performance. They
found that Sc(III) doping improved the Goldschmidt tolerance factor and specific free
volume of the layered perovskites, resulting in a more suitable crystalline structure for
oxygen ion transport in the lattice. As a result, at 500 ◦C, the Sc(III) doped PBCO has a
maximum power density of 0.73 W cm−2, which is 1.3 times higher than PBCO.

Thortveitite, euxenite, and gadolinite are scandium minerals that contain significant
amounts of scandium [2,13]. It also coexists in low amounts in aluminum, cobalt, iron,
molybdenum, nickel, phosphate, tantalum, tin, titanium, tungsten, uranium, zinc, and
zirconium ores [1,4,13].

Ores with a scandium content ranging from 0.002 to 0.005% can be considered re-
sources and can be exploited [1]. The countries with the most scandium resources are the
United States of America, Australia, China, Kazakhstan, Madagascar, Norway, Russia, and
Ukraine [4,14]. Scandium is mostly found in uranium, tantalum, aluminum, and zirconium
ores in America; nickel laterite ores in Australia; iron, tin, and tungsten ores in China;
uranium ores in Kazakhstan; pegmatite rocks in Madagascar and Norway; and iron ores in
Russia and Ukraine [1,15,16].

The commercial applications of scandium have been limited due to a lack of consistent
and long-term production as well as its high price [17,18]. In the form of scandium oxide,
the global scandium output is around 2 tons per year [15].

The development of scandium production was given special emphasis in the Soviet
Union, with two government directives adopted to encourage it (1960 and 1985). In the
mid-1980s, the Soviet Union produced approximately 10 t Sc every year, compared with
barely 500 kg produced by the rest of the globe [19,20]. Scandium ores with high scandium
content can be recovered using pyro-metallurgical processes. The energy consumption, on
the other hand, is substantial. Scandium is frequently enriched in residues, slags, tailings,
and waste liquors and is primarily produced as a by-product of ore processing [21,22]. The
easiest way to recover scandium is by precipitation, i.e., insoluble scandium compounds
from scandium containing solutions [23]. Even in this case, the co-precipitation of the other
metals does not allow solutions with large quantities of metals to be recovered [24,25].

Hydrometallurgical processes currently used for scandium recovery mainly involve
leaching, solvent extraction, and precipitation [26]. The complications of scandium recovery
flow-charts depend on the various types and number of contaminants [27]. The separation
and recovery of metals such scandium from other metallic impurities using an appropriate
technology resulting in zero waste would solve a number of environmental problems [28].
Producing pure scandium metal from low-grade ores, secondary mud, or bauxite residue
with overall scandium content around 100 mg/kg is a challenging task [1].

Hydrometallurgical units, like leaching and separation, that dissolve the contents of
scandium into the aqueous phase and recover it by different separation methods appear
to be promising [1,29,30]. During the production of other metals, such as Ti, W, U, Al,
Ni, Tl, and Nb, and dusts in magneto-vana-ilmenite, chlorination, and tungsten residues
refinery and red mud, scandium has been recovered from residues, tailings, and liquid
waste [31–33].
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Over the last few decades, researchers have put a lot of effort into purifying leach-
ing effluents to separate scandium [5,6,34–41]. The purification took place by solvent
extraction (SX), ion exchange (IX), liquid membranes, adsorption, precipitation, and co-
precipitation [42,43]. Because of its high extraction capacity, high selectivity, effective
separation, high enrichment, and ability to operate on a large scale, solvent extraction is
one of the most effective methods for the separation and purification of target metal ions
from various aqueous solutions [44–46].

Many commercially available organophosphorus extractants were used to separate
scandium from the aqueous phase [4,9,47]. Due to the higher extraction efficiency of the
combined reagents, the SX procedures have proven to be more effective, allowing the high
enrichment of trace metal ions such as those of rare earth elements (REE) [48,49].

Furthermore, changing the equilibrium pH in the SX system may result in a high
selectivity towards the targeted rare metal ions, achieving the removal of impurities [50–52].
Low scandium concentrations are frequently recovered as an unwanted by-product during
the treatment of tailings and residues from a wide range of sources, such as the ura-
nium leaching process, titanium pigment manufacturing, liquid wastes, and chlorinating
magneto-vana-ilmenite dust [1,53]. Solvent extraction and associated technologies such
as ion exchange (IX) and liquid membrane (LM) extraction are extensively used for the
separation and purification of scandium from diverse aqueous solutions [54,55].

For extracting trace amounts of scandium from solutions containing substantial levels
of other elements, SX is currently the most extensively used technique [54,55]. Furthermore,
it is the most extensively used method for scandium separation and purification because of
its great extraction capacity and operation simplicity at large scales.

In this paper, the separation and purification methods of scandium using acidic,
basic, neutral, and chelating extractants as well as synergetic solvent extraction procedures
were discussed.

Furthermore, the metallurgical procedures for scandium recovery from a variety of
sources and particularly from bauxite wastes (red mud) were among the primary objectives
of the publication.

2. Separation and Purification of Rare Earth Elements Using SX

The process of recovering rare earth elements typically consists of three important
steps that begin with the solid waste or ores: (1) acid leaching (convert the solid to the ionic
form), (2) solvent extraction step to extract and enrichment the concentration of target metal
ions, and (3) purification of the produced solution using various metallurgical processes
such as precipitation and then calcination. Figure 1 presents a schematic flow diagram of
the major stages in the REE processing [56–59].
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2.1. Acidic Extractants

Organophosphorus, carboxylic, and sulphonic acids having the functional groups
–POOH, –COOH, and –SO3H, respectively, are acidic extractants [60]. In general, when
the organic phase contains a large concentration of metal ions (Mn+), the extraction of a
metal cation (Mn+) by an acidic extractant (HA) occurs via a cation exchange process, as
illustrated in Equation (1) [61].

Mn+ + n HA↔ MAn +n H+ (1)
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The mechanism, though, is difficult because of the creation of a dimer in the organic
phase during the interaction. When there is a low metal loading in the organic phase, the
extraction can be represented by Equation (2) [1,62].

Mn+ + n (HA)2 ↔ MAn . (HA)n +n H+ (2)

2.1.1. Acidic Organophosphorus Extractants

As illustrated in Figure 2 phosphoric, phosphonic, and phosphine acids are the most
used acidic organophosphorus extractants [1,63,64]. Di-(2-ethylhexyl) phosphoric acid is
the most used extractant for concentrating scandium and separating it from other metals.
Although it is commercially available under different names, including D2EHPA, HDEHP,
P204, and DP-8R, we referred to it as P204 in this work [42,53,57].

In a previous work [51], the behavior of the extraction of certain transition metals in
HCl, HClO4, and HNO3 media was investigated over an acidity range of 1–11 mol/L using
0.75 mol/L P204. Over 99% of the scandium was extracted without any interference of
Mn2+, Tc2+, and Re2+ under all working conditions. On the other hand, Ti(IV), Zr(IV), and
Hf(V) were extracted quantitatively and could interfere with the extraction of scandium.
Following the extraction order Sc3+ > Fe3+ > Lu3+ > Lu3+ > Yb3+ > Er3+ > Y3+ > Ho3+, P204
can extract and separate among large amounts of iron and other elements in an acidic
chloride medium [53].

At a pH of 0.35, almost 98% of the Sc(III) was extracted, whereas iron(III), yttrium(III),
and lanthanides(III) were left in the solution. A study involving P204 as an extractant and
tributyl phosphate (TBP) as a modifier to recover scandium from HCl-leaching solutions of
magnesium, aluminum, and iron scraps showed that after a single stage of extraction and
stripping, the scandium recovery was nearly 100%, and its separation from magnesium
was nearly quantitative [16].

The significant co-extraction of impurities as well as the problems of stripping and
emulsion generation limited the industrial of this method. 2-ethylhexyl phosphonic acid
mono-2-ethylhexyl ester, characterized as HEHEHP in this paper, is another commonly
used extractant available under trade names such as P507, PC-88A, Ionquest 801, and
SME 418.

The extractability of HEHEHP was similar or somewhat lower than P204, while the
required acidity of the strip solution was lower [65,66]. Sc(III) was quantitatively extracted
by HEHEHP in HCl and HNO3 solutions of an acidity range of 1–5 mol/L with an extraction
order of Sc(III) > Th > Ce(IV) > Lu(III). From H2SO4 solution of 1–5 mol/L, over 98% of the
Sc(III) was recovered with an extraction order of Sc(III) > Ce(IV) > Th > La(III) and only
about 20% of the Fe(III). The stripping efficiency of scandium from the HEHEHP extractant
by mineral acids is more efficient than that of the P204. Compared with P204, the H2SO4
solution of 5 mol/L stripped about 20% of the Sc(III) from HEHEHP, whereas P204 stripped
only 5% [35]. For Sc(III) extraction from acidic solutions by organophosphorus compound
(OPCs), the iron is the most common interfering element because of its Lewis acid hardness
and the amount of iron in the solution.

Zr, Ti, Th, Y, and Ln elements that are typically linked with scandium also impede
the extraction of scandium to some extent. Previous research [16,42,55–57] focused on
the extraction of Sc(III) using C272, C302, and C301, as well as the other compounds. In
their findings, they observed that the scandium extraction efficiency using these three
extractants is high at low acidities, with the metal selectivity in the following order:
Zr(IV) > Sc(III) > Fe(III) > Lu(III). The scandium recovery from C272, C302, and C01 was,
likewise, considerably easier than this from P204 and HEHEHP [42,55].

After one SX with the C272, C302, and C301 extractants, the scandium recovery
efficiency was about 82%, 78%, and 75%, respectively, with concentrations of sulfuric acid
of 1.5, 3.5 and 5.8 mol/L [16]. Using P204, Ionquest 801, and C272 to study the recovery of
scandium from a laterite waste solutions, the results related to their recovery were similar
to those presented in other papers [55].
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For scandium extraction from C272, a recovery rate between 90% and 99% was
achieved when 300–400 g/L sulfuric acid was used, while the corresponding from P204 and
Ionquest 801 was more difficult. The following extraction order also observed in the case of
use of C302 to separate scandium in chloride media: Sc(III) > Y(III) > La(III) > Gd (III). More-
over, nitric acid (of 5 mol/L and 4 mol/L) can completely recover Sc(III) and Y(III) from
the C302 organic phase, respectively [16]. Direct scandium recovery with the formation
of insoluble precipitates by alkaline or fluoride salts is an alternative strategy for process-
ing. As an illustration, 98% of the Sc(III) was stripped directly from the loaded P204 with
3 mol/L sodium hydroxide. Conversely, the recovery with low-to-medium concentrations
of sodium hydroxide (0.25–2.5 mol/L) produced phase separation difficulties [17].

The use of stronger alkaline solutions, such as 5 mol/L sodium hydroxide, can alleviate
the phase separation problem to some extent because the solubility of the organic solvent
in the loaded strip liquid is reduced [13]. Using NaF solutions of 2 mol/L, scandium can
be completely removed from the organic phase of P204 and HEHEHP [38]. The scandium
stripping technique by ScF3 precipitation is effective, but the fluoride, because of its toxicity,
could have a negative impact on the environment. The mechanism of acidic phosphorus-
based extraction changes with the acidity of the aqueous solution [49,53,67].

At low acidities, the acidic extractant molecules lose protons to form Sc-organic
complexes by a cation exchange mechanism, but at high acidities, Sc is extracted via a
solvation mechanism. As an illustration, the distribution ratio of scandium during the
SX with C272 decreased for a sulfuric acid concentration of 1.5 mol/L due to the cation
exchange of the recovered species Sc(A)3·2HE [53]. The extraction efficiency of Sc improved
with increasing concentration due to the formation of the extracted species HSc(SO4)2·3HE.
Furthermore, the organic molecules were expected to be neutral ligands, meaning that the
extraction mechanism was solvation.
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2.1.2. Carboxylic Acids

Scandium is commonly extracted from low-acid feed solutions using carboxylic acids,
such as versatic, phenoxy acetic, and naphthenic acids (Figure 3). Alkyl monocarboxylic
acids, such as naphthenic and versatic acids, are commercially available (i.e., V10). In
REE separation, naphthenic acids or related derivatives of carboxylic acid were widely
used. Naphthenic acids preferentially extracted uranium and thorium over trivalent rare
earth elements [59]. It was shown that the separation factors of yttrium from lanthanides
aqueous solutions improved when chelating agents e.g., ethylenediaminetetraacetic acid
(EDTA) were used. This metal extraction was achieved by using undue concentrations of
naphthenic acids (1 mol/L) in kerosene with an A/O ratio of 4 [60].
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In the literature [70], 5–10% carboxylic acid was used to extract Sc from AlCl3 solutions
containing 20–30 g/L iron. Sc was recovered using a combination of hydrochloric acid of
3 mol/L and sulfuric acid of 1.5 mol/L. The selectivity of scandium over all REEs was quite
high (β of Sc/REEs > 104) when kerosene containing a naphthenic acid and iso-octanol
were used as the extractants and HCl as the stripping agent. In this case, the extraction
sequence was Sc > Sm > Eu >Y > Nd > La > Yb > Gd [71].

However, the appropriate pH for the Fe(III) removal by naphthenic acid is 3 in com-
parison with approximately 2.8 for scandium, which indicates an interference of iron and
scandium in the extraction process. An emulsion was formed when iron was completely
extracted at a pH of 3.8, leading to a slow phase separation [72].

Consequently, before extracting scandium by naphthene acid, iron should be removed
from the feed solution. Because aluminum was totally extracted at a pH of 4, it should
also be eliminated before the extraction of scandium. Sc(III) is extracted more efficiently by
alkyl-phenoxy acetic acid (APAA) at lower pH (ca. 2.4), indicating that, in this way, it can
also be efficiently separated from Fe(III) and Al(III) rather than by naphthenic acid [46,73].

With sec-nonylphenoxy acetic acid (CA-100) in n-heptane, the extraction behavior of
trivalent REEs and bivalent metal ions (Cu, Zn, Ni, Mn, Cd, and Co) from HCl solutions
was investigated [46]. There were high separation factors (β) of Sc over Y, La, and all
bivalent metals. For example, the separation factor for Sc/Y was 407, Sc/La 83, Sc/Gd 89,
and Sc/Lu 269, indicating that CA-100 is an efficient extractant for scandium [74].

The separation of scandium traces was enhanced for REE solutions of pH between
2 and 4 by using an extractant containing 0.2–1.0 mol/L of APAA and 5–30% long carbon
chain alcohols [2].

In order to achieve a Sc-enriched strip solution, the loaded phase was stripped with
HCl acid (0.5–3 mol/L). Using a counter current extraction, scandium was successfully
re-extracted from the solution in the pH range of 1 to 4. Scandium of high purity (99.9%)
and high scandium recovery (90%) were obtained using the two SX techniques described
above. Cation exchange mechanisms such as ScA3 complex formation and HA molecule
entry into the complex can both be used to extract scandium from low-acid solutions by
carboxylic acids (HA) and produce adducts such as ScA3·(HA) as part of the extraction
process [63]. Because of their steric bulk, carboxylic acid molecules had an impact on how
well they extracted the lanthanide series elements from solution [65].

The previously mentioned carboxylic extractant V10 was found to be effective in extract-
ing monomeric complexes of the LaA3·(HA)3 type, whereas with 3-(cyclohexylazaniumyl)
propanoate acid and dimeric complexes, such as (LaA3 (HA)3)2, (GdA3 (HA)3)2 and (LuA3
(HA)3)2 were formed. Table 1 summarizes previous SX investigations on scandium recovery
using a variety of extractants.
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Table 1. Overview of studies on scandium extraction using the SX method.

No. Author(s) Extractant Structures Metals Matrix Remarks Ref.
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et al. (1969)
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n-heptane or cyclohexane the 
aqueous feed is 1–11 M HCl, HClO4

or HNO3 

[61] 

2 Xue LZ et al. 
(1992) 

Sc3+ >> Fe3+ > 
Lu3+ > Yb3+ > 

Er3+ > Y3+ > Ho3+ 

The organic phase included P204 in 
n-octane. The aqueous phase pH 3–
10 M HCl 

[75] 

3 Ditze et al. (1997) Sc3+ > Fe3+ > Al3+>Mg2+ 

The organic phase included 20% 
P204 and 15% TBP in kerosene. The 
aqueous phase 2.5 g/L Sc, 25 g /L 
Mg, Al and Fe in 0.5 M HCl 

[16] 

4 Haslam M et al. 
(1999) 

Sc3+ ∼ Zn2+ > Ca2+ ∼Al3+ 
> Mn2+ > Cr3+ ∼ Mg2+ ∼ 

Ni2+ ∼ Si 

The organic phase included 0.2 M 
P204 and 1% TBP in Escaid 110. 
The aqueous phase has pH 1.5–3.5 
of H2SO4 

[19] 

5 Singh RK et al. 
(2003) Sc3+ > Fe3+ > Al3+ > Mg2+  

The organic solution contains 0.1 
M P204 in toluene. The aqueous 
contains 0.5–11 M HClO4 

[49] 

6 Li DQ, et al. 
(1980) 

 
HEHEHP 

Sc3+ ∼ Th4+ > Ce4+ > Fe3+ 
 The organic solution included 
HEHEHP in n-heptane. The aque-
ous is 0.5–1.5 M H2SO4 

[66] 

7 Li DQ, et al. 
(1980) 

Sc3+ > Ce4+ > Th4+ > 
Fe3+ 

 The organic solution included 
HEHEHP in n-heptane. The aque-
ous is 1.5–5 M H2SO4 

[66] 

8 Haslam M et al. 
(1999) 

Sc3+ > Zn2+ > Al3+ > Mn2+ 
∼ Cr3+ ∼ Ca2+ ∼ Mg2+ > 

Ni2+ ∼ Si 

The organic solution is 0.2 M Ion-
quest 801 and 1% TBP. The aque-
ous solution has pH 1–5.5 H2SO4 

[19] 

9 Singh RK et al. 
(2003) Sc3+ > Fe3+ > Al3+ > Mg2+ 

The organic solution is 0.1 M PC-
88A in toluene. The aqueous 
phase is 0.01–1 M HClO4 

[49] 

10 Wang C et al. 
(1994) 

 
C 272 

Sc3+ ∼ Th4+ > Fe3+ > Lu3+ 
The organic solution 4.8 × 10−2 M  
Cyanex 272 in n- hexane. The 
aqueous phase is H2SO4 3–10 M 

[53] 

11 Haslam M et al. 
(1999) 

Sc3+ >> Al3+ > Ni2+ > Si 
>Mn2+ ∼Mg2+∼Ca2+> Cr3+ 

The organic solution is 0.1 M Cya-
nex 272 and 5% TBP. The aqueous 
phase is H2SO4 has pH ∼1 

[19] 

HDEHP, D2EHPA, P204

Sc3+ ∼ Ti4+,
Zr4+,Hf4+ > Y3+ >

La3+ > Mn2+

The organic is 0.75 M of HDEHP
in n-heptane or cyclohexane the

aqueous feed is 1–11 M HCl,
HClO4 or HNO3

[61]

2 Xue LZ
et al. (1992)

Sc3+ >> Fe3+ >
Lu3+ > Yb3+ >

Er3+ > Y3+ > Ho3+

The organic phase included P204
in n-octane. The aqueous phase

pH 3–10 M HCl
[75]

3 Ditze et al.
(1997)

Sc3+ > Fe3+ >
Al3+ < Mg2+

The organic phase included 20%
P204 and 15% TBP in kerosene.
The aqueous phase 2.5 g/L Sc,

25 g /L Mg, Al and Fe in
0.5 M HCl

[16]

4 Haslam M
et al. (1999)

Sc3+ ∼ Zn2+ > Ca2+

∼Al3+ > Mn2+ >
Cr3+ ∼Mg2+ ∼

Ni2+ ∼ Si

The organic phase included 0.2 M
P204 and 1% TBP in Escaid 110.

The aqueous phase has pH 1.5–3.5
of H2SO4

[19]

5 Singh RK
et al. (2003)

Sc3+ > Fe3+ >
Al3+ > Mg2+

The organic solution contains
0.1 M P204 in toluene. The

aqueous contains 0.5–11 M HClO4

[49]

6 Li DQ, et al.
(1980)
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10 Wang C et al. 
(1994) 

 
C 272 

Sc3+ ∼ Th4+ > Fe3+ > Lu3+ 
The organic solution 4.8 × 10−2 M  
Cyanex 272 in n- hexane. The 
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Sc3+ ∼ Th4+ >
Ce4+ > Fe3+

The organic solution included
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7 Li DQ, et al.
(1980)

Sc3+ > Ce4+ >
Th4+ > Fe3+

The organic solution included
HEHEHP in n-heptane. The
aqueous is 1.5–5 M H2SO4
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8 Haslam M
et al. (1999)

Sc3+ > Zn2+ > Al3+

> Mn2+ ∼ Cr3+ ∼
Ca2+ ∼Mg2+ >

Ni2+ ∼ Si

The organic solution is 0.2 M
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aqueous solution has
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et al. (2003)
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10 Wang C
et al. (1994)
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phase is 0.01–1 M HClO4 

[49] 

10 Wang C et al. 
(1994) 

 
C 272 

Sc3+ ∼ Th4+ > Fe3+ > Lu3+ 
The organic solution 4.8 × 10−2 M  
Cyanex 272 in n- hexane. The 
aqueous phase is H2SO4 3–10 M 

[53] 

11 Haslam M et al. 
(1999) 

Sc3+ >> Al3+ > Ni2+ > Si 
>Mn2+ ∼Mg2+∼Ca2+> Cr3+ 

The organic solution is 0.1 M Cya-
nex 272 and 5% TBP. The aqueous 
phase is H2SO4 has pH ∼1 

[19] C 272

Sc3+ ∼ Th4+ >
Fe3+ > Lu3+

The organic solution
4.8 × 10−2 M Cyanex 272 in n-
hexane. The aqueous phase is

H2SO4 3–10 M

[53]

11 Haslam M
et al. (1999)

Sc3+ >> Al3+ >
Ni2+ > Si >Mn2+

∼Mg2+∼Ca2+> Cr3+

The organic solution is 0.1 M
Cyanex 272 and 5% TBP. The
aqueous phase is H2SO4 has

pH ∼1

[19]

12 Wang C
et al. (1995)
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15 Peppard DF et al. 
(1956) 
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Sc3+ ∼ Zr4+ >Th4+ The organic solution is 100% TBP, 
the aqueous is 7–8 M HCl [77] 

16 Zhang et al. 
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Li D et al. (1998) 
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pH 3–10 M H2SO4

[76]

13 Wang C
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[83]

2.2. Alkaline Extractants

Primary amines (RNH2), secondary amines (R2NH), tertiary amines (R3N), and qua-
ternary ammonium salts (R3N+CH3X−), where X− is usually a halide ion, are all common
alkaline extractants. Metal extraction by amines is thought to be primarily dependent
on the ability of the metal ions to form anionic species in the aqueous phase, which are
extracted by amines via anion exchange processes. Scandium from uranium mill waste
solutions was successfully extracted using a primary aliphatic amine (Primene JMT), an
amine extractant [18,50]. Primene JMT was used at 2.5% in kerosene in a small-scale pilot
plant, and the A/O ratio obtained was 50:1. Although a minor amount of Fe(III) was
co-extracted, scandium can successfully be separated from iron and easily be recovered
with a 2 mol/L NaCl solution acidified to pH 1 at an A/O ratio of 1:10. In addition, alkaline
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stripping was efficient, but a Sc(OH)3 precipitate formed during the back extraction resulted
in phase disengagement problems. The extraction of scandium from sulfuric acid solutions
using a primary amine extractant N1923 (RNH2) was also investigated [84,85].

Scandium has a high distribution coefficient (kD) for a H2SO4 solution between 2 and
4 mol/L. The proposed reaction is shown in Equation (3).

Sc(SO4)
3−
3 + 1.25 (((RNH3)2(SO4)2)↔ (RNH3)3Sc(SO4)3 ·(RNH3)2SO4 + 1.5 SO4)

2−
4 (3)

The extraction of Sc from acidic sulfate solutions by bis(3,5,5-trimethylhexyl) (NH4)2SO4 was
found to have stoichiometry of (R2NH2)4ScOH(SO4)3, where R is 3,5,5-trimethylhexyl [28].

A previous paper [16] stated that the primary amine N1923 extracted Sc(III) as Sc(OH)2+ from
thiocyanate and nitrate-thiocyanate solutions. In another investigation, scandium was quantitatively
extracted from 0.1 mol/L of malonic acid (H2A) by 4% Amberlite LA-1 (secondary amine R2NH) at a
pH of 2.4 to 5.4. Moreover, it was selectively recovered from the organic phase using 0.5 mol/L HCl,
leaving it with the remaining impurity metals such as Cu(II), Fe(III), U(VI), and Ti(IV) [76].

Tri-benzyl amine, primene JMT, tributylamine, and tri-iso-octylamine were also investigated as
extractants and found to be unsuitable for a variety of purposes. Among xylene, toluene, benzene,
chloroform, carbon tetrachloride, hexane, cyclohexane, and kerosene tested as solvents, xylene was
found to be the most efficient.

The following reaction was used to extract the soluble Sc(III)-malonate anion (A−) complex
from the scandium solution (Equation (4)):

2Sc(A)3−
3 + 3((R2NH2)2 A)↔ 2(R2NH2)3Sc(A)3 + 3A2− (4)

A previously published paper [70] investigated the separation of Sc and Y from Ln using
different quaternary ammonium salts Aliquat 336, MAN, MDA, and TBHAN. The results showed
that Aliquat 336 had the maximum extraction efficiency under the presented experimental conditions.
However, the distribution ratios of lanthanides dropped according to their increasing atomic order.
Scandium was found to be in the extraction sequence between samarium and gadolinium [78].

2.3. Solvating Extractants
Organic compounds containing –C=O and –P=O groups, such as ketones, ethers, and phos-

phates, are commonly used as solvating extractants. The extraction of elements is based on the solva-
tion of neutral inorganic compounds or complexes by extractants containing electron donors [60]. By
adjusting the pH, it was possible to achieve selective extraction of Sc(III) by mesityl oxide (4-methyl-
3-pentene-2-one, MeO) from a sodium salicylate solution including Fe(III), Ti(IV), V(V), Bi(III), Cr(VI),
Zr(IV), Mo(VI), La(III), and Th(IV) [86]. Sc(C6H4(OH)COO)3·3MeO is the most probable extracted
species, and the extraction mechanism usually requires solvation of scandium salicylate. There are
four types of neutral organophosphorus compounds that are often employed as solvating extractants:
trialkyl phosphate, dialkyl-alkylphosphonate, dialkyl-alkylphosphinate, and trialkylphosphine oxide
(Figure 4).

The neutral OPCs are presented in the following decreasing order of the electron density of the
phosphoxyl group: phosphates, phosphonates, and phosphinates, which are followed by phosphine
oxides. As a result, the strength of their association with metals decreases in the same manner as the
preceding order [77].

TBP is commonly utilized to extract, separate, and concentrate REEs, including scandium. Based
on the literature, the extraction of Sc and Th can be achieved in the concentration range of 7–8 mol/L
HCl by using a concentrated TBP solution [87].
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Nevertheless, due to the substantial co-extraction of Zr, the separation of Sc and Zr using TBP
was not feasible. Furthermore, the high acidities required for high scandium extraction lead to various
drawbacks, which can be detrimental. Because only solutions with HCl concentrations greater than 8
mol/L allow the complete extraction of Sc(III) and, simultaneously, the same conditions enable the
total extraction of iron, the separation of Sc from Fe is challenging [81].

P350 was found to have a greater extraction efficacy than TBP for the extraction of scandium
from hydrochloric acid solutions as well as a higher selectivity over a wide range of interfering
elements, like iron. Sc(III) was recovered as ScCl3·3(P350) in n-heptane with the −P=O group of the
phosphate incorporated, as shown in Equation (5):

Sc3+ + 3P350 + 3Cl− ↔ ScCl3·3 P350 (5)

Zhang and collaborators [78] described a technique to produce ultrapure Sc2O3. The procedure
is divided into two SX cycles: the first cycle includes removal of Zr from the leachate (HClO4 solution
of 6 mol/L) with concentrated TBP at an O/A phase ratio of 1.

In the second cycle, an organic phase containing 40 vol% of P350 in kerosene was used for the
extraction of Sc and its separation from interfering metals such as Ca, Al, Mn, Ti, Y, and lanthanides
(Ln) in three stages with an O/A phase ratio of 1.9:1. In these three steps, 1 mol/L HCl was used to
entirely recover the Sc from the loaded organic phase.

Following precipitation with H2C2O4 and thermal treatment at 800 ◦C, approximately 94% of
the scandium was recovered as Sc2O3. The extraction of scandium from aqueous solutions (leachate)
containing high concentrations of HCl and H2SO4 acids was investigated using C923 and C925. C923
and showed high scandium extraction in the concentration range between 2.0–7.0 mol/L H2SO4 with
an excellent separation factor for Fe [70].

Scandium and iron extraction was significant with C923 in an acidic medium of concentration
lower than 1 mol/L H2SO4, resulting in unsatisfactory separation. C925 required an acidic medium
range of 6–8 mol/L H2SO4 to separate Sc from Fe. In the TiO2 production, the final waste effluents
typically contain about 2 mol/L sulfuric acid. As a result, C923 was proposed as a better extractant
than commonly used (e.g., TBP and P204) for the separation of scandium from other metals such as
iron and titanium [70].

With increasing solution concentration, the extraction of Sc increases, indicating a solvating
extraction mechanism. Scandium can also be extracted from low-acidic solutions using neutral OPC
extractants. For example, scandium extraction was significant under optimal conditions in low acidity
salicylate media. Scandium can also be separated from Y(III) and La(III) depending on their pH
sensitivity [82]. The selectivity of commonly used neutral phosphoric extractants (TBP, P350, C925,
C923) is presented in Table 1.

2.4. Chelating Extractants
Acidic functional groups like –OH, =NOH, and –SH as well as coordination functional groups

like =CO, =N−, and≡N− are found in chelating extractants. Several studies have been published that
demonstrate the extraction of Sc, Y, La, and other transition metals using acidic β-diketone extractants
such as HTTA and HPMBP [88–90]. It is commonly accepted that scandium extraction by an acidic
β-diketone extractant (HA) proceeds through cation exchange and chelating processes. Based on
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Equation (6), the cation exchange mechanism could be pointed out. The formation of self-adduct
species following the solvation by HA molecules via Equation (7) occurred in the presence of excess
extractants [77,86].

Sc3+ + 3HA↔ ScA3 + 3H+ (6)

Sc3+ + 4HA↔ Sc(A)3·HA + 3H+ (7)

Aqueous anions can also join the extracted complex through a method that is comparable to
solvation, as previously stated. Researchers found that in weak acid solutions, scandium ions are
coordinated with two extractant molecules 1-(2-ethylphenyl)-3-methyl-4,5-dihydro-1H-pyrazol-5-one
(HA) and three perchlorate ions when extracted with chelating reagents and perchlorate, as shown in
Equation (8) [91].

Sc3+ + 2HA + 3ClO−4 ↔ Sc(HA)2(ClO4)3 (8)

With the use of HTTA in an aromatic solvent, scandium can be recovered quantitatively from
solutions containing considerable amounts of iron and manganese. After reducing iron to the ferrous
state, scandium can be recovered from the solutions in the pH range of 1.8–2.0 [88]. After that, a
dilute mineral acid was used to strip it efficiently. According to Wand and Cheng [2], scandium
in HCl and NaClO4 solutions was separated using 0.05–0.1 mol/L of N-antipyrinylformamide in
chloroform, then recovered by an acidic aqueous solution of pH in the range 3.0 to 3.5, and finally
precipitated by potassium hydroxide at pH 8.5. The precipitate was filtered, washed, and calcined to
produce a 99.9% pure scandium.

2.5. Synergistic Systems
The most utilized compounds for synergistic solvent extraction of scandium are chelating and

solvating extractants. It was discovered that the scandium extraction from hydrochloric solutions
using a TBP-loaded solid support and a synergist with di-isooctyl methyl phosphonate (DIOMP) was
greatly enhanced [89].

In comparison with TBP alone, the synergistic system significantly improved the separation
factors for Sc over W, Al, and Y, increasing them from 20–60 to 600–1000. This resulted in the ability
to extract scandium from diluted HCl solutions with less extractant than was previously achievable.

Wang and collaborators [55] postulated that the (trialkylphosphine oxide) TRPO impurity
present in lower purity C302 plays a synergist role in scandium extraction based on the observation
that un-purified C302 has a substantially better Sc extractability than purified C302.

Hirashima and collaborators [90] found that adding HTTA to P204 had a synergistic effect on
the extraction of La(III) from a medium-containing chloride, whereas adding tributyl phosphate and
acetyl acetone had an antagonistic impact.

Sudersanan [91] discovered that adding HTTA to P204 had a synergistic impact for extracting
Ln from a medium containing chloride, whereas adding TBP, AA, or TOA had an antagonistic effect.
Sudersanan also reported that Sc could synergistically be extracted by HTTA and P204, which was in
agreement with the findings of [90]. Equation (9) shows the proposed extraction process:

Sc3+ + 2(P204)2 + HTTA ↔ Sc(P204·DEHP)2 ·(TTA)2 + 3H+ (9)

According to [92], a synergistic effect between the HPMBP and TBP was observed. The extraction
of REEs presented elements other than Eu from 1 mol/L sodium perchlorate and perchloric acid by
0.2 mol/L of HTTA in carbon tetrachloride.

For Ln(III) extraction, HPMBP systems containing phosphine oxide, sulphoxide, and phosphine
sulphide demonstrated synergism [93,94]. According to the literature, the use of HTTA or HPMBP
in conjunction with the Aliquat 336 resulted in considerable synergistic effects in the extraction of
specific trivalent lanthanides and actinides [95,96].

Even though there are numerous publications in the literature of synergistic systems for the
extraction of Ln with chelating extractants, only limited information has been documented for
scandium up to the present. A valid hypothesis is that the synergistic effects of the aforesaid systems
on the extraction of scandium may be predicted based on the near chemical similarities between
Sc(III) and Ln(III).

As a result, the SX of scandium in combination with synergistic systems is an interesting research
task. A number of techniques concerning the synergistic extraction of scandium in association with
systems comprising chelating extractants are presented in Table 2.



Materials 2022, 15, 2376 15 of 39

Table 2. Some potential approaches for synergistic scandium extraction using chelating extrac-
tant mixtures.

Type Examples References

Chelating and
acidic extractants

Beta-diketone with phosphoric acid,
carboxylic acid [97–99]

Chelating and
solvating extractants

Beta-diketone with phosphate,
phosphine oxide, phosphine

sulphide, and sulphoxide
[92–94]

Chelating and
basic extractants Beta-diketone with aliquat chlorides [95,96]

3. Processes for Scandium Recovery from Various Sources
The metallurgical processes for recovering scandium from different resources are reviewed in

this section. Figure 5 gathers some of the scores, wastes, discharges, and disposal effluents. The
objective is to select alternatives allowing scandium extraction, as a secondary element and put its
recovery into the major flow-chart for the main metal extraction [1].
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Figure 5. Scandium recovery from different sources.

3.1. Scandium Recovery from Its Ores
Thortveitite and kolbeckite, two scandium minerals with high scandium content, are found in

Madagascar and Norway’s thortveitite-rich pegmatites. Scandium and yttrium are found in Norway
as a silicate called 2SiO2•Y2O3•Sc2O3 [97]. Figure 6 shows the chemical composition of another ore
found in Madagascar with a Sc content of 42.6%, which looks to be a complex silicate of scandium,
zirconium, and aluminum [1]. Sc can be recovered from the two kinds of thorveitite ores by fractional
sublimation depending on the considerable difference in the sublimation points of their constituents.
The powdered ore and carbon were roasted to 900–1000 ◦C in the presence of a stream of chlorine
gas. Si, Ti, Al, Fe, and Zr chlorides were sublimated because their sublimation temperatures are
less than 350 ◦C. At around 967 ◦C, ScCl3 was sublimated and deposited in a high-purity state in a
zone where the temperature dropped to around 400 ◦C, whilst the YCl3 remained in the residue. In
the United States, scandium was obtained from thortveitite-rich mine tailings, such as those from
Darby, Montana [97]. As previously indicated, scandium-rich minerals are extremely rare. Only a
few deposits able to be extensively mined have been discovered around the world. Therefore the
recovery of scandium from other ores and waste products is very critical [100].
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3.2. Scandium Recovery from Rare Earth Elements Ores
Scandium, like yttrium (Y) and lanthanides (La), is a rare earth element that can be found in

nature [101]. Scandium concentrations range from 20 to 50 mg/kg in rare earth minerals such as
monazite and bastnasite [15]. Bastnasite, the main mineral in the ore, contains Sc, Y, La, Fe, Th, and
Ce, which accounts for nearly half of the REE mass in the Chinese ores.

The total extraction of the REEs, from the ore, including Sc, can be done by heating it in
concentrated sulfuric acid at 250–300 ◦C and then leaching it using water. Th, Fe, Ca, F, and P are
among the impurities co-leached into the liquid phase [102].

To extract scandium from a mixture of other metals, acidic OPCs such as P204, HEHEHP, and PC-
88A can be utilized. With the use of HEHEHP as an extractant, sulfuric acid at concentrations ranging
from 1–5 mol/L with ~20% co-extracted iron was suitable for extracting Sc from the solution [54]. With
P204, Sc was extracted with over 90% efficiency from a leachate composed of 1 mol/L hydrochloric
acid, leaving most of the Y and La in the solution [14]. However, due to the difficulty in stripping
with acidic solutions, the applicability of these extractants is limited. There are trace concentrations
of Sc present in the ionic-adsorption rare earth deposit (IARED) in China (about 10 mg/kg); however,
these are readily leached from the deposit [61].

Digestion with solutions containing sulfate salts and precipitation by oxalic acid, as illustrated in
Figure 7, concentrates the REEs in the IARED. In order to produce rare earth oxides, their concentrates
are calcined. Scandium oxide and other rare earth oxides are dissolved together in HCl.

Additionally, scandium was separated from other REEs using two SX circuits developed by
Liao and collaborators [71]. A sulfated kerosene solution containing naphthenic acid and iso-octanol
was used for the extraction process. In this study, the scandium separation factors (β = Sc/REEs)
were greater than 104, which confirmed that the scandium could be well separated from the other
REEs. The Sc was enriched from 0.02–0.04% to 15–20% in rare earth oxides in the first circuit of SX,
which used a cross-current protocol with 10 stages at an A/O phase ratio of 5:1.
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In the second circuit, the obtained concentration of scandium was refined to high purity of 99.9%
using a counter-current circuit with three extraction stages and three rounds of scrubbing. Scrubbing
and stripping were carried out using two different solutions containing 0.35 mol/L and 1 mol/L
of HCl, respectively. For the time being, China is the world’s leading exporter of rare earths, and
some scandium is recovered during the rare earth-processing process. Since Sc and other REEs have
chemical properties that are very similar, it is difficult to distinguish and separate between them.

To acquire high-purity scandium products, precise flow-charts procedures must be used, in-
creasing the cost of both capital and operational equipment.
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3.3. Scandium Recovery from Uranium Ores
Most uranium ores, including uraninite, contain traces of scandium. In 2020, the uranium

production worldwide was 47,731 tons, from which 41% were produced in Kazakhstan, 13% in
Australia, and 8% in Canada [103].

Consequently, separation of scandium as a by-product of uranium processing is of critical
relevance in the nuclear industry. According to Lash [104], the uranium ores were ground, powdered,
and leached with H2SO4. Then, it was found that the solution contained up to 1 mg/L Sc2O3.
The uranium in the H2SO4 leachate solution can be entirely extracted using 0.1 mol/L of dodecyl
phosphoric acid. However, it was impossible to recover the co-extracted Sc, Th, and Ti with U using
HCl solution of 10 mol/L. By treating the 0.1 mol/L of dodecyl phosphoric acid with HF, both Sc
and Th were precipitated. Subsequently, the accumulated Sc and Th could be recovered, as shown in
Figure 8 [104].

The aqueous phase was filtered to remove the scandium and thorium fluoride precipitates,
which contained 10% Sc2O3 and 20% ThO2, although the filtrate still included soluble titanium
fluoride. Scandium hydroxide precipitate was formed by dissolving the precipitate in a 15% NaOH
solution at 75–90 ◦C for 4 h. Following filtration, the Sc(OH)3 was dissolved with a specific concen-
tration of HCl acid to ensure that impurities such as Ti, Zr, Fe, and Si were hydrolyzed. To separate
Sc from the co-dissolved uranium and iron, it was precipitated with oxalic acid. The produced
Sc2(C2O4)3 was thermally treated at 700 ◦C to yield an oxide product with a purity of 99.5%.
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The preceding procedure is complicated by the fact that it involves many precipitation and
dissolution steps. Additionally, the use of HF as a precipitation reagent may result in environmental
contamination. Ross [24] proposed an SX technique for recovering scandium from uranium mill
waste solutions using a primary amine such as Primene JMT as the extractant. Quantitative extraction
of Sc was achieved in a small-scale pilot plant operation using 2.5% Primene JMT in kerosene at an
A/O ratio of 50:1 from a waste solution that contained 0.6 mg/L of Sc.

Scandium was recovered from the organic phase using a 2 mol/L NaCl solution (pH of 1) at
an A/O ratio of 1:10. Finally, an ammonia solution was used to precipitate the scandium. However,
because of the risk of uranium radioactivity, the contamination of the environment is still possible.

3.4. Scandium Recovery from Ti and Zr Ores
Sc can be found in substantial concentrations in a variety of Ti minerals, including ilmenite

(FeTiO2) and rutile (TiO2). For example, the magneto-vana-ilmenite ore (an ilmenite with a high
vanadium content) in Panzhihua, China contains 0.002–0.004% Sc2O3 [105–107].
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Titanium minerals are mostly found in Australia, Canada, India, Norway, and South Africa,
with the rest of the world following closely after. The current global production of ilmenite is around
4.8 million tons per year, resulting in a possible yield of 96–194 tons of Sc2O3 from ilmenite [108].

Ilmenite is frequently processed further to make, among others, synthetic rutile and titaniferous
slag. It was observed that the scandium was concentrated in the slag (e.g., 128 mg/kg [107]). Tailings
had substantial levels of impurities in addition to scandium (40% SiO2, 16% FeO, 15% CaO, 14%
MgO, 5.8% Al2O3, and 5.3% TiO2). The chlorination begins by fusing the Ti feed components together,
resulting in vaporous TiCl4 [109].

Because the Sc is contained mostly in the residue or in the dust as scandium chloride, its recovery
is feasible [110]. It has been stated that the dust includes a significant concentration of scandium, at
least 132 ppm [108]. Figure 9 presents the flowchart of a process leading to ca. 90% recovery of Sc by
treatment of ilmenite slag [111].
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Figure 9. The process of scandium recovery from the ilmenite slag, adapted from [111].

The process comprised the grinding of the slag, its roasting it with Na2CO3 at approximately
950 ◦C, and, finally, leaching it with 30% HCl at 80 ◦C and an S/L rate of 1:2. A total of 94% of the
scandium was recovered from the leachate solution using kerosene containing 30% P204 at an A/O
ratio of 20:1 and only 2.2% Fe co-extraction. Scrubbing with 5 mol/L HCl removed the extracted iron,
while 2 mol/L NaOH recovered the scandium. After dissolving the scandium hydroxide precipitate
in HCl, Sc was precipitated using oxalic acid. After heat treatment of the Sc2(C2O4)3 at 800 ◦C, a high
purity of 99% of the Sc2O3 product was obtained. Feuling and et al. [112] obtained a patent for a
procedure to recover Sc from a Ti chlorination residue using TBP as an extractant (Figure 10).



Materials 2022, 15, 2376 19 of 39
Materials 2022, 15, x FOR PEER REVIEW 20 of 41 

 

 

 
Figure 10. Flow-chart for scandium recovery from titanium-bearing wastes, adapted from [112]. 

The radium was removed from the leachate solution by adsorption on fresh BaSO4 
after the residue was leached with 6 mol/L HCl. TBP was used to separate scandium 
from primary elements such as sodium, calcium, and magnesium, as well as minor ele-
ments such as thorium, yttrium, and lanthanides in the filtrated solution. The co-
extracted iron was left in the organic phase after the scandium stripping by 0.1 mol/L 
HCl [112]. 

Yagmurlu et al. [113] explained the potential of Sc recovery from a liquid containing 
iron chloride in the TiO2 production plants by the ScaVanger project. Additionally, the 
revolutionary ScaVanger processing method presents a comprehensive, viable, more en-
vironmentally friendly, and customizable process for generating Sc, Nb, and V com-
pounds. 

According to the flow-chart, ammonia was used to precipitate the scandium content 
as Sc(OH)3, which was then decomposed at 600 °C to obtain Sc2O3. 

With a concentration of roughly 2 mol/L H2SO4, the hydrolytic solution from TiO2 
production in the traditional sulfuric acid process contains 15–20 mg/L of Sc and other 
impurities, such as SiO2, Fe, Zr, Ti, and Lu [44]. The sulfuric acid solution contains Sc(III) 
ions, which confirm that the scandium can be extracted straight from the solution using 
SX. The authors investigated the extraction of scandium using C923 as a test method. 
Scandium was recovered with a high efficiency, while Ti, Fe, and Zr were extracted with 
low efficiency. In the scrubbing steps, acidic H2O2 or diluted H2SO4 were used to remove 
the co-extracted Ti. A scandium production with 96% purity and 95% recovery was 
achieved using 6–8 stages of SX, 7–9 stages of scrubbing, and 1–2 stages of recovery. 

Scandium could be recovery from the mineral sands [114], which are processed for 
obtaining of zirconium. Usually, zircon sands are treated with HCl at around 1000 °C 
and, subsequently after zirconium separation, the scandium was found in the residual 
solution at a concentration of 0.34% [115]. Scandium can be extracted from zircon chlo-
rination waste using a similar method like that used for the scandium recovery from Ti 
ores [112]. Scandium recovery from Ti and Zr residues is most typically accomplished 
using acidic or neutral OPCs as extractants. Unfortunately, because of the high levels of 
Ti and Zr in the residues, standard washing methods using diluted acids are unable to 
remove them. The co-extracted Ti and Zr can be eliminated with acidic hydrogen perox-
ide and fluoride, respectively, according to the literature [110]. 

Figure 10. Flow-chart for scandium recovery from titanium-bearing wastes, adapted from [112].

The radium was removed from the leachate solution by adsorption on fresh BaSO4 after the
residue was leached with 6 mol/L HCl. TBP was used to separate scandium from primary elements
such as sodium, calcium, and magnesium, as well as minor elements such as thorium, yttrium, and
lanthanides in the filtrated solution. The co-extracted iron was left in the organic phase after the
scandium stripping by 0.1 mol/L HCl [112].

Yagmurlu et al. [113] explained the potential of Sc recovery from a liquid containing iron
chloride in the TiO2 production plants by the ScaVanger project. Additionally, the revolutionary
ScaVanger processing method presents a comprehensive, viable, more environmentally friendly, and
customizable process for generating Sc, Nb, and V compounds.

According to the flow-chart, ammonia was used to precipitate the scandium content as Sc(OH)3,
which was then decomposed at 600 ◦C to obtain Sc2O3.

With a concentration of roughly 2 mol/L H2SO4, the hydrolytic solution from TiO2 production
in the traditional sulfuric acid process contains 15–20 mg/L of Sc and other impurities, such as
SiO2, Fe, Zr, Ti, and Lu [44]. The sulfuric acid solution contains Sc(III) ions, which confirm that
the scandium can be extracted straight from the solution using SX. The authors investigated the
extraction of scandium using C923 as a test method. Scandium was recovered with a high efficiency,
while Ti, Fe, and Zr were extracted with low efficiency. In the scrubbing steps, acidic H2O2 or diluted
H2SO4 were used to remove the co-extracted Ti. A scandium production with 96% purity and 95%
recovery was achieved using 6–8 stages of SX, 7–9 stages of scrubbing, and 1–2 stages of recovery.

Scandium could be recovery from the mineral sands [114], which are processed for obtaining
of zirconium. Usually, zircon sands are treated with HCl at around 1000 ◦C and, subsequently
after zirconium separation, the scandium was found in the residual solution at a concentration of
0.34% [115]. Scandium can be extracted from zircon chlorination waste using a similar method like
that used for the scandium recovery from Ti ores [112]. Scandium recovery from Ti and Zr residues is
most typically accomplished using acidic or neutral OPCs as extractants. Unfortunately, because of
the high levels of Ti and Zr in the residues, standard washing methods using diluted acids are unable
to remove them. The co-extracted Ti and Zr can be eliminated with acidic hydrogen peroxide and
fluoride, respectively, according to the literature [110].

3.5. Scandium Recovery from Tungsten and Tin Ores
Scandium can be found in tungsten/wolfram (W) minerals like wolframite (Fe–Mn-W) as

FeWO4/MnWO4 and scheelite as CaWO4, which are mined and used to make around 37,400 tons
of W concentrates each year. Tungsten ores are typically decomposed in an alkaline condition to
produce an alkali tungstate solution, while Ca, Fe, and Mn are precipitate immobilized.

It was shown that scandium is present in substantial quantities in the residues from the treat-
ment of tungsten ores [116,117]. As an example, scandium was found to be enriched to a level of
around 0.04–0.06% in wolframite residues. Traces of scandium were also found in tin ores such as
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cassiterite (SnO2). A previous study discovered unusually high scandium content (ca. 1000 mg/kg)
in wolframite and cassiterite in the Erzgebirge deposit [118].

A significant effort has been made to extract scandium from tungsten-containing materials. Due
to the fact that scandium is predominantly present in the residue as Sc(OH)3, can be transformed
to soluble salts via leaching by acids, such as H2SO4, HCl, and HNO3. Due to the production of
stable Sc-Cl complexes, HCl can selectively leach scandium [119]. Scandium can be recovered from
wolframite residues according to the flowchart presented in Figure 11, which also includes HCl
leaching and P2O4 SX.

Concentrated HCl at 100 ◦C was used to dissolve scandium, obtaining a concentration of
95.3%. The feed solution had an acidity of approximately 2 mol/L of HCl and a scandium content of
approximately 100 mg/L as Sc2O3. The scandium was extracted using P2O4 in kerosene at an A/O
ratio of 1:4, yielding approximately 90% scandium. In the scrubbing stage, 3.5 mol/L of the HCl
solution was used to remove the co-extracted elements, such as Fe, Ca, Mg, Al, REEs, and Si, from
the organic phase.

In two stages, 2 mol/L of sodium hydroxide was used to completely recover the scandium.
The resulting Sc(OH)3 had a Sc2O3 percentage of 70–78%, with a total recovery of 76–89%. Kim
et al. and Gongyi et al. [119,120] indicated that about 100% of the scandium was extracted with the
P204-impregnated resins from a leachate solution containing around 60 mg/L of Sc, 39 g/L of Fe, 19
g/L of Mn, and 0.40 g/L of W. The 2 mol/L hydrochloric acid can be used to remove the co-extracted
Fe.
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Wakui et al. [121] employed high-pressure leaching with strong HCl at 120 ◦C to dissolve a small
amount of wolframite. The scandium in the filtrate was recovered using IX with an impregnated resin
(PC-88A) after filtering the yellow-white tungstic acid precipitate.

After smelting cassiterite, scandium was extracted from a hydrochloric leachate containing 0.2
mg/L Sc, 0.4 mg/L Y, 68 mg/L Ca, 28 mg/L Fe, 27 mg/L Al, and 9.2 mg/L Nb. The main drawbacks
of the hydrochloric-leach method are the hydrochloric evaporation and the creation of hazardous
by-products, resulting in higher operating costs and contamination.

High scandium-leaching efficiencies are also achieved using the sulfuric acid-leach technique,
but without the production of toxic chlorine gas. According to the literature [110], a wolframite
ore comprising 0.04% scandium, 69.3% tungsten, 11.6% iron, and 4.8% manganese may be leached
with strong sulfuric acid at elevated temperatures to obtain 94.9% Sc. By digesting tungsten, which
contains about 23.7% iron, 22.5% manganese, 0.06% scandium, and 2% tungsten, with 18 mol/L
of sulfuric acid for about 6 h at temperatures ranging between 100 and 140 ◦C, Vanderpool [122]
demonstrated that nearly 100% of the scandium was leached. A carbon source was added to the
solution in order to decrease the Mn content and then totally digest Sc, Mn, and Fe before the process
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was completed. Roughly 23.5 g/L of iron, 16 g/L of manganese, 0.15–0.23 g/L of tungsten, and
around 0.04 g/L scandium were found in a leachate solution. Most of the W (84%) was left in the
residual acid as H2WO4.

Rourke [123] described a method for recovering scandium from the waste of the tungsten
production. For an operating time of 2 h, the wolframite residue was treated with 1 mol/L of sulfuric
acid, including a 6% hydrogen peroxide solution at a S/L ratio of 1:25. After filtration of the slurry,
the resulting solution had the following composition: 5.6 g/L of manganese, 3 g/L of iron, and 14
mg/L of scandium.

By using HTTA in toluene as a chelating extractant, scandium was totally extracted from the
leachate in the pH range between 1.8 and 2.0. Sc(OH)3 or Sc2(C2O4)3 was precipitated by ammonia
or oxalic acid after the scandium was recovered with 3 mol/L of hydrochloric acid. Zhong and
collaborators [117] described a method for extracting scandium from W-slag sulfuric acid-leachate
based on the presented diagram in Figure 12.
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In order to remove thorium (Th), 0.2% of N1923 in kerosene at an A/O ratio of 4:1 was used to
extract it from the leachate solution. This step was carried out after the reduction of ferric to ferrous
ions by iron powder for removing the iron from the solution. An A/O ratio of 4:1 was used to recover
more than 99% of the scandium from kerosene containing 4% N1923.

Furthermore, 3 mol/L of sulfuric acid and 3% hydrogen peroxide were used to scrub the
co-extracted REE, iron, and titanium. Subsequently, the 2 mol/L hydrochloric acid was used for
scandium recovery.

By precipitation via oxalic acid (C2H2O4) and thermal treatment of the Sc2(C2O4)3 precipitate, a
Sc2O3 product with more than 90% purity and an 82% recovery rate was achieved. Scandium-rich
wastes from the processing of tungsten and tin ores might be considered substantial sources of the
metal.

Leaching with strong hydrochloric acid is possible; however, leaching by H2SO4 was preferred
because of its lower pollution. Extraction and separation of Sc from Fe, Mn, and W in the leachate
solution can be achieved using OPCs extractants. Scandium SX from H2SO4 solutions is easier with
chelating and primary amine extractants than with HCl solutions.

3.6. Scandium Recovery from Nickel Ores
Scandium-rich nickel ores found in Australia are regarded as principal sources of the metal. It is

estimated that the Ni and Co deposits in New South Wales with typical concentrations 130 to 370
mg/kg contain between 3500 and 6500 tons of scandium [3,21,124]. Scandium can be recovered as a
by-product during the Ni and Co extraction.
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Nickel (1–2%), cobalt (0.05–0.10%), iron (15–50%), Al (2–5%), and trace concentrations of
scandium are all found in a standard nickel laterite ore (0.005–0.006%) from the above mentioned
sources [16].

Using the high-pressure acid-leaching technique, scandium was readily leached from nickel
laterite ores with H2SO4, yielding an impressive 94% recovery of the scandium [125]. When Fe
and Al have been neutralized in the pH range between 2 and 4, Ni and Co can be recovered as
sulphide precipitates, and scandium can be precipitated by increasing the pH above 4 [126]. It is
noteworthy that the scandium is co-precipitated with a number of contaminants in this case. After
the neutralization and precipitation processes, the scandium can be extracted from the impurities by
using SX as an alternate separation method. For example, using acidic OPCs such as P204, PC-88A,
and C272, significant scandium extraction was obtained from a solution with a pH range between 1.0
and 1.5, as shown in Figure 13 [19].
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Following the Sc < Zn < Ca < Al < Cr < Mg < Ni extraction order, the selectivity was quite high.
Several mining firms are now developing industrialized processes for the recovery of scandium from
nickel laterites, which are projected to produce considerable quantities of scandium oxides in the
future. One such example is a hydrometallurgy unit at the Nyngan project, which is expected to
produce around 28,000 kg of Sc2O3 per year [127]. High-purity Sc2O3 production is expected to be
accessible at a rate of 10,000–40,000 kg per year.

3.7. Scandium Recovery from Tantalum and Niobium Ores
The tantalum (Ta) mining industry in the United States also produced small quantities of

scandium as a by-product of its mining operations [108,128]. Following leaching with water, a
leachate containing scandium along with over 20 other metals in substantial quantities was produced
from the tantalum sulphate tailings [129,130].

The results of the investigations showed that Sc could be entirely recovered from a solution of
50–200 g/L sulfuric acid using OPCs containing phosphoric and phosphonic acids, such as P204 and
PC-88A. Although niobium (Nb), Ta, Y, and Fe were successfully separated, significant amounts of
Zr, Hf, Ti, Th, and U were also co-extracted. To remove thorium from the organic solution, a 350 g/L
sulfuric acid solution was used, followed by a 0.1 mol/L HF solution to remove other co-extracted
elements. The recovery process from the loaded organic phase was carried out using 0.5–5 mol/L
hydrogen fluoride solutions.

The observed order of recovery was Th > Ti > Zr > Hf > Sc > U > Sc. This resulted in the
separation of Sc from Th, Ti, Zr, and Hf after 3–15 steps of counter-current back extraction as well as
its recovery from uranium through six steps of fractional back extraction [126]. The most significant
drawback of this procedure is the extensive use of HF acids, which poses a threat to the environment.
It has been observed that the Nb resources in the Russian Arctic region include scandium oxide in
unusually high concentrations ranging from 0.1 to 0.3% [131]. In some ores, niobium (7% Nb oxide)
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and REEs are found in combination with each other (10% of REE oxides). The rare earth minerals
(such as Sc, Y, and La) were converted to hydroxides using a hydro-pyro-metallurgical treatment that
included digestion with 45% NaOH [19]. In order to dissolve the scandium content in the hydroxide
cake, HCl was used. A counter-current SX circuit using 80% TBP successfully recovered and separated
Sc from the leachate, which contained rare earth, aluminum, and alkali-earth elements. Various
hydrochloric acid concentrations can be used to eliminate the co-extracted Fe and U. Precipitation of
the strip liquid with C2H2O4 leads to the formation of the Sc2(C2O4)3 precipitate, which was treated
by heating to provide a 99.9% pure Sc2O3 product. The major improvement between this process and
others is the separation of Sc from Nb and Ti via selective leaching and dissolution.

3.8. Recovery of Scandium from its Alloy Scraps
Scandium is wasted in large concentrations during the manufacturing of Sc-containing alloys

like iron-scandium, aluminum-scandium, and magnesium-scandium due to its high reactivity with
O, Cl, and F, particularly at high temperatures [16].

The high-Sc-Mg alloy, which is processed in a smelting process, is composed of 86% Mg and 14%
Sc. Sc can be found in large concentrations in the salts containing wastes or metallic dross produced
during the smelting process. The magnesium-scandium alloy dross had an average composition of
65–76% Mg, 13–22% Sc, and 1–1.6% Fe. After a one-stage leaching by hydrochloric acid and SX with
P204, nearly 99% of scandium recovery and practically full separation from Mg could be obtained
(Figure 14) [16].
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During the SX stage, 99% magnesium and 90% iron were retained in the raffinate.
To remove the co-extracted Fe from the organic phase, HCl solutions with a low concentration

can be utilized. To obtain the Sc(OH)3 precipitate, the scandium was recovered by 5 mol/L of NaOH.
After thermal treatment, an oxide product was produced with 65.5% Sc, 0.6% Mg, and 0.4% Fe.
Scandium can also be recovered from scraps of aluminum and iron alloys. The considerable amount
of scandium present in the scraps formed during the Sc-alloy manufacturing cannot be considered as
a resource worthy for valorization. Furthermore, there is currently no reliable information about this
industrial processes suitable for this purpose.

4. Recovery of Scandium from the Bauxite Waste (Red Mud)
4.1. Acid Leaching

The bauxite waste (also named red mud (RM)) is frequently treated with acids to recover
scandium and the other REEs [129–134]. Zhang et al. [132], using hydrochloric acid to extract
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scandium from red mud (HCl concentration: 6 mol/L; L/S-ratio: 4; temperature: 50 ◦C; leaching
time: 1 h) obtained a Sc2O3 leaching rate of 82%. Wang et al. [133] also extracted scandium from the
RM by HCl-leaching and found out that the most critical parameter was the L/S ratio, whereas the
HCl-concentration had a significant effect only on the iron dissolution. The scandium leaching rate
was higher than 85% using an HCl concentration of 6 mol/L, L/S ratio of 5, temperature of 60 ◦C,
and reaction time of 1 h.

In addition, the HCl consumption during leaching was estimated to be ca. 21.2 mol/kg of RM.
Scandium was recovered by Xu et al. [134] by leaching for 1.5 h at 80 ◦C using hydrochloric acid of
7 mol/L concentration and an L/S ratio of 8. In another study, Tang et al. [135] observed that the
leaching of scandium from RM of particle size of 65–80 µm using sulfuric acid of 50% concentration,
an L/S ratio of 3, and a temperature of 90 ◦C and duration of 3 h was above 85%. A series of leaching
studies using different acids such as hydrochloric, nitric, sulfuric, acetic, methanesulfonic, and citric
acids were also carried out on Greek RM [136]. In the mentioned study, the effect of several param-
eters, including variation of acid concentrations, L/S ratio, leaching time, and temperature, were
investigated. The scandium content of the utilized Greek RM was approximately (ca. 120 mg/kg).
The results of this work indicated that the acid was utilized during the initial leaching stage for
increasing the pH, neutralizing the RM alkalinity, and dissolving the aluminosilicates. The percentage
of REEs extracted improved with the increase of the acid concentration, L/S ratio, and the leaching
duration. For mineral acids of 0.5 mol/L concentration, the leaching temperature had little effect
on extraction, while for citric acid leaching, the extraction of REE increased with the increase of the
temperature.

Hydrochloric acid leaching showed the highest REE extraction rate compared with other acids.
Because the different ionic radii of the REE from minerals, they do not show similar leaching rates in
specific environments [30,137,138].

At the following leaching conditions: 24 h of leaching time at room temperature with a 6
mol/L hydrochloric acid concentration and an L/S ratio of 50, the extraction rate of neodymium,
dysprosium, and yttrium was found to be greater than 80%, while this of lanthanum, cerium, and
scandium was from 70% to 80%. During a digestion time of 24 h at room temperature and an L/S
ratio of 50, the dissolution of iron increases with increasing acid concentration, from 5% at 0.5 mol/L
to about 60% at 6 mol/L hydrochloric acid.

The scandium extraction was found to show a very close relationship with Fe dissolution in
RM. About 50% of scandium was recoverable from RM with just minor Fe dissolution. On the other
hand, a small increase in the scandium extraction above 50% resulted in enhanced Fe concentration
in the solution [133].

Scandium was found in individual minerals or in the outer layer of iron oxide particles in the RM
because it was not evenly distributed throughout the iron oxide phases. Liu and collaborators [139]
observed that RM was constituted of hematite, goethite, quartz calcite, anatase, zeolite and gibbsite
as the mineral phases of the red mud. They also employed time of flight secondary ion mass
spectrometry (TOF-SIMS) and electron-probe micro analysis (EPMA) to check into the affinities of Sc
and Ga with the primary elements found in red mud, which included Fe, Al, Si, Ti, and Ca.

Scandium leaching from RM was assumed to be primarily regulated by diffusion from the
outermost surface of the iron particles. They also discovered that hydrochloric acid concentrations
less than 3 mol/L were favorable for maximum scandium leaching and less Fe dissolution into the
solution. Because Fe is easily dissolute in the acid digestion and the hematite (Fe2O3) is a major
chemical component of RM, different hydrometallurgical procedures were developed for extraction
of Sc and other valuable or precious metals from RM [18].

For the pretreatment, a reduction-sintering method was used, in which RM was mixed with
a carbon source, CaCO3, and Na2CO3 at 800–1000 ◦C. After that, a brown mud was obtained by
re-leaching alumina with hot water at 65 ◦C [21,25]. The brown mud after reduction included 90%
reduced iron as Fe3O4 and 99% from this product yield for pig iron. Scandium (420 mg/kg) was
found in the residue as well as TiO2 (19.4 wt%), Ln (1.47g/kg), and Y (180 mg/kg) [19]. Afterwards,
the pig iron was separated from the residue, which was dissolved with sulfuric acid, and the Ti was
recovered by hydrolyzing the leaching solution at 140 ◦C [18].

Following the recovery of Ti, the Sc can be extracted further by SX or precipitation from the
solution depending on the conditions. Ochsenkühn et al. [140] extracted Sc, La, and Y from RM by
selective leaching with dilute nitric acid under normal conditions without any pretreatments. Their
findings revealed that the best Sc (80%) and Y (96%) recovery was obtained by using 0.5 mol/L nitric
acid leaching for 24 h, a L/S ratio of 50, at room temperature.
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Moreover, they found that scandium has the highest leaching selectivity over Fe under these
conditions with only 3% dissolution of iron. This means that the pretreatments steps of the RM such
as screening, magnetic separation, and thermal treatment were unnecessary, because most of the
major RM components, particularly iron, were not significantly dissolved by this selective leaching
method.

The dilute nitric acid leaching approach was subsequently scaled up to a pilot plant running at
room temperature and pressure, as illustrated in the proposed flow-chart in Figure 15 [140].
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For the RM, containing high-hematite (Fe2O3) concentrations (>30 wt%), the carbo-thermal
reduction pretreatment is appropriate to recover or eliminate the iron [141].

Sulfuric acid can be employed as a digestion agent to dissolve the RM prior to the scandium
recovery because of its low cost and environmental impact. Due to the suitable leaching efficiency
of scandium, it is believed that direct acid leaching with dilute nitric acid is acceptable for RM with
a low iron oxide content (less than 30 wt%) [138]. Recently Boyarintsev et al. [142] evaluated the
leaching of scandium from the Russian RM using 2.0 mol/L Na2CO3 under carbonation conditions
(CO2 gas) in the pH range of 9.5–10.0.

The obtained results indicated that the concentration of Sc is highly variable and depends on
the ultrasonic treatment time, the Na2CO3 concentration, the temperature, and the pH value. In the
absence of CO2 gas, the maximum Sc concentration in one leaching step equivalent to 20% was found
when 1 mol/L NaHCO3 solution was used at 70 ◦C for 120 min, compared with 8.1% for 1 mol/L
Na2CO3 solution at 70 ◦C and 17.4% for 2 mol/L Na2CO3 solution at 90 ◦C.

Bioleaching was investigated by Kiskira et al. [143] as a new and environmentally compatible
method for scandium extraction from RM. Different parameters were studied using different microbial
cultures on Greek RM. They observed that the maximum scandium extraction was 42% when using
acetobacter tropicalis in a one-step bioleaching process at 1% S/L. Moreover, the main organic acids
produced were acetic, oxalic, and citric.

4.2. Solvent Extraction
SX is a frequently utilized process for scandium recovery from acidic solutions. OPCs such

as D2EHPA/HDEHP/P204, TBP, HEHEHP/Ionquest 801/P507, and C272 are mostly used for this
purpose. Several studies investigated the extraction of scandium from leachate solutions of RM using
the above extractants [2].

A general description of the scandium recovery procedure from RM leachate is presented in
Figure 16.
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In this context, Xu et al. [134] used 8 vol% of P204 for the scandium extraction from real RM
leachate solutions (HCl), achieving a 97.9% efficiency under the following conditions: A/O phase
ratio of 10, extraction duration of 2.5 min, and concentration of the alcohol (ethanol) additive 4
vol.%. Zhang et al. [144] used 1 vol% of P507 as extractant in kerosene to recover scandium from RM
leachate HCl solution (scandium content of 6.7 mg/L). Consequently, with an O/A phase ratio of 1
and extraction time of 15 min, the scandium extraction efficiency was greater than 90%. Following the
SX, the organic layer was scrubbed twice with 6 mol/L of HCl and distilled water, respectively, at an
O/A phase ratio of 3. Moreover, the recovery process was carried out under the following conditions:
2 mol/L NaOH, 15 min contact time, O/A phase ratio of 3, and temperature of 50 ◦C. Following
that, the Sc(OH)3 was additionally dissolved by 6 mol/L HCl and the pH of the produced solution
was adjusted to 1.5 using ammonium hydroxide prior to the precipitation step. Finally, a material
enriched in Sc2O3 with a purity of 66 wt% was achieved through the use of oxalic acid precipitation
followed by thermal decomposition at ~800 ◦C.

Liu et al. [145] evaluated the extraction performance of Sc from the synthetic leachate of sulfation-
roasted RM using OPCs (P204, P507, and V10). As a result, they observed that P204 has a high
extraction ability toward Sc. Furthermore, P204 can be directly applied to the real leachate of H2SO4-
roasted RM with a low concentration of Fe3+ and Si4+, and 96.5% Sc can be recovered from the organic
phase (P204/sulfonated kerosene).

Jiang et al. [146] performed comparable investigations where they extracted scandium from
a hydrochloric acid RM leachate solution with a scandium concentration of ~300 mg/kg using as
extractant kerosene containing 3 vol% P204 and 5 vol% naphthenic acid.

The purity of scandium oxide was around 50 wt%. In another study [147], a solution of 6 mol/L
hydrochloric acid was used to dissolve the RM for 4 h at 60 ◦C using a solid/liquid volume ratio of 4.
After extraction, the following composition was obtained: 8 mg/L of scandium, 9 mg/L of sodium, 7
g/L of iron, 12 g/L of calcium, 15 g/L of aluminum, and 3 g/L of titanium.

Scandium was subsequently extracted by adsorption on TBP-modified active carbon. However,
due to the co-adsorption of titanium, low adsorption efficiency of scandium was observed. Wang
and Li [145,148] mentioned that by using an emulsion LM carried by C272, it was possible to extract
scandium from the RM leachate solution.

Based on the acid leaching and solvent extraction procedure, Li and collaborators explored
the feasibility and mechanism of recovering Sc from a Sc-rich material. They observed that H3PO4
outperformed HCl, H2SO4, and HNO3 in separating Sc from impurities [30]. It was also shown that
if H3PO4 concentration was 6–8 mol/L and the leaching temperature was 120–140 ◦C, the leaching
period was 60–90 min and the L/S ratio was 10–12 mL/g, the leaching of Sc approached 90%.

Wang et al. [46] performed SX experiments for scandium recovery from a synthetic solution
based on Australian RM. This solution which contained 5.53 mg/L scandium was prepared by mixing
the sulfuric acid (1 mol/L) with the Australian RM at an L/S ratio of 10, heating it to 50 ◦C, and
allowing it to leach for 2 h.

Different extractants, such as an acidic OPC (P204, Ionquest 801 and C272), a primary amine
(Primene JMT), a carboxylic acid (V 10), and two chelating materials (LIX 984 N and LIX54-100), were
investigated to separate scandium from other metals in the synthetic leach solution. Scandium was
extracted using P204, Ionquest 801, C272, and Primene JMT with an efficiency of over 99%, as shown
in Figure 17 [46]. On the other hand, the mentioned OPC (P204, Ionquest 801, and Primene JMT)
presented high Fe co-extraction rates, being even higher than 54%.
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Figure 17. Extraction efficiency for different extractants at a pH of 1.5–2. (Shellsol D70 used as a
diluent containing 3% of the extractants at an A/O ratio of 5), adapted from [149].

Botelho et al. look towards recovering scandium and zirconium from RM after being leached
with 20% H2SO4. Separation studies were conducted out utilizing two C923, D2EHPA, Alamine
336, and TBP, and their mixes. It was found that at all pH values, C923 and Alamine 336 were more
selective for Zr than for Sc. At pH 1.5 and 2.0, D2EHPA was more selective for scandium extracting
89% and 40% of Zr, respectively as shown in Figure 18 which explains the practical steps of the
recovery process [150].

As a phase modifier, TBP was added to these three OPCs extractants (P204, Ionquest 801, C272)
in order to increase their first phase separation ability, which was unsatisfactory when used alone,
i.e., only one single component.

The organic system contained Shellsol D70 as a diluent, 0.05 mol/L P204, and 0.05 mol/L TBP
at an A/O ratio of 5. The temperature of the system was 40 ◦C, and the pH of the aqueous phase
0.25. The above operational conditions were determined to be the most effective for the scandium
extraction. It was possible to extract almost 99% of the scandium under these conditions, where Zr, Ti
and V were also added.

The precipitated Sc(OH)3 was obtained after the P204/TBP system was washed twice with
water and subsequently back extracted from the P204/TBP with NaOH.

Wang and collaborators [57] developed a potential flow-chart for the scandium recovery from
the H2SO4 RM leachate solution. According to their findings, P204 can commonly be used for the
scandium extraction from RM solutions due to its efficiency and capacity. Furthermore, a higher
scandium recovery rate can be obtained by combining P204 with TBP. Although acidic OPCs can
achieve high scandium extraction from leachate solutions, impurity metals, particularly Fe, may be
co-extracted depending on the leaching conditions.
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As a result, it is critical to investigate the best SX conditions in order to maximize the scandium
recovery from RM while minimizing other metals. In another study, the selective extraction of
scandium from the Greek RM was studied by Ochsenkühn et al. [151]. The flow chart of the
procedures is shown in Figure 19.
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The dried RM powder was sintered with sodium potassium carbonate and sodium tetraborate
at 1100 ◦C for 20 min, dissolved in concentrated hydrochloric acid (1:1), and then diluted with
1.5 mol/L hydrochloric acid. A chromatographic column (IX) loaded with Dowex 50 W-X8 cation
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exchanger pre-treated with 2 mol/L hydrochloric acid was used to pass the leachate solution. The IX
was followed by 1.75 mol/L hydrochloric acid elution of impurity metals such as Fe, Al, Ca, Si, Ti,
and Na and minor elements like Ni, Cr, Mn, and V followed by 6 mol/L hydrochloric acid sequential
elution of Sc, Y, and Ln.

The Sc, Y, and Ln eluate solution was adjusted to a pH value around zero with NH4OH before
SX using 0.05 mol/L of P204 in hexane at an A/O ratio of 10. An extraction efficiency of 99% was
obtained, which resulted in the scandium extraction into the organic phase, while most of the other
elements were allowed to remain in the aqueous one.

Scandium was then recovered from the strip liquid and purified as mixture of [Sc(OH)6]3− and
Sc(OH)3 using 2 mol/L NaOH at an O/A ratio of 1:1.

The recovered scandium solution obtained would next be diluted with hydrochloric acid before
being precipitated with oxalic acid. Following that, pure Sc2O3 could be produced by calcining
Sc2(C2O4)3. For the overall process, 94% of the scandium was recovered from the RM using a
sequence of roasting, acid digestion, IX, SX, and back extraction.

Wang et al. [57] investigated a selective acid leaching combination with SX of scandium from
an Australian RM and suggested a conceptual flow-chart for scandium recovery, which is shown in
Figure 20. SX with Primene JMT (first stage) was used to separate Zr and Ti from the RM, whereas
the second stage was carried out 0.05 mol/L P204 and 0.05 mol/L TBP for scandium recovery from
the leachate solution (1 mol/L H2SO4). Scandium was recovered into a liquid phase of [Sc(OH)6]3−,
which was then diluted with water to precipitate scandium as Sc(OH)3. To achieve pure Sc2O3,
additional purification processes such as the dissolution of Sc(OH)3 with hydrochloric or sulfuric
acid, precipitation as scandium oxalate, and calcination could be used.

Figure 20. The proposed flow-chart of scandium separation from Australian RM, adapted from [57].

Shoppert et al. [152] investigated the feasibility of selective Sc leaching from RM using a diluted
acid (pH > 4) with MgSO4. In this context, different parameters such as temperature, time, pH, and
MgSO4 concentration were tested to see how they affected the scandium extraction efficiency. They
observed that Sc can be extracted in excess of 63% at pH 4, 80 ◦C, after 1 h, whereas a higher content
could be extracted at pH 2. Furthermore, increasing the pH from 2 to 4 reduced the iron extraction
from 7.7% to 0.03%.

Pasechnik et al. [153] developed a method for selective scandium extraction by removing
silicon by sulfatization, during the first stage of scandium concentrate dissolving. They observed
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that increasing the acidity promotes the precipitation of NH4Sc(SO4)2, which effectively separates
scandium from impurities such as Al, Fe, Zr, Ti, and Ca as shown in Figure 20.

Recently, Shoppert et al. [154] studied the use of weak nitric acid (pH 2–3.5) to selectively leach
Sc from the red mud generated by the alkali fusion-leaching process. They observed that pH has
a substantial impact on the degree of Sc extraction. When the pH is reduced from 3.5 to 2, the Sc
extraction after 90 min of leaching at T = 70 ◦C increases from 10% to 68.5%, and the iron extraction
increases from 1.3% to nearly 5%. Lei et al. [155] devised a way to extract scandium and titanium
from red mud leachate solution using a neutralization precipitation and acid leaching methodology
as shown in Figure 21. They found that the precipitation efficiencies of scandium and titanium were
93.74% and 99.47%, respectively, under optimal conditions. Furthermore, according to their results,
scandium and titanium lost 6.3% and 5.9% of their value, respectively.

Materials 2022, 15, x FOR PEER REVIEW 33 of 41 

 

 

 
Figure 21. The proposed flow-chart of scandium separation from Guangxi Pinglu RM, adapted 
from [155]. 

This enables the development of novel sorption technologies and processes. Table 3 
summarizes the most recent studies and research on the scandium recovery from the 
RM. 

Table 3. Comparison of solvent extraction by OPCs for Sc recovery from red mud. 

Extraction Step Stripping Step 
Year/References 

Extractant E% Stripping Agent S% 
15% D2EHPA 

5% TBP 
99.00 2 M NaOH 95.40 (2017) [157] 

8% D2EHPA 
2% TBP 

99.70 
2 M NaOH 
+ 1M NaCl 

85.00 (2018) [158] 

16% D2EHPA 
4% TBP 

99.00 2 M NaOH 96.00 (2019) [159] 

100% TBP 99.00 Pure water - (2019) [160] 
60% Cyanex 272 
40% Cyanex 923 

98.00 10% H2C2O4 98.80 (2020) [59] 

15% D2EHPA 
15% N1923 

99.00 5 M HNO3 89.30 (2020) [42] 

10% D2EHPA 
5% TBP 

99.00 5 M NaOH 99.61 (2021) [161] 

10% D2EHPA 
5% TBP 

99.00 3 M NaOH 99.00 (2021) [162] 

An interesting study by Rout et al. [163] looked into how hollow fiber-supported 
liquid membranes (HFSLM) and SX techniques could be used to extract Sc from a mix-
ture of metals that included Cu, Ni, Zn, Fe, Co and Mn. They compared both strategies 
which could be valuable for industries, while Cyanex 272 was used as a mobile carrier. 
During their study, they investigated different parameters such as pH, Cyanex 272 con-

Figure 21. The proposed flow-chart of scandium separation from Guangxi Pinglu RM, adapted
from [155].

In order to achieve an environmentally friendly separation, Jumadilov et al. [156] investigated
the effect of Nd(III) and Sc(III) ionic radii on their sorption process from aqueous phase using
individual ion exchangers such as Amberlite IR120, AB-17-8, and an interpolymer system Amberlite
IR120-AB-17-8. They reported that the initial cation and anion exchangers’ highly ionized states can
be expected during their remote contact in interpolymer systems.

This enables the development of novel sorption technologies and processes. Table 3 summarizes
the most recent studies and research on the scandium recovery from the RM.
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Table 3. Comparison of solvent extraction by OPCs for Sc recovery from red mud.

Extraction Step Stripping Step
Year/References

Extractant E% Stripping Agent S%

15% D2EHPA
5% TBP 99.00 2 M NaOH 95.40 (2017) [157]

8% D2EHPA
2% TBP 99.70 2 M NaOH

+ 1 M NaCl 85.00 (2018) [158]

16% D2EHPA
4% TBP 99.00 2 M NaOH 96.00 (2019) [159]

100% TBP 99.00 Pure water - (2019) [160]

60% Cyanex 272
40% Cyanex 923 98.00 10% H2C2O4 98.80 (2020) [59]

15% D2EHPA
15% N1923 99.00 5 M HNO3 89.30 (2020) [42]

10% D2EHPA
5% TBP 99.00 5 M NaOH 99.61 (2021) [161]

10% D2EHPA
5% TBP 99.00 3 M NaOH 99.00 (2021) [162]

An interesting study by Rout et al. [163] looked into how hollow fiber-supported liquid mem-
branes (HFSLM) and SX techniques could be used to extract Sc from a mixture of metals that included
Cu, Ni, Zn, Fe, Co and Mn. They compared both strategies which could be valuable for industries,
while Cyanex 272 was used as a mobile carrier. During their study, they investigated different
parameters such as pH, Cyanex 272 concentration, flow rate, metal ion concentration, and sulfuric
acid concentration as striping agent. They found that Sc can successfully separate from the multicom-
ponent metallic solutions (Cu, Ni, Zn, Fe, Co and Mn) under the following conditions: pH 2.0, 0.3
mol/L Cyanex 272 in membrane phase, 240 mL/min flow rate, and 1.0 mol/L sulfuric acid in the
strip solution.

5. Limitations, Challenges and Future Research Directions for Scandium Recovery
Scandium availability is limited because of its natural deficiency and high production costs

in Asia and Russia, while it is not produced in Europe. As a result, the extraction of scandium
from other resources, such as secondary resources in Europe, is a significant cause of concern.
Among the most crucial scandium recovery challenges, the co-dissolution and co-extraction of metal
impurities such as iron, titanium, zirconium, uranium, thorium and rare earth, which interfere with
the scandium extraction [10,45], are mentioned. Due to the presence of several alkaline materials, the
hydrometallurgical operations are typically characterized by significant acid consumption since the
pH of the residue is exceptionally high [164]. As a result, some of the acids must be used to neutralize
the alkaline products left over from the after the digestion process. While a high acid concentration
can result in a significant recovery of REEs, it can also reduce the efficiency of the process because
other elements can be dissolved. It is important to note that the presence of significant elements
in the leach solution, particularly Fe(III), Al(III), Ti(III) and Zr(III), is a significant drawback for the
separation process (solvent extraction). These elements are difficult to separate from REEs due to
their similar trivalent oxidation state and ability to be extracted concurrently in most separation
processes [165].

This work explored the most recent applied protocols for scandium recovery by solvent extrac-
tion technique using different extractants from various sources. We reviewed the most important
previous published papers related to the recovery of scandium from various sources (ores and waste)
for the period from 1969 to 2022. We hope that this review could be useful for all which are inter-
ested in scandium recovery at industrial scale from all existing scandium sources, providing a solid
information background for such applications.

6. Conclusions
To separate and purify scandium from a variety of solutions, solvent extraction is the most

extensively applied technique. In addition to being found in ores of other metals, scandium can also
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be recovered from the wastes and tailings of other metals. When the comparatively high scandium
content and availability are taken into consideration, red mud can be considered a valuable and
potential scandium resource rather than as a solid waste. Scandium recovery from red mud should
be considered, because of its rarity and increasing market demand, as a primary goal rather than
a secondary by-product in the design process of the entire flow-chart. One of the most popular
approaches for scandium recovery from red mud applies hydrometallurgical processes, such as
acid digestion, SX, and IX. Industrial-scale operations for the extraction of scandium from bauxite
wastes and nickel laterites are currently being considered. Due to their high energy consumption,
pyrometallurgical techniques are not appropriate for scandium recovery from wastes and sludge. The
most extensively used processes for the scandium recovery are hydrometallurgical. Contaminants in
high concentrations could be removed, regardless of the cost increase, using strong mineral acids
during the digestion process.

Several unwanted metals, such as Fe, Al, Zr and REEs, could interfere with the scandium
extraction if they were simultaneously dissolved together or extracted at the same time. Some
of OPCs extractants have several disadvantages, the most notable of which are the difficulty in
recovering of Sc and the insufficiency of selectivity.

In order to improve the extraction selectivity and efficiency, new techniques or optimizations
to current processes must be developed in the area of digestion methods and SX. Red mud and
nickel laterite ores are identified as the most interesting and promising scandium resources for future
valorization.

Based on our findings during scandium recovery from red mud, the hydrometallurgical methods
(acid leaching and solvent extraction) were effective. Moreover, the organo-phosphorus compounds
(TBP and D2EHPA) showed interesting potential taking into consideration some co-extracted metals
such as Fe(III) and Ti(III). In the case of iron, it was found that the removal of iron content before
scandium recovery is the optimum choice, by using solvent extraction with trinoctylamine (N235) or
diethyl ether, from the red mud leachate (8 mol/L HCl). The solvent extraction by diethyl ether was
preferred due to its high efficiency and better economy. In order to remove the Ti(III) content from
the leachate, the scrubbing process by 3 mol/L of HCl or H2SO4 was proposed, depending on the
leachate.
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Abbreviations

HPMBP 1-Phenyl-3-methyl-4-benzoyl-2-pyrazolin-5-one
HTTA Thenoyltrifluoroacetone
DIOMP Di-isooctyl methyl phosphonate
TRPO Trialkylphosphine oxide
Ln Lanthanides
SX Solvent extraction
IX Ion exchange
OPCs Organo-phosphorus compounds
TBP Tri-butyl phosphate
P350 Di(1-methyl heptyl) methyl phosphate
Cyanex 923/C923 Trialkyl phosphine oxides
Cyanex 925/C925 Branched-alkyl phosphine oxides
Cyanex 272/C272 Di-2,4,4-trimethylpentyl phosphinic acid
Cyanex 301/C301 Bis(2,4,4-trimethylpentyl)dithiophosphinic acid.
Cyanex 302/C302 Di-2,4,4,-trimethylpentyl mono-thio-phosphinic acid
TBPO Tributyl phosphine oxide
RM Red mud
(HEHEHP, Ionquest 801, P507) 2-Ethylhexyl phosphoric acid mono-2-ethylhexyl ester
Aliquat 336 Tri-octyl methylammonium chloride
MAN Methyltrioctyl ammonium nitrate
MDA Methyl di-butylhexadecyl ammonium nitrate
TBHAN Tri-butyl hexadecyl ammonium nitrate
HTTA Athenoyl trifluoroacetone
N1923 Primary amine
ELM Emulsion liquid membrane
V9 Versatic 9/branched carboxylic acid
V10 Versatic 10/ branched carboxylic acid
V911 Versatic 911/branched carboxylic acid
APAA Alkyl-phenoxy acetic acid
AA Acetylacetone
TOA Tr-n-octylamine
IARED Ionic-adsorption rare earth deposit
X4425 Bis(3,5,5-trimethylhexyl)
TRPO Trialkylphosphineoxide
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