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Abstract

Background: Many popular dengue forecasting techniques have been used by several researchers to extrapolate
dengue incidence rates, including the K-H model, support vector machines (SVM), and artificial neural networks
(ANN). The time series analysis methodology, particularly ARIMA and SARIMA, has been increasingly applied to the
field of epidemiological research for dengue fever, dengue hemorrhagic fever, and other infectious diseases. The main
drawback of these methods is that they do not consider other variables that are associated with the dependent
variable. Additionally, new factors correlated to the disease are needed to enhance the prediction accuracy of the model
when it is applied to areas of similar climates, where weather factors such as temperature, total rainfall, and humidity are
not substantially different. Such drawbacks may consequently lower the predictive power for the outbreak.

Results: The predictive power of the forecasting model-assessed by Akaike’s information criterion (AIC), Bayesian
information criterion (BIC), and the mean absolute percentage error (MAPE)-is improved by including the new
parameters for dengue outbreak prediction. This study’s selected model outperforms all three other competing
models with the lowest AIC, the lowest BIC, and a small MAPE value. The exclusive use of climate factors from
similar locations decreases a model’s prediction power. The multivariate Poisson regression, however, effectively

forecasts even when climate variables are slightly different. Female mosquitoes and seasons were strongly
correlated with dengue cases. Therefore, the dengue incidence trends provided by this model will assist the

optimization of dengue prevention.

Conclusions: The present work demonstrates the important roles of female mosquito infection rates from the
previous season and climate factors (represented as seasons) in dengue outbreaks. Incorporating these two
factors in the model significantly improves the predictive power of dengue hemorrhagic fever forecasting

models, as confirmed by AIC, BIC, and MAPE.

Keywords: Dengue hemorrhagic fever, Forecasting model, Prediction model, Multivariate poisson regression,

Climate factor analysis

Background

Incidences of dengue hemorrhagic fever (DHF) and den-
gue fever (DF) have increased dramatically in past de-
cades and have become a global threat. According to the
World Health Organization (WHO), an estimated 500
million cases of DF and 250,000-500,000 cases of DHF
occur annually [1, 2]. The number of people residing in
at-risk areas of DF outbreak totals 3.6 billion, or 55 % of
the world’s population [3]. Thailand recorded its first
case of DF in 1958 [4]. Since then, the disease has
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become a major public health problem as the number of
cases has continued to expand. Dengue virus infection
can cause dengue diseases including classical DF and its
severe form, namely, DHF and/or dengue shock syn-
drome (DSS) [5]. Approximately 10-15 % of infected pa-
tients are symptomatic, with ~500,000 hospitalizations
annually involving the severe form of the disease [6].
The annual hospitalization and death rates of patients by
the severe form is highest in tropical and subtropical re-
gions, especially in Southeast Asia, South and Central
America, the Caribbean and South Pacific [5]. Huge ef-
forts to control and monitor the dengue epidemic are
currently underway in many countries. The major vector
of dengue is the mosquito Aedes aegypti [4]. Females of
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populations) of DHF between 2007 and 2012 is indicated by the red color

Fig. 1 Map of morbidity rate of dengue in Thailand reported by Health Info in Thailand (http://www.healthinfo.in.th/). The study areas were the
three provinces of Nakhon Pathom, Ratchaburi, and Samut Sakhon in the central region of Thailand. The high morbidity rate (per 100,000

this species transmit the virus to humans when taking a
blood meal. Early warning system of dengue outbreak
and advising the relevant departments to deploy mos-
quito control prior to disease outbreak is essential.
Barbazan et al. [7] demonstrated that the seasonal trans-
mission of DENV serotypes in an endemic area was sig-
nificantly related to the prevalence and virulent strains
and also associated to the high pathogenesis. Some stud-
ies suggested that active school-based dengue detection
could be used as an indicator for reducing the longitu-
dinal risk of viral transmission in rural areas [8].
Although the disease is transmitted to humans via fe-
male mosquitoes, entomologic surveillance to determine
dengue transmission has been based on different larval
indices [9, 10] including house index (percentage of
houses positive for larvae) and the Breteau index (num-
ber of positive containers per 100 houses). Even though,

these indices have become widely used for dengue con-
trol program, prevalence of dengue infection is still high
especially in the rainy season. With the advent of mo-
lecular biology techniques, it was possible to detect den-
gue viruses in mosquito vectors [11]. The virus infection
in mosquito was then considered as an index to deter-
mine dengue epidemic. Several reports demonstrated
the relationship between dengue outbreak and virus in-
fection in Ae. aegypti mosquitoes. This correlation seems
to be more practical and effective tool for planning den-
gue control [12-16]. Nonetheless, dengue incidence is
difficult to predict because it varies widely over time
[17]. Many DF prediction models are based on statistical
and data mining techniques such as ARIMA [18], SAR-
IMA [19-21], the K-H model [17], support vector ma-
chines (SVMs) [22], and artificial neural networks
(ANNs) [23]. All of these approaches adopt a similar
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basic set of predictors, such as temperature and rainfall
level. To enhance the predictive power of DF models, we
incorporated two novel predictors, female mosquito in-
fection rate and season.

Methods

Study site for mosquito collection

From 2007 to 2012, Ae. aegypti mosquitoes were collected
from three provinces in the central region of Thailand, in-
cluding Nakhon Pathom, Ratchaburi, and Samut Sakhon.
These areas were selected primarily for three reasons: high
mosquito density, minor differences in climatic factors,
and a high DHF morbidity rate as reported in Thailand
health information system (http://www.hiso.or.th) and as
illustrated in Fig. 1.

Ethics statement

The study was approved by the Ethics Committee of Re-
search Affairs Unit, Faculty of Medicine, Chulalongkorn
University (COA No. 328/2014).

Dengue mosquito collection

Ae. aegypti larvae and adults mosquitoes were collected
from three provinces in the central region of Thailand.
The collections were performed in three districts of each
province (two sub-districts per district; two villages per
sub-district; 40 dwellings per village). Twice per season,
from January 2007 to December 2012, mosquito larvae
were collected from water-filled containers indoors and
around the houses; adult mosquitoes were collected by
highly experienced officers from Thailand’s National In-
stitute of Health using human bait. Larvae and adults
were visually identified as members of Ae. aegypti and
were pooled, then maintained, in cryogenic vials. Each
vial contained five larvae or mosquitoes and was stored
in liquid nitrogen for subsequent dengue virus detection.
Dengue virus infected mosquito rates were obtained
from a previous report by Chompoosri et al. [14].

Dengue virus detection in Ae. aegypti mosquitoes

Detection of the four dengue virus serotypes in Ae.
aegypti larvae and adults was modified from the method
described by Tuksinvaracharn et al. [11]. The genomic
viral RNA was extracted from pooled larvae and mos-
quitoes using the Invisorb® Spin Virus RNA Mini Kit
(Invitex Gmbh, Germany) according to the manufac-
turer’s protocols. One-step RT-PCR was performed with
five oligonucleotide primers (D1 and four type-specific
primers, including TS1, TS2, TS3, and TS4) that were
designed by Lanciotti et al [24]. Amplification was car-
ried out in a 25 pl total mixture using the Superscript III
one-step RT-PCR kit (Invitrogen, USA) with 10 uM of
each primer and 6 pl of RNA. The RT-PCRs were per-
formed in a PCR Mastercycler® Pro (Eppendorf,
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Germany) under the conditions of 50 °C for 30 min and
94 °C for 2 min, followed by 40 cycles of 94 °C for 30 s,
50 °C for 30 s, and 72 °C for 30 s; finally, the last cycle was
at 72 °C for 7 min followed by a final holding at 4 °C. Ali-
quots of the PCR amplicons were analyzed by electro-
phoresis on 2 % agarose gels, stained with ethidium
bromide, and visualized with Quantity One Quantification
Analysis Software version 4.5.2 (Gel Doc EQ System; Bio-
Rad, Hercules, CA).

Incidence of DHF in the study areas and dengue virus
detection in blood samples

Incidences of DHF in the study areas were obtained
from the Bureau of Epidemiology, Department of Dis-
ease Control, Ministry of Public Health, Thailand. The
data were expressed as the morbidity rate of DHF per
100,000 individuals. Blood specimens were taken from
suspected dengue infection patients, with 3 ml of blood
collected into EDTA collecting tubes from each patient.
Identification of dengue serotypes was performed by
one-step RT-PCR [25]. Viral RNA was extracted from
100 pl of plasma from each patient, and RT-PCR for
type-specific primers was carried out using a one-step
RT-PCR kit (Qiagen Gmbh, Hilden, Germany). Each
amplification was validated with positive and negative
controls. PCR products were electrophoresed in 2 %
agarose gel, stained with ethidium bromide (0.5 pg/ml),
and visualized on a UV transilluminator (Gel Doc EQ
System; Bio-Rad, Hercules, CA). The study was ap-
proved by the Ethics Committee of Research Affairs
Unit, Faculty of Medicine, Chulalongkorn University
(COA No. 328/2014).

Independent and dependent variables for a forecasting
model

Besides the abovementioned mosquito infection rate pa-
rameters, data for all other factors relevant to DHF out-
breaks were collected from various sources. Table 1 lists
the independent and dependent variables considered in
the proposed forecasting model. Values of all variables
were collected between 2007 and 2012. Mosquito and
blood sample collections were performed only until
2012 owing to budget limitations.

All collected data were cleaned before performing the
analysis. Data cleansing transforms the data and removes
those with missing values. After data cleansing, observa-
tions in each district were pooled seasonally; 144 samples
remained and were used for model construction. Seasonal
temperature, rainfall, humidity, and wind had indicated
significantly high correlation coefficients (p <0.0001)
among themselves, as shown in Table 2-resulting in a
multicollinearity problem in model fitting, and decreasing
the reliability of the model. Therefore, we used the season
variable as a proxy for meteorological conditions.
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Table 1 Independent and dependent variables used in the proposed forecasting model

Independent variables Source

Data type  Unit

1. Average temperature (AvgTemp)
2. Average rainfall (AvgRain)

3. Average humidity (AvgHumid)
4. Average wind speed (AvgWind)

5. Ae. aegypti larvae infection rate
(AegRate)

6. Female mosquito infection rate
(Fmosquito)

7. Male mosquito infection rate
(Mmosquito)

8. Season -
9. Population (Pop)

10. Dengue cases

Thai Meteorological department
Thai Meteorological department
Thai Meteorological department
Thai Meteorological department

Parasitology Department, Chulalongkorn University
Parasitology Department, Chulalongkorn University

Parasitology Department, Chulalongkorn University

Total population in each studied region

Continuous  Celsius (°C)
Continuous Millimeters (mm)
Continuous Percentage (%)
Continuous Miles per hour (mph)

Continuous Percentage (%)

Continuous Percentage (%)

Continuous Percentage (%)

Nominal N/A

Continuous Number of people

National Trustworthy and Competent Authority Epidemiological Continuous Cases per 100,000
Surveillance and Investigation Department (NTCAESI)

individuals

Dengue rates in each season of the studied regions
were explored, indicating right-skewed distribution, as il-
lustrated in Fig. 2. Multivariate Poisson regression
(MPR) [26], frequently applied to the analysis of count
data [27] due to non-normal distribution, was adopted
to find variables associated with the number of dengue
cases; the main significant variables were initially se-
lected for the model using the backward elimination
scheme. Subsequently, two-variable interactions were
added, and their effects were tested hierarchically. How-
ever, count data in the Poisson model usually displayed
larger variation than its mean, referred to as “overdisper-
sion.” Here, we accommodated the overdispersed model
by adjusting the parameter covariance matrix and likeli-
hood function, yielding a more appropriate standard
error estimation and likelihood ratio test.

A previous study [12] revealed that dengue infection
rates in female mosquitoes of three provinces were highest
in summer, while morbidity rates of DHF tended to be
highest in the rainy season. Consequently, female mos-
quito infection rate in the previous season (one lag season)
is used in predicting the number of dengue infections. As

Table 2 Correlation coefficient of climate factors

AvgRain AvgTemp AvgWind AvgHumid
AvgRain 1.00 -0.667 -0.40 0.64
<0.0001" <0.0001 <0.0001
AvgTemp 1.00 0.59 -0.97
<0.0001 <0.0001
AvgWind 1.00 -0.59
<0.0001
AvgHumid 1.00

“Pearson correlation coefficient
.
p-value

depicted in Table 3, four main variables are first consid-
ered in the model fitting process.

Model construction

Multivariate poisson regression

In our previous study [15], we showed the significance
of the infected female mosquito but did not study the
correlation among the climate factors. In this paper, we
deploy the season variable instead of climate factors.
Additionally, we proposed to exploit the MPR technique
that accounts for multiple predictors. Retrospective data
are collected on a seasonal basis and the model tempor-
ally extrapolates the dependent variable by several sea-
sons. Typically, the regression model expresses the
natural logarithm of outcome as a linear function of a
set of predictors, as shown in Eq. 1.

5
In(y;) = B, + B, Seasonl; + B, Season2; + Z,B,X,-i + In(pop;)

(1)

where In(y;) is the natural logarithm of predicted sea-
sonal dengue incidence of the i™ observation; In(pop;) is
the natural logarithm of population and used as an offset
accounting for variation of population among regions; 5o
is the constant, denoting the baseline number of dengue
incidences; f3; and f3, are regression parameters, denot-
ing the effect of Seasonl (Rainy) and Season2 (Summer)
compared with Season3 (Winter); and f;'s denote the
effect of independent variables X; on dengue incidence,
representing Fmosquito, Mmosquito, and AegRate,
where j = 3, 4, and 5, respectively.

Initially, four main variables were considered in the
model fitting; variables were then removed one by one
based on the backward elimination procedure. Two-
factor interactions of the remaining variables were then
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Fig. 2 Histogram of dengue rate in the studied regions from 2007 to 2012, classified by season
added. The final model was ultimately selected based on BIC = -21InL + klnn (4)

three measures: the Akaike information criterion (AIC),
the Bayesian information criterion (BIC), and the mean
absolute percentage error (MAPE). All competing
models were also compared in nested order for model
selection.

Multivariate poisson regression model validation

The constructed model was evaluated by three perform-
ance measures; MAPE, AIC, and BIC. The MAPE is
given by Eq. (2).

1 n
MAPE = —Z
ni=

(2)

Xi-F;
Xi

where X; and F; are the observed and predicted values,
respectively, and # is the total number of observations.
The AIC [28] and BIC [29], illustrated in Egs. (3) and
(4), were considered in model selection to assess the
goodness-of-fit of the model.

AIC = 2k-21nL (3)

Table 3 The effect of four main variables on dengue incidence

in MPR fitting

Variables LR? p-value
Season 5.50 0.064
Fmosquito 3.53 0.060
Mmosquito 260 0.107
AegRate 1.14 0.285

‘likelihood ratio statistics

where k is the number of model parameters, and L is the
maximized value of the likelihood function for the
model. Lower MAPE, AIC, and BIC values indicate in-
creased predictive power.

Results and discussion

The collected data from 2007 to 2012 were used for
model construction. The number of dengue cases over
time was then predicted based on the chosen model.
Finally, the forecasted cases were compared with the ac-
tual dengue cases reported by NTCAESI. The dataset in
this experiment includes all variables listed in Table 3
from the three provinces.

Model selection

The best model (yielding the lowest MAPE, AIC, and
BIC) was selected in subsequent experiments. Four MPR
models were constructed, and their MAPEs, AICs, and
BICs were compared. To account for climate effect on
dengue cases, the categorical variable of season was in-
cluded into the model fitting. The first model (Model-1)
deployed all four main predictors, whereas the second
model (Model-2) and third model (Model-3) excluded
insignificant terms. AegRate and Mmosquito were highly
correlated with Fmosquito (r=0.61, p<0.001; and r=
0.57, p<0.001), implying that each conveyed a similar
relationship to dengue cases as that of Fmosquito; both
variables were thus removed from Model-3. Subse-
quently, the interaction of two newly identified main fac-
tors (Season and Fmosquito) was added into the fourth
model (Model-4), according to the model selection
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process. The AIC, BIC, and MAPE values obtained from
each model, including data from three provinces, are
listed in Table 4.

When one model was a special case of another, models
can be compared in hierarchical order whereas simpler
model in the null hypothesis was tested against more
complex model in the alternative hypothesis. When the
hypothesis testing indicated insignificance, the simpler
model was adequate and the model under the null hy-
pothesis is supported. As shown in Table 4, Model-3
yielded the lowest AIC and BIC. Although Model-4 and
Model-1 gave smaller values of MAPE than Model-3,
the extra terms did not significantly affect dengue case
prediction. This discovery was not surprising because
models with more attributes usually provide greater pre-
diction power. Additionally, models are traditionally
compared under the null hypothesis that the simpler
model with fewer terms is better-similar to the principle
of parsimony [26]. As all of these assessments revealed
Model-3 to be the best model, Model-3 has been
adopted as a representative model for predicting dengue
incidences throughout the remainder of this study.

Multivariate poisson regression model analysis
Having selected a model, we quantitatively associated
each variable with dengue cases. Table 5 lists the estima-
tion of regression coefficients, standard errors, Wald sta-
tistics, and p-values of the selected model.

Substituting the coefficients of Table 5 into Eq. 1, we
obtain

In(y,) = -8.16 + 0.55 seasonl + 0.24 season2
+ 0.02 Fmosquito + In(pop) (5)

In the next subsection, dengue incidences are fore-
casted by Eq. 5, and the predictions are compared with
the actual data.

The regression coefficients in Table 5 indicate that a 1 %
increase in the number of infected female mosquitoes
from the previous season will generate a 1.02-fold (€992
increase in the number of dengue incidences. The spread
of dengue may be explained by several factors. In addition
to the transmission of dengue virus to humans from mos-
quito bites, viral transmission among mosquitoes may also

Table 4 Model comparison
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occur through transovarian [14] transmission. When in-
creasing numbers of mosquitoes are infected, there is also
naturally an increased risk that people living in such
mosquito-infested areas may contract the disease. Out-
break risk is highest during the rainy season (Seasonl), be-
ing 1.73 (e**°) times higher than that of the winter season
(baseline). The severity of the outbreak is raised by a fac-
tor of €**=127 during the seasonal changeover from
winter to summer (Season2) and by a factor of 055024 -
1.36 during the changeover from summer to the rainy sea-
son. This result is attributed to the large volumes of stand-
ing water on private properties that accumulate during
the rainy season. Standing water revives mosquito eggs
that have lain dormant over the previous seasons, with
subsequent surges in mosquito emergence.

Prediction performance

Owing to high mobility rate in the rainy season, this study
only demonstrates the prediction performance for this sea-
son. According to the results illustrated in Fig. 3, both ac-
tual and predicted value tended to demonstrate similar
trends across the year, reflecting good performance of the
adopted MPR model. In addition, Kolmogorov-Smirnov
test [30] is utilized to verify the prediction performance and
to test whether the actual and predicted value are consist-
ent. The null hypothesis of consistency between actual and
predicted value is not rejected, with D=0.17 (p-value =
0.9639), indicating consistency of the actual and predicted
values. Because our model accounts for the overdispersed
problem, covariance estimation is adjusted to improve reli-
ability. As a result, the prediction performance of the model
is significantly improved.

Conclusions

As mentioned previously, no specific treatment exists
for dengue infection, and effective vaccines remain at
the developmental stage. Therefore, interrupting patho-
gen transmission by mosquito control is the most effect-
ive means of controlling dengue infection. In Thailand,
although mosquito surveillance has been in regular op-
eration for many years, surveillance has not appeared to
fully prevent dengue outbreaks. Seasonal factor has been
previously studied by Wongkoon et al. [31] which is
similar to the work in this report. Nonetheless, the main

Model Variables AlC BIC MAPE (%) Model compared Chi-square p-value
1 Season + Fmosquito + Mmosquito + AegRate 160.33 178.15 32538 - - -

2 Season + Fmosquito + Mmosquito 159.32 174.17 336.96 2vs. 19 049 0482

3 Season + Fmosquito 158.27 170.15 326.81 3vs. 2° 047 0491

4 Season + Fmosquito + Season X Fmosquito 160.15 177.96 32027 3vs. 4° 1.06 0.588

“Ho: Model-2 is appropriate vs. H;: Model-1 is appropriate
bHo: Model-3 is appropriate vs. H;: Model-2 is appropriate
“Ho: Model-3 is appropriate vs. H;: Model-4 is appropriate
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Table 5 Estimation of regression coefficients, standard errors,
Wald statistics, and p-values of the MPR model

Variables® Coefficient ~ Standard error ~ Wald statistics ~ p-value
Intercept -8.16 0.28 833.17 <0.001
Season1 0.55 0.26 4.69 0.030
Season2 024 0.26 0.83 0.361
Fmosquito 0.02 0.01 5.90 0.052

Season1 = rainy (May-Aug); Season2 = summer (Jan-Apr); Season3 = winter
(Sep-Dec) and is the baseline of this analysis

differences between these works are: firstly, we did not
exploit only the number of Ae. aegypti populations
found in urban and rural areas as demonstrated by
Wongkoon et al. [31] but the dengue virus infection rate
of larva and adult Ae. aegypti mosquitoes, which has
never been determined for dengue fever transmission,
was exploited. We incorporated the infected Ae. aegypti
larvae, female and male mosquito and attributes together
with seasonal variable into the predicted model in order
to enhance the prediction power. This is because female
mosquito can transmit dengue viruses through larvae by
trans-ovarian transmission [12, 32, 33] and male mos-
quitoes can transmit the viruses to females via sexual
transmission [12, 33]. We found that the infected female
mosquito together with season are directly correlated to
the number of dengue cases and significantly useful for
the forecasting model as confirmed by the results shown
in Fig. 3. Secondly, Wongkoon et al. [31] used the con-
tainer, house, and Breteau indices to determine dengue
transmission as similar to several other previous reports
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[34-36]. However those indices may not correlate to the
dengue virus transmission due to the increasing of den-
gue cases in Thailand. Therefore, female mosquito and
season could be used as novel variables for effectively
determination of the dengue outbreak in Thailand.

Infected female mosquito has also been used to predict
dengue cases in our previous work [15]. However, the
prediction techniques of these works are different; data
mining-based technique (SVM, Neural network, Deci-
sion tree, and K-nearest neighbor) were used in the pre-
vious work to construct the forecasting model whereas
statistics-based technique (Multivariate Poisson regres-
sion) was used in this work. Statistics is well established
methodology of science and useful for verifying relation-
ships among parameters when the relationships are lin-
ear while data mining techniques are useful for
knowledge finding hidden in the data. In this paper, we
focus on the analysis of linear correlation between den-
gue cases and infected data of mosquito. As such, meth-
odology for model analysis and selection are different
and they are the major contribution in this paper.

The present work demonstrates the important roles of
female mosquito infection rate and season in dengue
outbreak prediction. Statistic-based analysis illustrated
that there is a positive relation between these variables
and the number of dengue cases. Hence, integrating
these two factors in the forecast model significantly im-
proves the model’s DHF predictive power, as confirmed
by AIC, BIC, and MAPE. The proposed model efficiently
estimated the dengue incidence trends in the trial
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experiments reported here and could assist in dengue
outbreak surveillance and control at the early stages, be-
fore outbreaks spread. Although dengue virus infection
rate in mosquito is effective for prediction of dengue
outbreak, but the technique is costly and time consum-
ing therefore it has never been used to determine den-
gue outbreak in previous reports. To date technique for
rapid detection of dengue virus such as loop-mediated
isothermal amplification (LAMP) is developed [37].
LAMP reactions can be observed by naked eyes [38] and
the technique has low cost therefore it could be used to
determine dengue virus infection rate in mosquito in the
field survey. Dengue infection rate in mosquitoes could
be incorporated in the dengue control measure in the
near future. Currently, we are extending the model to
other factors that could potentially enhance model per-
formance. Landscape, dengue serotypes, and demo-
graphic transitions in the target areas are some of the
additional factors now undergoing further investigation.
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