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Abstract. Bioactive peptides cleaved from the egg- 
laying hormone precursor in the bag cell neurons of 
Aplysia are sorted into distinct dense core vesicle 
classes (DCVs). Bag cell prohormone processing can 
be divided into two stages, an initial cleavage occur- 
ring in a late Golgi compartment, which is not 
blocked by monensin, and later cleavages that occur 
within DCVs and are blocked by monensin. Prohor- 

mone intermediates are sorted in the trans-Golgi net- 
work. The large soma-specific DCVs turn over, while 
the small DCVs are transported to processes for regu- 
lated release. Thus, protein trafficking differentially 
regulates the levels and localization of multiple biolog- 
ically active peptides derived from a common pro- 
hormone. 

ECRETED peptide hormones are used to mediate cell- 
cell interactions in eucaryotic organisms. Most of these 
peptide hormones are synthesized as components of 

larger precursors that are subsequently cleaved and modified 
to produce the bioactive molecules. Within the central ner- 
vous system, both the processing of neuropeptides and the 
packaging of peptide products into dense core vesicles 
(DCVs), j are important events in regulating intercellular 
communication (Lob et al., 1984; Sossin et al., 1989). The 
subsequent exocytosis of these DCVs in response to specific 
stimuli, such as the action potential-induced influx of cal- 
cium, defines the pathway of regulated secretion. 

Many events specific to neuropeptide processing, such as 
cleavage at dibasic sequences, trimming of basic residues, 
and carboxy-terminal amidation, take place after the packag- 
ing of prohormones into DCVs (Gainer et al., 1977; Orci et 
al., 1987; Tooze et al., 1987a). However, recent evidence 
suggests that the initial endoproteolytic cleavage of some 
prohormones occurs earlier in the secretory pathway before 
or during the formation of DCVs (Davidson et al., 1988; 
Fisher et al., 1988). 

The packaging of neuropeptides is associated with a sort- 
ing event that separates molecules destined for the regulated 
secretory pathway from lysosomal proteins, plasma mem- 
brane constituents, and constitutively secreted products. 
This sorting and packaging is thought to occur at the trans- 
most region of the Golgi apparatus, the trans-Golgi network 
(TGN; Griffiths and Simons, 1986; Tooze et al., 1987b; Orci 
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et al., 1988). While the mechanism of this sorting is still an- 
known, proposals have been made both for an aggregation 
event whereby the condensation of neuropeptides excludes 
other proteins from the forming DCV (Kelly, 1985), and a 
receptor-mediated sorting event (Burgess and Kelly, 1987; 
Pfeffer and Rothman, 1987; Chung et al., 1989) analogous 
to lysosomal sorting where a specific signal (mannose-6- 
phosphate) targets proteins through a recycling receptor 
(Griffiths et al., 1988). 

Sorting within the regulated secretory pathway has re- 
cently been demonstrated both in Somatomammotrophs 
(Fumagalli and Zanini, 1985; Hashimoto et al., 1987) and 
in the bag cell neurons of Aplysia californica (Fisher et al., 
1988). In the bag cells, different products of the egg-laying 
hormone (ELH) precursor are localized to separate classes 
of DCVs. Peptides from the carboxy-terminal side of the 
ELH precursor are found in a class of small DCVs which are 
rapidly transported to the neuronal processes, while peptides 
from the amino-terminal side of the precursor are found both 
in a class of large DCVs that are restricted to the cell body 
and a distinct class of small DCVs which are transported to 
processes (Fig. 1). This sorting event has important physio- 
logical consequences as the different regions of the ELH pro- 
hormone contain peptides with unique biological activities 
(Kupfermann, 1967; Rothman et al., 1983a,b; Mayeri et al., 
1985; Kauer et al., 1987; Brown and Mayeri, 1989). 

In this paper, we investigate the cellular pathway of protein 
trafficking within the bag cells using EM autoradiography 
and the carboxylic acid ionophore monensin. The bag cells 
have two features that facilitate these studies; (a) the ELH 
prohormone is the major protein produced by the bag cells 
and accounts for up to 50% of the translated protein (Berry 
and Arch, 1981; Scheller et al., 1983); (b) an asymmetric 
distribution of amino acids across the prohormone (Fisher 
et al., 1988; Fig. 1) allows the selective labeling of the sorted 
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carboxy or amino terminal-derived peptides. In this study, 
we use these properties to selectively follow the flow of neu- 
ropeptides derived from the ELH precursor through the 
secretory pathway. The results suggest possible mechanisms 
that underlie sorting within the regulated secretory pathway. 

Materials and Methods 

EM Autoradiography 
250-750-g Aplysia were obtained from Sea Life Supply (Sand City, CA). 
Bag ceil clusters were isolated and equilibrated in artificial sea water (ASW; 
490 mM NaCI, 11 mM KCI, 19 mM MgCI2, 30 mM MgSO4, 11 mM 
CaCI2, and 10 mM Tris, pH 7.6) at 14°C for 30 rain. The clusters were 
then incubated in ASW and L-[4-5-3H]isoleucine ([3H]Ile) or L-[2, 3, 4, 5, 
6-3H]phenylalanine ([3H]-Phe)(Amersham Corp., Arlington Heights, IL) 
(1 mCi/ml for a 30-rain pulse; 4 mCi/mi for a 5-rain pulse) for either 5 or 
30 min and then chased with ASW plus 1 mM Phe, ASW plus 1 mM Ile, 
or isotonic LI5 plus 1 mM Phe for the 12-h chase at 14°C. The chase was 
stopped by placing the clusters into a fixation solution consisting of 2 % 
glutaraldehyde, 2% paraformaldehyde, 1% DMSO, 0.3 M sucrose in PBS 
(0.137 M NaC1, 25.5 mM KCI, 8 mM Na2PO4, 1.5 mM KH2PO4, pH 7.4). 
Occasionally, 1% acrolein was also included in the fixation solution. The 
tissue was fixed for 4-6 h at room temperature (occasionally overnight at 
4°C). The clusters were rinsed with PBS, desheathed, and osmicated with 
2% OsO4 in PBS for 2 h followed by four washes in DDH20 and an addi- 
tional 2 h in 2 % aqueous uranyl acetate. The clusters were then step-wise 
dehydrated to 100% ethanol followed by propylene oxide before infiltrating 
and embedding with Epon-Araldite. After polymerization, thin sections 
(80-100 nm) were cut on a microtome (Reichert Jung, Vienna, Austria) and 
collected on formvar-coated nickel grids. The grids were then lead stained, 
carbon coated, and covered with emulsion L4; Ilford Ltd., Basildon, Essex, 
England) using the loop technique (Caro and Van Tubergen, 1962; Caro, 
1969; Williams, 1977). The emulsion was exposed in the dark at 4°C from 
2 d to 1 mo depending on the experiment and then developed by incubating 
in Microdol X (Eastman Kodak Co., R~chester, NY; 3 rain), stopped in 1% 
acetic acid, fixed with 30% sodium thiosulfate (3 rain), and washed in 
DvH20. Grids were then visualized using a transmission electron micro- 
scope (410; Philips Electronic Instruments, Inc., Mahwah, NJ). 

Quantitation of EM Autoradiography 
Micrographs were photographed at 16,900x and then printed to give a final 
magnification of 45,000x. This size was chosen as the smallest magnifica- 
tion that small clear vesicles around the Golgi apparatus are clearly visible. 
Pictures were not taken at grid coordinates but rather over concentrations 
of grains. This was necessary due to the large size of the bag cells (50/~M 

Table I. Quantitation of EM Autoradiography 

in diameter) and the small area of the cells in which one could find grains. 
Therefore, all results are given in percentage of grains in each compartment 
rather than density of radioactivity in each compartment. 

The micrographs were digitized (GP7 digitizer; Science Accessories 
Corp., Southport, CT) and analyzed using a computer-implemented maxi- 
mum likelihood algorithm (Miller et al., 1985). An important parameter in 
this program is the approximate error due to the spread of radioactivity, 
which depends on the thickness of the section and the emulsion. We calcu- 
lated all time points at half-distance (HD) values (Saltpeter and Bachmann, 
1972) of 165, 190, and 230 am. The calculations are fairly insensitive to 
this parameter, and the data in Table I are calculated with an HD of 190 
run, as this value matched our estimates for section and emulsion thickness. 
The largest variations observed at different HD values occur between the 
cytoplasm, ER, and small mature vesicles. All of these compartments have 
large areas and low densities and are situated in close proximity to each 
other, making it difficult to asign counts between these compartments. The 
largest change is seen at the Ile 30-rain pulse plus 4-h chase time point, 
when, with an HD of 230 am, the percentage of counts in small mature vesi- 
cles and cytoplasm are 34.3 and 21.3%, respectively, as opposed to 17.6 and 
55.4 % with an HD of 165 am. All other changes were minor in comparison, 
and in the compartments important in these studies-small and large imma- 
ture vesicles, clear vesicles, and Golgi apparatus-the results between cal- 
culations at three HD values differ by no more than 5 % in any experiment. 

There were nine compartments entered during digitization of the micro- 
graph (ER, Golgi apparatus, Golgi-associated sacs [usually situated on the 
cis side of the Goigi apparatus], DCVs, immature DCVs, clear vesicles, mi- 
tochondria, lysosomes, and nucleus). All nonlabeled parts of the micro- 
graphs defaulted to cytoplasm. Mature and immature DCVs were then 
divided into small and large classes using a size cutoff (area = 49,000 nm 2, 
based on a diameter of 250 nm; Fisher et al., 1988) to make a total of 12 
compartments. The areas of labeled (center of at least one grain within the 
vesicle) and unlabeled large vesicles were also calculated to determine if 
Phe-labeled small immature DCVs gradually increased in size to form large 
Phe-labeled immature DCVs. At the earliest time point that significant ra- 
dioactivity is observed in large immature vesicles (Phe 5-rain pulse plus 45- 
rain chase), the average area of labeled large vesicles was actually larger 
than the average area of unlabeled large vesicles (l.2x) and exceeded the 
cutoff size by a large margin (average diameter = 490 am). Immature vesi- 
cles were defined by either (a) membrane extensions (bulge or sac; see Fig. 
2); (b) irregularities in shape; (c) extremely ruffled membranes; or (d) con- 
nection to a tubule or Golgi stack. It is important to note that the percentage 
of immature vesicles is probably an underestimate, as serial sections 
through bag cells often reveal sacs on vesicles or connections to tubules that 
are absent in other sections. For the Phe 30-rain pulse plus 12% chase ex- 
periment, the iysosome compartment was divided into mottled DCVs and 
clear lysosomes. For all experiments other than Phe 30-rain pulse plus 12-h 
chase, the digitization was done blindly without knowledge of the time point 
or the label used in the experiment. 

Most time points include data from more than one application of emul- 
sion. Data was pooled from experiments as long as the average number of 

Pulse (min) 30 30 30 30 30 
Chase (min) 0 30 120 240 30 
Amino acid Ile lie Ile lie Phe 
ER 11.0 + 1.1 3.8 + 1.4 1.7 + 1.4 <0.1  + 1.4 3.3 + 1.6 
Golgi stacks 25.9 + 0.8 15.3 + 2.3 3.2 + 1.2 5.3 + 1.2 29.5 -1- 1.1 
Golgi vacuoles 6,4 + 1.5 0.7 -i- 0.6 1.6 + 1.1 0.1 + 0.7 8.7 5:2.1  
Clear vesicles 8.9 + 1.8 23.7 + 4.3 11.3 + 0.9 4.5 + 1.4 14.3 5 :1 .2  
Small immature DCV 11.0 5 :1 .0  22.8 + 2.7 34.3 5 :1 .5  13.0 5 :1 .7  20,3 5 :2 .5  
Large immature DCV <0.1 5 :0 .0  0.7 5 :0 .4  3.1 5 :0 .7  2.0 5 :0 .9  1.5 + 0.3 
Small mature DCV 11.8 5 :2 .2  15.3 5 : 1 . 9  25.6 5 :2 ,3  19.5 5 : 4 . 0  5.9 5 : 1 . 0  
Large mature DCV 1,7 + 0.6 0.3 5 :0 .2  2.6 5 :1 .2  0.3 + 0.3 0.4 5 :0 .2  
Lysosomes <0.1 5 :0 .3  <0.1 5 :0 .2  <0.1 5 :0 .2  <0.1 + 0.5 <0.1 5:0.1  
Mottled DCV ND ND ND ND ND 
Mitochondria 2.1 5 : 0 . 6  3.5 5 :0 .9  2.8 5 :1 .1  2.8 + 1.5 <0.1 5:0.1  
Nucleus <0.1 + 0.0 <0.1 5 :0 .0  0.1 5 :0 .2  0.7 5 :0 .4  <0.1 5 :0 .3  
Cytoplasm 20.8 5 :2 .5  15.0 5 :3 .2  13.5 5 :3 .5  51.7 5 :4 .6  16.0 5 :2 .2  
Grains (n) 663 745 533 631 1021 
Micrographs (n) 35 88 60 47 63 

Values are given in percentage of counts. Standard deviations are calculated from simulations as described in Materials and Methods. 
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grains per micrograph was within 20%. For the Phe 5-min pulse plus 1-h 
chase experiment, results are a weighted average of two different sets of 
data. 

The standard deviations in Table I are the result of simulation experi- 
ments (Miller et al., 1985) to evaluate the error inherent in the quantitation. 
In these experiments, new grains for each micrograph were generated using 
the assumptions inherent in the algorithm (a poisson distribution of grains 
in a compartment and a gaussian error vector between the location of the 
radioactivity and the center of the simulated grain). The maximum likeli- 
hood calculation was then repeated for the simulated grains. Five simula- 
tions were done for each time point, and the standard deviation of these 
simulations is presented in Table I. In several cases, the original value was 
not within one standard deviation of the simulation average, although all 
values were within two standard deviations. This occurred mainly in the 
small mature and clear vesicle compartments and is probably caused by the 
inhomogeneity of these compartments. For example, the clear vesicle com- 
partment contains transport vesicles from ER to Goigi apparatus, from one 
Golgi slack to another, and from Golgi apparatus to plasma membrane as 
well as parts of the TGN, primary lysosomes, and other compartments that 
cannot be differentiated by morphology. The simulation treats these as ho- 
mogeneous compartments, while the grains may have been coming from a 
small subset of these compartments. Therefore, the simulations arrive at es- 
timates different from the original computation. The small mature vesicles 
at early time points are usually found close to the Golgi apparatus and thus 
do not share the distribution of the majority of small mature vesicles, again 
causing differences between the simulation and the original experiment. 
Other errors, such as sampling bias and digitation errors, are not included 
in the standard deviations and probably add to the total error in the experi- 
ment. It is difficult to quantitate these errors and they are presumed to be 
minor contributions compared with the errors due to the quantitation pro- 
cedure. 

Simulations were also used to evaluate the possibility that the high per- 
cenlage of grains in clear vesicles resulted from their proximity to both 
Golgi apparatus and small immature vesicles. At three time points (Phe 30- 
rain pulse plus 30-min chase, Ile 30-min pulse plus 30-rain chase, and Phe 
5-rain pulse plus 30-rain chase), the counts in clear vesicles were assigned 
proportionally to Golgi apparatus and small immature vesicles, and a total 
of 10 simulations were carried out with these new densities. In these 10 
simulations, the maximum value of counts ever seen over clear vesicles is 
3%, and thus we conclude that the high values seen over this compartment 
at these time points is not due to their proximity to other compartments that 
contain radioactivity. 

One source of concern is the relative incorporation and washout of 
[3H]Ile and [3H]Phe. As our results are mainly based on comparing the 
flow of the different regions of the prohormone, as opposed to comparing 
the absolute position at a time point, we do not feel that possible differences 
in incorporation and washout would affect our results. The relatively slow 
washout of accumulated [3H]Phe probably accounts for the difference in 
absolute timing observed between the experiments with 5- and 30-rain 
pulses of [3H]Phe. 

Acid Phosphatase 
Bag cell clusters were isolated and fixed in 1% glutaraldehyde, 2% parafor- 
maldehyde, 1% DMSO, 0.3 M sucrose in 0.1 M Na cacodylate buffer, pH 
7.4, for 90 min at 4°C. The sheath was then dissected from the cluster, and 
the cluster was washed in 0.05 M Na Acetate, pH 5, and incubated in 0.1% 
cytidine monophosphate (Sigma Chemical Co., St. Louis, MO) or glycero- 
phosphate (Sigma Chemical Co.) and 0.15 % lead nitrate in 0.05 M Na ace- 
late, pH 5, for 90 rain at 37°C (Novikoff et al., 1971). Results were similar 
for both of the labels, and control preparations without substrate showed no 
lead precipitate. Clusters were washed with 0.1 M Na cacodylate, pH 7.4, 
osmicated in 2% OsO4 in 0.05 M Na cacodylate, pH 7.4, for 1 h, and then 
dehydrated and embedded as described above. Thin sections (80-100 nm) 
were cut and stained with 2 % uranyl acetate followed by lead nitrate before 
visualization on a transmission electron microscope (410; Philips Electronic 
Instruments, Inc.). 

Monensin Experiments 
Bag cell clusters or atrial gland pieces were incubated in 10 #M monensin 
(Sigma Chemical Co.) for 2 h in ASW with 1% ethanol at 14°C. Control 
experiments with ASW and 1% ethanol alone showed no effect on the bag 
cells. After the 2-h preincubation, clusters were labeled with tritiated amino 
acids as described above. All incubations and washes were done in the pres- 
ence of 10 #M monensin and 1% EtOH or 1% EtOH alone. The clusters 
were then processed for EM immunohistochemistry (Fisher et ai., 1988), 
autoradiography (described above), or SDS-nrea gels (Newcomb et at., 
1988). 

In the monensin EM autoradiography ~periment,  quantitation was simi- 
lar to that already described, but different compartments were used. The 
compartments measured in the monensin experiment were ER, vacuoles, 
vacuoles with densities, densities in vacuoles, dense core vesicles, mito- 
chondria, iysosomes, nucleus, and cytoplasm. A separate compartment, 
vacuolar membranes, was calculated in the entry algorithm. As the vacuoles 
curve through the thickness of the section, a 50-nm distance was used to 
define the limit of the membrane in these calculations. Also, for quantitating 
monensin experiments, micrographs were taken at 12,000x magnified to 
32,000 x.  

Time Course of Processing 
Clusters were labeled as described (Newcomb et al., 1988). The gels were 
quantitated by densitometry of the x-ray film. 

Results 

Time Course of Processing of the ELH Prohormone 
Sorting of the carboxy- and amino-terminal regions of the 

30 30 30 
120 240 720 
Phe Phe Phe 

0.6 ± 0.9 5.6 ± 0.8 0.4 ± 0.7 
0.3 ± 0.3 2.3 ± 0.4 2.0 ± 0.5 

<0.1 ± 0.3 <0.1 ± 0.1 <0.1 ± 0.4 
5.6 ± 3.2 12.2 + 2.2 1.8 ± 0.7 

11.5 ± 1.3 7.5 ± 1.2 4.2 ± 0.8 
48.2 ± 1.1 27.6 ± 1.0 4.9 ± 0.3 
11.5 + 1.5 9.1 ± 1.6 16.2 ± 2 . 2  
15.7 + 1.6 23.4 ± 1.8 18.3 + 0.5 
0.2 + 0.3 <0.1 ± 0.2 3.0 + 0.5 

ND ND 37.9 ± 1.0 
<0.1 ± 0.4 <0.1 ± 0.2 <0.1 ± 0.1 

0.8 ± 0.3 0.3 ± 0.3 <0.1 ± 0.1 
5.6 ± 1.8 11.7 ± 1.6 11.0 ± 3.0 

827 572 1230 
108 87 104 

5 5 5 
30 45 60 

Phe Phe Phe 
3.2 + 1.8 0.4 ± 1.1 <0.1 ± 0.8 

12.0 ± 3.4 2.8 ± 0.7 <0.1 ± 0.4 
<0.1 ± 0.8 <0.1 ± 0.0 <0.I  ± 0.3 
24.4 ± 4.2 15.0 ± 1.8 10.9 ± 2.6 
33.7 ± 4.1 18.8 ± 1.1 12.5 ± 2.1 

7.2 ± 1,6 36.1 ± 1.7 34.3 ± 5.2 
13.8 ± 2,3 3.8 ± 0.3 7.9 ± 3.0 
5.4 ± 2,1 12.5 ± 0.5 24.2 ± 9.9 

<0.1 ± 0.5 0.6 ± 0.6 0.4 ± 0.3 
ND ND ND 

0.2 ± 0.5 1.1 ± 0.2 0.3 ± 0.4 
<0.1 ± 0.0 <0.1 ± 0.0 <0.1 ± 0.0 
<0.1 ± 1.0 7.4 ± 1.6 8.7 ± 6.0 

276 700 793 
70 63 101 
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Figure 1. Proteolytic processing of the ELH prohormone. A schematic of the 242-amino acid ELH prohormone is shown including a 
29-amino acid signal sequence (horizontal black bars). Four biologically active bag cell peptides, the c~,/3, and 3, bag cell peptides as 
well as ELH, are shaded. Vertical bars are sequences of basic residues used as proteolytic processing sites. The first cleavage of the prohor- 
mone occurs at a tetrabasic sequence Arg-Arg-Lys-Arg, and the pathway then proceeds as shown, leading to the final set of product peptides 
shown (Newcomb et al., 1988). The peptides amino terminal to the first cleavage are packaged into one set of vesicles, and the peptides 
carboxy terminal to this cleavage are packaged in a distinct vesicle class. Above the schematic are the positions of the peptides used to 
raise antisera used in immunohistochemical experiments (Fisher et al., 1988). The top of the figure shows the distribution of the amino 
acids-leucine (L), isoleucine (I), and phenylalanine (F)-within the prophormone's sequence. 

ELH precursor must occur after the initial cleavage of the 
prohormone. To determine the intracellular site of various 
cleavages, we have correlated the extent of prohormone en- 
doproteolytic cleavage with the location of the molecule 
within the secretory pathway. Bag cell clusters were labeled 
with [3H]Ile to label the carboxy-terminal, ELH-containing 
side of the prohormone or [3H]Phe to label the amino- 
terminal, bag cell peptide-containing side of the prohor- 
mone. Acid acetone extracts were then fractionated on 
SDS-urea polyacrylamide gels (Fig. 2, A and B). After a 30- 
min pulse of radioactivity, no cleavage of the prohormone is 
observed (n = 4). The initial cleavage occurs after a 30-min 
pulse and a 30-min chase, although the percentage of cleav- 
age at this time point is somewhat variable (68 + 23 % of 
prohormone cleaved; n = 5, three experiments with [3H]Ile 
and two experiments with [3H]Phe; no significant difference 
between [3H]Phe and [3H]Ile, p > 0.5). In experiments 
using 5-min pulses of [3H]Phe, processing was mostly com- 
plete (80%, n = 1) after a 30-min chase and totally complete 
after a 1-h chase (data not shown). Consistent with previous 
results (Newcomb et al., 1988), further cleavage of the initial 
amino-terminal intermediate (F2; Fig. 2 A) occurs more 
slowly than that of the initial carboxy-terminal intermediate 
(13; Fig. 2 B). 

Treatment with Monensin Separates Processing of  the 
Prohormone into Two Stages 

Monensin is an ionophore that blocks the proteolytic cleav- 
age of a number of neuropeptide prohormones and causes 

them to accumulate in Golgi-related compartments (Crine 
and Dufour, 1982; Orci et al., 1984). Presumably, the cleav- 
age is inhibited either by blocking transport of the hormone 
to the site of cleavage or by disrupting necessary ionic gra- 
dients. In contrast to other systems, initial cleavage of the 
ELH prohormone still occurs after a monensin block; how- 
ever, all subsequent cleavages are inhibited, and the two ini- 
tial processing intermediates accumulate in monensin-treated 
cells (Fig. 2 C) (Yates and Berry, 1984). This is not a pecu- 
liar effect of monensin in Aplysia tissue, as all cleavages of 
the atrial gland prohormone are blocked after incubation with 
monensin (Fig. 2 C). Therefore monensin divides ELH pro- 
cessing into two distinct steps: the initial cleavage, which oc- 
curs before the monensin block, and all subsequent cleavages. 

To identify the site of the monensin block, we examined 
monensin-treated bag cells in the electron microscope. As in 
other systems, monensin causes a specific enlargement of 
Golgi-related compartments while leaving other cellular 
compartments such as the nucleus, ER, mitochondria, lyso- 
somes, and mature DCVs relatively unchanged (Tartakoff, 
1983). In the bag cells, some of these vacuoles contain dense 
core material, and these can be divided into two general 
types: (a) vacuoles with densities that are homogeneous in 
appearance (80 %) and (b) vacuoles that contain two different 
types of densities (20 %; Fig. 3 A). Examination of the densi- 
ties with immunoelectron microscopy reveal thathomoge- 
neous dense cores contain intermixed carboxy-terminal 
(ELH) and amino-terminal (peptide K) immunoreactivity, 
but, as illustrated in Fig. 3 B, when two separate densities 
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Figure 2. Time course of processing in normal and monensin- 
treated cells. Bag cell clusters were pulsed for 30 rain with (A) 
[3H]Phe or (B) [3H]Ile and then chased for 0, 30, 120, or 240 rain 
(lanes 1-4). The clusters were then extracted with acid acetone and 
fractionated on SDS-urea gels. (Neweomb et al., 1988). The bands 
are marked according to the nomenclature outlined in Fig. 1 (New- 
comb et al., 1988). The initial cleavage is occurring at the 30-min 
chase and is complete after 2 h. (C) After pretreatment for 2 h with 
10/~M monensin plus 1% EtOH (lanes 2 and 4) or ASW plus 1% 
EtOH (lanes 1 and 3), bag cell clusters (lanes I and 2) or atrial 
gland fragments (1 mm x 1 mm; lanes 3 and 4) were pulsed for 
2 h with [3H]leucine and chased for 4 h (bag cells) or 20 h (atri .al 
glands) before acid acetone extraction. Under these conditions, the 
initial cleavage of the bag cell prohormone is completed in monen- 
sin, but all further cleavages of the intermediates are blocked (lane 
2). In contrast, the atrial gland precursor accumulates in monensin- 
treated cells (lane 4). Other bag cell clusters labeled with [3H]leu- 
cine were assessed by HPLC analysis (Newcomb and Scheller, 
1987), and all radioactivity was found in the first intermediates, 
demonstrating more conclusively that no further cleavages of the 
F2 or 13 intermediate occur in the monensin experiment (data not 
shown). 

are observed the immunoreactivity of the different dense 
cores is segregated. To demonstrate that these densities actu- 
ally represent the site of blockage, the monensin-treated bag 
cells were pulse chased with either [3H]Leu, [3H]Phe, or 
[3H]Ile and processed for EM autoradiography. As evident 
in Fig. 3 C, the radioactivity is largely centered over the den- 
sities in vacuoles. 

Quantitation of the [3H]Phe and [3H]Ile experiments re- 
veal that over half of the grains are contained in dense cores 
found within the vacuoles (57.2% for [3H]Ile [203 grains 
counted in 11 micrographs) and 53.5% for pH]Phe [266 
grains counted in 10 micrographs]). Few counts were seen 
over granules (6.6% for [3H]Ile and <0.1% for pH]Phe), 
demonstrating that the formation of mature granules is in- 
hibited in monensin-treated ceils. Other concentrations of 
grains were seen over the vacuolar membranes (7.7% for 
[3H]Ile and 27.4% for pH]Phe) and cytoplasm (22.8% for 
[3H]lle and 17.2% for pH]Phe). 

Monensin blocks transport at various sites in different sys- 
tems but almost always blocks transport somewhere within 
the Golgi apparatus (Gritliths et al., 1983; Johnson and 

Schlessinger, 1980; Orci et al., 1984). Osmium, a specific 
marker for the cis-Golgi compartment (Friend and Murray, 
1965), labels a subset of vacuoles but does not label vacuoles 
that contain densities (data not shown), suggesting the mon- 
ensin block is beyond this point in the secretory pathway. The 
presence of sorted densities suggests that segregation occurs 
at this stage of prohormone processing and that the inter- 
mediates may have intrinsic abilities to aggregate selectively. 
These results must be interpreted cautiously as the disruption 
of ionic and pH gradients in monensin-treated cells may 
cause perturbations in the sorting process. 

EM Autoradiography Demonstrates Sorting 
in the Bag Cells 

In pulse-chase studies using either pH]Ile (carboxy-termi- 
nal) or [3H]Phe (amino-terminal), counts flow through the 
secretory pathway from ER to Golgi apparatus to granules 
(Table I). After a 30-min pulse with PHllle, a large number 
of grains are seen over the Golgi apparatus (Fig. 4 A and Ta- 
ble I). Since at this time point no processing has occurred 
(Fig. 2 B), one can conclude that cleavage does not occur 
early in the Golgi apparatus. Both amino and carboxy termi- 
nal-associated radioactivity are transported through the 
Golgi stacks and enter small immature DCVs (defined by 
membrane extensions, connection to tubules, or nonspheri- 
cal morphology) and clear vesicles after a 30-min pulse and 
30-min chase (Fig. 4 B, Fig. 5, and Table I). This is the time 
point correlated with the initial cleavage of the prohormone 
(Fig. 2, A and B). 

After a 30-min pulse and 2-h chase with [3H]Phe, grains 
are found predominantly over large immature DCVs (Fig. 4 
C, Fig. 5, and Table I), while grains are found predominantly 
over small immature DCVs at this time point when [3H]Ile 
is used (Fig. 4 D, Fig. 5, and Table I). Therefore, we can con- 
clude that after a 30-min pulse and 2-h chase, the two regions 
of the ELH prohormone have been sorted into distinct com- 
partments. The EM autoradiographic results are a strong in- 
dependent confirmation of immunohistochemical studies 
demonstrating that large DCVs contain more immunoreac- 
tivity from amino terminal-derived (Phe) peptides, while the 
majority of small DCVs contain more immunoreactivity 
from carboxy terminal-derived (lie) peptides (Fisher et al., 
1988; Kreiner et al., 1989). 

To look more closely at the movement of the amino- 
terminal intermediate from small to large immature vesicles, 
a number of experiments were done using 5-min pulses of 
[3H]Phe (Table I). The movement from small to large DCVs 
occurs quickly (largely between 30 and 45 min of chase), and 
a large percentage of counts are also seen in clear vesicles 
at these time points. The vectorial flow of the amino-terminal 
portion of the precursor appears to be from Golgi apparatus 
to clear vesicles and small immature DCVs then to large im- 
mature DCVs. 

The flow of the amino-terminal intermediate from small to 
large immature vesicles could arise by (a) distinct amino- 
terminal specific small vesicles increasing in size or (b) 
movement of the amino-terminal intermediate from small 
immature vesicles containing carboxy-terminal intermedi- 
ates to a distinct class of large immature vesicles. We favor 
the second possibility due to the fact that we do not see a 
gradual increase in the size of Phe-labeled immature vesicles 
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Figure 3. Intermediates accumulate in sorted densities in monensin-treated bag cells. (A) Monensin induces the formation of vacuoles in 
the bag cell soma, some of which contain dense cores. The small and large arrows identify two dense cores within a single vacuole that 
appear to be of different composition. About 10-20% of the densities in vacuoles had this appearance. (B) Immunoelectron microscopic 
analysis of monensin-treated bag cells. Bag cell sections were labeled with a rabbit anti-peptide K and a rat anti-ELH primary antibody 
followed by a 5-nm colloidal gold anti-rabbit and 10-nm colloidal gold anti-rat secondary antibodies. Immunoreactivity within the dense 
cores is segregated; the small arrow points to peptide K immunoreactivity, and the large arrow points to ELH immunoreaetivity. (C) EM 
autoradiography of monensin-treated bag cells (2-d exposure). A bag cell duster was preincubated for 2 h with monensin, labeled for 2 h 
with [~H]leucine, and chased for 4 h. Grains are concentrated over the density in the vacuole (arrow), while mature granules outside of 
the vacuole are unlabeled. Bars, 400 nm. 

(see Materials and Methods) but do observe an abrupt 
change from small to large Phe-labeled vesicles. Further- 
more, small immature vesicles containing amino-terminal 
peptides that are contiguous with the Golgi apparatus are not 
observed, although carboxy-terminal peptide immunoreac- 
tive small immature vesicles are detected (Fisher et al., 
1988). 

The Small and Large Immature DCVs Are Part 
of the TGN 

It is possible that features of immature vesicles may result 
from their association with the TGN. A standard marker for 
the TGN is acid phosphatase (Grifiiths and Simons, 1986), 
and, as illustrated in Fig. 6, A-C, both small and large imma- 
ture vesicle membranes are ringed by the lead phosphate 
reaction product. Immature vesicles have also been shown to 
contain acid phosphatase in a number of other systems 
(Smith and Farquhar, 1966; Novikoff et al., 1971; Hand and 
Oliver, 1977). Fig. 6, A-C, shows a series of micrographs 
from a set of serial sections; the structure marked by the 
small arrow actually attaches to the proximal large immature 

vesicle (Fig. 6 A) and in the next section attaches to a small 
immature vesicle (Fig. 6 B). Many other attachments be- 
tween acid phosphatase-containing vesicles are seen in serial 
sections, suggesting that the immature vesicles are to some 
extent still connected to the tubular portion of the TGN. Ma- 
ture small and large vesicles, as well as ER and other Golgi 
stacks, do not stain with acid phosphatase, while lysosomes 
stain intensely. 

Double label experiments which combine EM autoradiog- 
raphy with acid phosphatase treatment formally demonstrate 
that the immature DCVs contain acid phosphatase activity 
(Fig. 6 D) and are therefore part of the TGN. Interestingly, 
one of the large vesicles in this micrograph contains only 
patches of acid phosphatase reaction product. This is a com- 
mon occurrence and suggests that the acid phosphatase is re- 
moved in patches from immature vesicles, as opposed to 
gradually fading in intensity. 

Acid phosphatase is an enzyme destined for transport to 
endosomes and lysosomes. The appearance of acid phospha- 
tase reaction product in patches suggests that lysosomal pro- 
teins are removed, not only from clear regions of the TGN, 
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Figure 4. EM autoradiography demonstrates somng in the bag cells. Thin sections of pulse-labeled bag cells processed for EM automdiogra- 
phy. (A) 30-min pulse with [3Hllle. Groins are concentrated over the Golgi apparatus (4-d exposure). (B) 30-rain pulse with [3H]Ile and 
30-rain chase. Grains are concentrated over dense cores connected to Golgi apparatus and small immature vesicles (4-d exposure). (C) 
30-min pulse with [3H]Phe and 2-h chase. Grains are concentrated over large immature vesicles (/arge arrow) but not small immature 
vesicles (small arrow) (2-d exposure). (D) 30-min pulse with [3H]Ile and 2-h chase. Grains are concentrated over immature small vesicles 
(small arrow) but not over immature large vesicles (arrow). Note the membrane extensions on these immature vesicles (4-d exposure). 
G, Golgi apparatus. Bar, 350 nm. 
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Figure 5. Sorting occurs within immature vesicles. The percentage 
of grains as calculated by the maximum likelihood method-(A) 
small immature vesicles and (B) large immature vesicles-is plot- 
ted as a function of the chase period for Phe (+) and Ile (e). The 
calculations for standard deviations.are given in the methods. While 
after a 30-min chase there is little difference between the amino- 
(Phe) and carboxy-terminal (Ile) sides of the prohormone, after 2 h 
the two are in different compartments, suggesting that sorting oc- 
curs between those two times. 

but also from membranes of  immature vesicles. Immature 
vesicles often contain patches of  clathrin, although the func- 
tion of this clathrin is unclear. This clathrin has been pro- 
posed to be involved in the budding of regulated secretory 
vesicles (Orci et al., 1984, 1987) or recycling of  protein from 
immature vesicles to the Golgi apparatus (Tooze and Tooze, 
1986). Lysosomal enzymes are most probably removed via 
clathrin-coated vesicles from the TGN (Campbell and Rome, 
1983; Grifliths and Simons, 1986; von Figura and Hasilik, 
1986), suggesting that the function of  clathrin patches on im- 
mature vesicles may be to facilitate sorting of  lysosomal pro- 
teins. 

The above results suggest that sorting occurs as the amino- 
terminal intermediate moves from small immature vesicles 
and clear vesicles to large immature vesicles, all of which are 
defined by acid phosphatase cytochemistry as part of the 
TGN. Furthermore, we have demonstrated the site ofprohor- 
mone cleavage to be the clear vesicles, small immature vesi- 
cles, or Golgi stacks. Yet, at a time when the prohormone 
is intact (30-min pulse; Fig. 2 B), counts are located within 
the Golgi stacks (Fig. 3 A), suggesting that the cleavage of  
the prohormone must occur after this point, either in a late 
Golgi stack or, more likely, the TGN. 

Figure 6. Immature vesicles are part of the TGN. (A) A bag cell 
treated to visualize acid phosphatase enzymatic activity reveals a 
network of tubules, small and large immature vesicles which com- 
prise the TGN. The large arrow points to a tubule-like structure in- 
terconnected to a large immature vesicle. (B) In the next section, 
the large arrow points to the same tubule, which now appears inter- 
connected to a small immature vesicle. (C) The large arrow, again, 
indicates the tubule-like structure. In this section, additional vesi- 
cles rimmed by acid phosphatase reaction product are apparent. (D) 
A bag cell cluster was pulsed for 30 min with [3H]Phe and chased 
for 2 h. Before processing the cluster for EM autoradiography, the 
cluster was processed for acid phosphatase histochemistry. Arrows 
point to large immature vesicles that are both acid phosphatase 
positive and contain grains. The vesicle on the left has patches of 
membrane (arrows) with and without acid phosphatase reaction 
product, suggesting that lysosomal sorting has begun to occur. Ex- 
posure was for 1 wk. Bar, 350 nm. 
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Figure 7. Large vesicles turnover after a 12-h chase. Bag cell clusters were pulsed for 30 min with [3H]Phe and chased for 12 h. (A and 
B) Arrows point to examples of vesicles with heterogeneous cores (mottled vesicles). Approximately 40% of the counts appear in these 
compartments (Table I) at this time point. Exposure was for 3 wk. Bar, 350 nm. 

Fate of the Large DCVs 

Quantitative HPLC studies indicate that the carboxy- 
terminal (Ile) final product peptides are present at three- to 
eightfold higher steady-state levels than the amino-terminal 
(Phe) final peptides (Fig. 1; Fisher et al., 1988). The large 
DCVs are not transported to the processes (Kreiner et al., 
1986) and quantitative immunoelectron microscopy Studies 
suggest that the different levels of peptides could be due to 
the selective degradation or release of these large vesicles 
(Fisher et al., 1988). To examine this question we chased 
[3H]Phe-labeled bag cell clusters for longer times to ob- 
serve the eventual fate of the large DCVs. After 12 h of chase, 
many grains are observed in vesicles with heterogeneous 
cores that we refer to as mottled DCVs (Table I). The appear- 
ance of the core is quite variable, ranging from vesicles that 
are mostly clear but contained patches of dense material 
(Fig.7 A) to dense DCVs with nonhomogeneous patches (Fig. 
7 B). Loss of the homogeneous dense core suggests the pep- 
tides are being degraded. Few grains are observed over large 
membranous lysosomes or multivesicular bodies. Other in- 
teresting results from this time point include the movement 
of grains from immature to mature large vesicles and an in- 
crease in the number of grains in small mature vesicles (Ta- 
ble I). Coupled with the lack of constitutive release of large 
vesicle contents (Fisher, J., unpublished data), these results 
suggest that the asymmetry in peptide steady-state levels is 
generated through a degradative pathway. 

Discussion 

A Model for Sorting within the Regulated 
Secretory Pathway 

Our results suggest a model for sorting within the regulated 

secretory pathway (Fig. 8). Correlating a biochemical assay 
of processing with EM autoradiography predicts cleavage of 
the ELH prohormone in a late Golgi compartment. Further 
support for this model comes from subcellular fractionation 
studies of bag cells, where the initial cleavage is shown to oc- 
cur in a light fraction enriched in mannosidase II activity (a 
Golgi marker) and well separated from the DCVs (Sweet, 
A., J. M. Fisher, W. S. Sossin, R. Newcomb, and R. H. 
Scheller, manuscript submitted for publication). The initial 
cleavage is not blocked by monensin, which does block the 
formation of mature granules. The protease that cleaves the 
tetrabasic site may be a TGN resident protein whose activity 
triggers the condensation and sorting of the processing inter- 
mediates in this compartment. Alternatively, processing en- 
zymes with different pH activation profiles or different affini- 
ties for the various cleavage sites may explain the distinct 
subcellular sites of endoproteolytic cleavage in the bag cells. 
Multiple enzymes with different pH profiles have been pro- 
posed to differentiate between the two cleavages of the insulin 
precursor (Davidson et al., 1988). 

After the initial cleavage event, the ELH-containing 
carboxy-terminal intermediate condenses in one region of 
the TGN (small immature vesicles) and the amino-terminal 
bag cell peptide-containing intermediate condenses in an- 
other region of the TGN (large immature vesicles). This 
model is consistent with immunocytochemical studies (Fisher 
et al., 1988) that demonstrate that small immature vesicles 
connected to the TGN contain largely carboxy-terminal im- 
munoreactivity. These regions of the TGN may be connected 
by tubules, or transport between them may occur through 
vesicles. 

How are these intermediates segregated before formation 
of a dense core? After a 30-min chase both amino and car- 
boxy terminal-associated grains are found over small imma- 
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Figure & A model for sorting in the bag cells. A 
schematic diagram for prohormone processing 
and sorting in the bag ceils is described fully in 
Discussion. A solid line represents the carboxy- 
terminal intermediate; a dotted line represents 
the amino-terminal intermediate; a dotted line at- 
tached to a solid line represents the ELH prohor- 
mone; smaller lines represent the carboxy-ter- 
minal final product peptides; and dots represent 
the amino-terminal final product peptides. L indi- 
cates an organelle of degradative function (endo- 
some or lysosome). Direct connection between the 
part of the TGN containing large immature vesi- 
cles and small immature vesicles is putative and 
this is represented by a dotted line. Shading 
represents acid phosphatase-positive membranes. 
The small amino- and carboxy-terminal vesicles 
will be transported to processes for regulated re- 
lease, where they are present at a carboxy-to- 
amino terminal ratio of 5:1 (Fisher et al., 1988). 

ture vesicles and clear vesicles. Although the compartment 
of clear vesicles is obviously heterogeneous, the location and 
the time course of counts moving into these vesicles is most 
consistent with their arising from sections through the TGN. 
The lack of grains located over clear vesicles in other EM 
autoradiographic studies of neuropeptide transport (Salt- 
peter and Farquhar, 1981) may be due to an earlier peptide 
condensation event in that system. Amino terminal-associ- 
ated radioactivity then decreases in clear vesicles and small 
immature granules and increases in large immature gran- 
ules. It is the selective movement of the amino-terminal in- 
termediate to large immature granules and/or the selective 
retention of the carboxy-terminal intermediate in small im- 
mature granules that underlies sorting within the regulated 
pathway. These results suggest a flow of the amino-terminal 
intermediate through the TGN from an early region that con- 
rains small immature vesicles to a later region that contains 
large immature vesicles. 

Later cleavages occur in vesicles after leaving the TGN, 
presumably due to activation of enzymes by the acidification 
of this granule (Orci et al., 1987; Anderson and Orci, 1988); 
these cleavages are blocked by monensin. We propose that 
the small amino terminal-containing vesicles that are trans- 
ported to processes arise from the larger immature vesicles, 
although the evidence supporting this idea is not yet conclu- 
sive. In support of this idea, a higher proportion of pro- 
cessing intermediate immunoreactivity is found in the large 
vesicles (Kreiner et al., 1989). Furthermore, in [3H]Phe- 
labeled experiments, a high concentration of autoradiographic 
grains is seen in mature small DCVs only after a 12-h chase 
but not at earlier time points (Table I). The large vesicles ap- 
pear to have a short half-life since >50% of the counts as- 
sociated with these vesicles appear in profiles that appear to 
be fated for degradation after a 12-h chase. 

Mechanisms for Sorting Bag Cell Intermediates 
The molecular mechanism by which the two processing in- 
termediates are segregated from each other is still an open 
question. One appealing possibility is that the carboxy- 
terminal intermediate selectively condenses in the early re- 
gion of the TGN, leaving the amino-terminal intermediate 
soluble. Perhaps different ionic conditions or different acces- 
sory proteins (Chung et al., 1989) located in the late region 
of the TGN would allow the amino-terminal portion of the 
prohormone to condense at this site. A differential timing of 
condensation has also been proposed to explain the separa- 
tion of prolactin and growth hormone in somatomammo- 
trophs (Fumagilli and Zanini, 1985). The aggregated car- 
boxy-terminal portion of the precursor may be prevented 
from traveling to the late compartment either through steric 
hindrance of aggregates moving through small tubules, the 
inability to be packaged into small transport vesicles, or a 
specific association with an immobile membrane-bound 
receptor. Alternatively, movement of the amino-terminal 
portion of the precursor may be mediated through the actions 
of a membrane-bound recognition system. In support of this 
model, the bag cell amino-terminal intermediate (F2) is as- 
sociated with membranes at a time point (30-min pulse and 
2-h chase) when the carboxy-terminal intermediate (I3) is 
not membrane associated (Fisher, J., manuscript in prepara- 
tion; illustrated in Fig. 8). A selective association of the 
amino-terminal intermediate with a membrane-bound recep- 
tor would allow a vesicular sorting mechanism similar to that 
proposed for lysosomal enzymes. 

Implications of Bag Cell Neuron Sorting 
The amino-terminal bag cell peptides act locally to modulate 
the electrical activity of abdominal ganglion neurons and in 
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an autocrine fashion to regulate the excitability of the bag 
cells (Rothman et al., 1983a; Kauer et al., 1987; Brown and 
Mayeri, 1989). The carboxy-terminal ELH acts both on 
nearby neurons (Mayeri et al., 1985) and through the circu- 
lation at peripheral targets as a hormonal substance (Kupfer- 
mann, 1967; R~thman et al., 1983b). Thus, while the poly- 
protein motif ensures cosynthesis, the relative levels of these 
two sets of substances are regulated by the proteolytic cleav- 
age, packaging, and targeting described above. Recent 
studies indicate that non-ELH precursor-related bag cell 
vesicle proteins are also selectively sorted (Sossin and 
Scheller, 1989). These latter molecules may play a role in 
selective transport or release of different vesicle types. Other 
neurons that express the ELH prohormone (McAllister et 
al., 1983; Chiu and Strumwasser, 1984) may process and 
package the peptides differently than the bag cells, further 
illustrating ways in which the secretory pathway regulates in- 
tercellular communication. 
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