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There is accumulating evidence that miRNA might serve as potential diag-

nostic and prognostic markers for various types of cancer. Hepatocellular

carcinoma (HCC) is the most common type of malignant lesion but the sig-

nificance of miRNAs in HCC remains largely unknown. The present study

aimed to establish the diagnostic value of miR-101-3p/5p in HCC and then

further investigate the prospective molecular mechanism via a bioinformatic

analysis. First, the miR-101 expression profiles and parallel clinical parame-

ters from 362 HCC patients and 50 adjacent non-HCC tissue samples were

downloaded from The Cancer Genome Atlas (TCGA). Second, we aggre-

gated all miR-101-3p/5p expression profiles collected from published litera-

ture and the Gene Expression Omnibus and TCGA databases. Subsequently,

target genes of miR-101-3p and miR-101-5p were predicted by using the

miRWalk database and then overlapped with the differentially expressed

genes of HCC identified by natural language processing. Finally, bioinfor-

matic analyses were conducted with the overlapping genes. The level of miR-

101 was significantly lower in HCC tissues compared with adjacent non-

HCC tissues (P < 0.001), and the area under the curve of the low miR-101

level for HCC diagnosis was 0.925 (P < 0.001). The pooled summary receiver

operator characteristic (SROC) of miR-101-3p was 0.86, and the combined

SROC curve of miR-101-5p was 0.80. Bioinformatic analysis showed that the

target genes of both miR-101-3p and miR-101-5p are involved in several

pathways that are associated with HCC. The hub genes for miR-101-3p and

miR-101-5p were also found. Our results suggested that both miR-101-3p

and miR-101-5p might be potential diagnostic markers in HCC, and that

they exert their functions via targeting various prospective genes in the same

pathways.
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According to Cancer Statistics, 2017 [1], the incidence

rates of liver cancer in the USA continue to increase

rapidly (~ 3% per year in women and 4% per year in

men), and the death rate rose by almost 3% per year

from 2010 to 2014. In addition, the mortality rate is

three times higher in men than in women. Since Asia is

the area with the highest incidence rate of liver cancer,

especially China, annual incidence and mortality are

more than half of the global totals [2]. Among the three

histological types of liver malignancy, hepatocellular

carcinoma (HCC) has become the leading cause of

death from cancer. Since there have been no biomarkers

or common surgical techniques for the early stage of

HCC, the majority of patients with HCC are diagnosed

late, which directly correlates with a poor outcome and

low survival rate. As with other cancers, HCC develop-

ment is a multistep process with abundant genetic and

epigenetic mutations. A recent study confirmed that

hepatocarcinogenesis can be caused by chronic hepatitis

B virus (HBV) infection [3]. Much effort towards the

treatment of HBV-infected HCC has been made in the

past, but with only limited success. Thus, identifying

novel biochemical markers for early HCC diagnosis is a

matter of the utmost urgency.

miRNAs, ~ 20–22 nucleotides in length, are a class

of small endogenous non-coding RNA molecules.

They post-transcriptionally regulate mRNA expression

through imperfect base paring with the 30-untranslated
region of target genes. With comprehensive study,

miRNAs have become known as the star molecules of

cancer research. miRNAs in human cancers are

involved in several pivotal biological processes (BP),

including cancer proliferation, differentiation, progres-

sion and cell apoptosis [4–6]. Although their functions

remain elusive, up- and down-regulation of miRNAs

have been widely reported in all kinds of cancer tissues

in comparison with expression in the corresponding

normal tissues [7,8]. In particular, miRNAs have been

found to be biomarkers for cancer clinical diagnosis,

histological classification and prognosis [9–13].
Accumulating evidence has clearly demonstrated

that the aberrant expression of miRNAs may further

influence the expression of tumor oncogenes and sup-

pressor genes, thereby leading to the occurrence of a

tumor [14–17]. Theoretically, mature miRNA genera-

tion requires a series of enzyme reactions. First, pri-

mary miRNA transcripts are cleaved in the nucleus by

the Drosha enzyme to liberate the precursor miRNA

(pre-miRNA) hairpin. Subsequently, the pre-miRNA

is exported to the cytoplasm and further processed by

the enzyme Dicer to produce two mature miRNAs

(miR-5p and miR-3p) [18,19]. Even though the two

mature miRNAs are transcribed from the same pre-

miRNA, they may have different target genes and bio-

logical functions. A previous study [20] reported that

the expression levels of the miR-5p and miR-3p

mature sequences can be altered in different tissues.

Accumulating evidence [19,21–25] has shown that

miR-101-3p/-5p is down-regulated in multiple malig-

nances, including HCC. For example, Hou et al. [26]

explored miRNA expression profiling and revealed

that miR-101 (3p and 5p were not distinguished)

expression in HCC tissues was lower than in healthy

controls. Wei et al. [27] also showed that miR-101 (3p

and 5p were not distinguished) was down-regulated in

HBV-associated HCC tissues and may have therapeu-

tic potential in HCC. Additionally, the function of

these miRNAs has also been investigated. Zhang et al.

[28] revealed that enforced expression of miR-101 (3p

and 5p were not distinguished) by siRNA inhibited the

cell proliferation and tumorigenicity of an HCC cell

line in vitro. Sheng et al. [29] investigated how miR-

101-3p regulated cell proliferation, cell cycle and apop-

tosis in HCC and found that overexpression of miR-

101-3p caused an enhanced rate of apoptosis but no

obvious change in the cell cycle. Besides, several onco-

genes, such as EZH2, FOS, COX-2 and SOX9, have

been found to be directly regulated by miR-101-3p/5p

[30–32]. Recently the potential of the miR-101 family

as diagnostic indicators has also caught the eye of

researchers. He et al. [33] conducted a meta-analysis

that summarized miRNAs’ diagnostic value in HCC

and found that miR-101-5p had great diagnostic value,

though only three data sets were included and the

results need to be further validated. Furthermore, in

human, miR-101 precursor transcripts are encoded

with two genomic loci (miR-101-1 and miR-101-2).

For two mature miRNAs, miR-101-3p is generated

from the 30 ends of the precursors, and miR-101-5p

from the 50 end of pre-miR-101-1 (http://www.mirbase.

org/). We speculated that miR-101-3p may also serve

as a diagnostic marker for HCC. Since the seed region

of miR-101-3p and miR-101-5p is unique, they are pre-

dicted to regulate unique targets. However, to the best

of our knowledge, the comparative roles of miR-101-

3p and miR-101-5p in HCC have not yet been fully

studied.

The present study investigated miR-101-3p and

miR-101-5p expression in HCC tissues compared with

that in healthy controls. Published studies, Gene

Expression Omnibus (GEO) microarray chips and The

Cancer Genome Atlas (TCGA) data that included

miR-101-3p or miR-101-5p expression information

were collected together. Additionally, previous studies

have mainly focused on a single gene [34–36], and

studies have rarely focused on the function of
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coexpressed genes in cancers. For the purpose of

obtaining a full understanding of the molecular mecha-

nisms underlying HCC, comprehensive bioinformatics

methods were used to investigate the function and

pathways of target genes of miR-101-3p and miR-101-

5p associated with HCC. In a word, the present study

aimed to analyze the expression and mechanism of

miR-101-3p and miR-101-5p in the initiation and

development of HCC. This exploration will provide

novel insights into HCC. A flowchart for the whole

study designed is shown in Fig. 1.

Material and methods

The clinical role of miR-101 based on the public

database TCGA

To verify the difference in the miR-101 expression levels

between HCC and normal liver tissues, we downloaded rele-

vant data from the public tumor database TCGA, in which

samples from 362 HCC patients and 50 adjacent non-HCC

tissues were included. Additionally, miR-101-1 and miR-101-

2 levels were both calculated because the relevant sample data

were provided in TCGA. miR-101-1 and miR-101-2 are two

precursor hairpin structures of miR-101 miRNA that are

located in the human genome on chromosome 1 (MI0000103)

and 9 (MI0000739), respectively [37]. Both of them are

processed by the Dicer enzyme to form the mature miRNA.

All of the available clinical parameters were analyzed by SPSS

STATISTICS 22.0 (IBM Corp., Armonk, NY, USA).

Data mining

Search strategy and study selection

Comprehensive literature searches were conducted on elec-

tronic databases PubMed, EMBASE, Web of Science, the

Cochrane Library, and Chinese National Knowledge

Infrastructure (CNKI) up to 29 December 2016. No lan-

guage limitations were imposed. Qualifying articles were

screened by combining the following keywords: ‘miR-101’

OR ‘miRNA-101’ OR ‘miRNA-101’ OR ‘miR101’ OR

‘miRNA101’ OR ‘miRNA 101’ OR ‘miR-101-5p’ OR

‘miRNA-101-5p’ OR ‘miRNA-101-5p’ OR’miR-101-3p’

OR ‘miRNA-101-3p’ OR ‘miRNA-101-3p’ AND malig-

nan* OR cancer OR tumor OR neoplas* OR carcinoma

AND hepatocellular OR liver OR hepatic OR HCC AND

diagnos* OR receiver operating characteristic (ROC) OR

specificity OR sensitivity OR DEGs OR DEMs OR ‘differ-

entially expressed’. In addition, the reference lists were also

manually searched to reduce article omission. The title and

abstract of the obtained studies were scanned to exclude

any clearly irrelevant publications. In addition to searching

the literature, we also searched the GEO database for eligi-

ble microarrays with the following terms: malignan* OR

Fig. 1. Flowchart of the study design.
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cancer OR tumor OR neoplas* OR carcinoma AND hepa-

tocellular OR liver OR hepatic OR HCC.

Criteria for inclusion and exclusion

Studies that met the following criteria were included: (a)

investigated HCC; (b) measured the level of miR-101, miR-

101-3p or miR-101-5p in HCC tissue, plasma or serum; (c)

included the diagnosis of HCC or the clinical parameters;

and (d) reported true positives (TPs), false positives (FPs),

false negatives (FNs), and true negatives (TNs) or sensitiv-

ity and specificity of miR-101. In addition, (e) if the studies

did not provide a fourfold contingency table, they were

included if the original data were available; and (f)

microarrays were included if they enrolled more than three

patient samples and measured the miR-101 profile for

HCC.

Articles that met the following criteria were excluded:

(a) studies without sufficient data, such as reviews or sys-

tematic reviews, (b) repeat reports, (c) studies conducted on

cell lines or animals and (d) letters to the editor or confer-

ence abstracts.

Data synthesis and analysis

Studies that did not provide TPs, FPs, FNs and TNs but

gave sensitivity and specificity or the original data were

translated by MEDCALC 11.4.2.0 (MedCalc Software, Ostend,

Belgium). To reduce inaccuracy in the relevant data

extracted from the included studies, three independent

researchers (XY, PL and JMC) performed the data extrac-

tion separately.

Statistical analysis

All statistical analyses were performed using SPSS STATISTICS

20.0 or STATA 12.0 (StataCorp, College Station, TX, USA).

For the clinical parameter analysis, miR-101 expression

was represented as the mean � standard deviation. The

standards for assessing the area under the curve (AUC) in

the ROC curve were as follows: 0.5–0.7 represented poor

evidence for diagnosis, 0.7–0.9 represented moderate evi-

dence for diagnosis and 0.9–1.0 represented high evidence

for diagnosis. The correlation between miR-101 expression

and the clinicopathological parameters was investigated

with Spearman’s rank correlation. The significance of the

difference between HCC and non-cancerous liver tissues

was studied using Student’s t test. The significant differ-

ences among three groups were examined by one-way

ANOVA. For data mining, the pooled sensitivity, speci-

ficity, positive likelihood ratios (PLRs), negative likelihood

ratios (NLRs), and diagnostic odds ratio with their corre-

sponding 95% confidence intervals (CIs) were calculated

with the bivariate regression model. Additionally, the

Table 1. Relationship between miR-101-1 and clinicopathological parameters in HCC (TCGA data).

Clinicopathological feature

miR-101-1 relative expression Correlation analysis

n Mean � SD t P r P

Tissue

HCC 362 15.25 � 1.05 �16.198 0.000 0.480 0.000

Normal 50 16.93 � 0.62

Gender

Male 247 15.23 � 1.03 �0.542 0.588 0.015 0.774

Female 115 15.29 � 1.09

Age

< 50 years 68 15.06 � 1.13 �1.708 0.089 0.031 0.559

≥ 50 years 290 15.30 � 1.03

HBV

� 255 15.20 � 1.08 1.347 0.179 0.079 0.133

+ 106 15.37 � 0.98

HCV

� 308 15.22 � 1.05 1.407 0.160 0.054 0.309

+ 54 15.44 � 1.01

Pathological stage

Stage I–II 250 15.34 � 1.01 3.276 0.001 �0.174 0.001

Stage III–IV 88 14.92 � 1.16

Pathological T

T1–T2 268 15.33 � 1.01 2.867 0.004 �0.173 0.001

T3–T4 92 14.97 � 1.12

Histological grade

GI–II 223 15.40 � 1.05 3.467 0.001 �0.184 0.000

GIII–IV 135 15.00 � 1.02
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summary receiver operator characteristic (SROC) curve

with the area under the SROC curve was calculated [38].

What is more, the Q test and the I2 measure of

inconsistency were used to quantify heterogeneity between

studies [39]. The possibility of publication bias was finally

explored by Deeks’ funnel plot, and P values < 0.1 were

considered significant.

Bioinformatic analysis

In silico analysis of target genes of miR-101

MiRWalk2.0 [40] (http://zmf.umm.uni-heidelberg.de/apps/

zmf/mirwalk2/), which combines 12 existing miRNA-target

prediction programs, was used to provide comprehensive

potential targets for miR-101-3p and miR-101-5p. The

genes identified by more than eight prediction software pro-

grams for miR-101-3p and more than six for miR-101-5p

were selected to obtain more reliable targets.

Natural language processing

Natural language processing (NLP) is a novel computerized

approach to analyze electronic free text to achieve ‘human-

like language processing’. With this approach, program-

mers create software to ‘read’ text and extract key pieces of

information from clinician notes, procedure/radiology/

pathology reports and laboratory results [41,42]. We per-

formed a literature search in PubMed to obtain all related

electronic records. The detailed process was described in

Table 2. Relationship between miR-101-2 and clinicopathological parameters in HCC (TCGA data).

Clinicopathological feature

miR-101-2 relative expression Correlation analysis

n Mean � SD t P r P

Tissue

HCC 362 15.27 � 1.05 �16.256 0.000 0.481 0.000

Normal 50 16.94 � 0.61

Gender

Male 247 15.25 � 1.03 �0.533 0.594 0.016 0.760

Female 115 15.31 � 1.09

Age

< 50 years 68 15.08 � 1.13 �1.709 0.088 0.032 0.550

≥ 50 years 290 15.32 � 1.03

HBV

� 255 15.22 � 1.07 1.347 0.179 0.079 0.133

+ 106 15.39 � 0.98

HCV

� 308 15.24 � 1.05 1.425 0.155 0.054 0.309

+ 54 15.46 � 1.01

Pathological stage

Stage I–II 250 15.36 � 1.01 3.309 0.001 �0.174 0.001

Stage III–IV 88 14.93 � 1.15

Pathological T

T1–T2 268 15.35 � 1.00 2.904 0.004 �0.174 0.001

T3–T4 92 14.99 � 1.12

Histological grade

GI–II 223 15.41 � 1.04 3.452 0.001 �0.184 0.000

GIII–IV 135 15.03 � 1.02

Fig. 2. MiR-101 expression profiles for the diagnosis of HCC. The

AUC of the low miR-101 level for HCC diagnosis was 0.925 (95%

CI: 0.896–0.953, P < 0.001).
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our previous article [43,44]. Finally, 1800 genes that were

differentially expressed in HCC were identified for further

analysis.

Functional and signaling pathway analyses

A set of condition-specific genes from the overlapping

genes from the target prediction software and NLP further

underwent functional and signaling pathway analyses on a

public database platform, the Database for Annotation,

Visualization and Integrated Discovery (DAVID; https://da

vid.ncifcrf.gov/), which provides a functional interpretation

of massive gene lists derived from genomic studies. The

analyses included Gene Ontology (GO) function analysis

(http://www.geneontology.org/) and Kyoto Encyclopedia of

Genes and Genomes (KEGG; http://www.genome.jp/kegg/)

analysis. The GO function analysis categorized selected

genes into groups in accordance with three independent

classification standards, BPs, cellular components (CCs),

and molecular functions (MFs). The top 10 terms of each

GO category and top 30 pathways of the KEGG pathways

were visualized as GO maps and KEGG maps, separately,

via CYTOSCAPE v3.4.0 (http://cytoscape.org/).

Protein–protein interaction network construction

Overlapping genes were inputted to the STRING v10.0 online

tool (http://string-db.org/) to construct the protein–protein
interaction (PPI) network. The direct (physical) and indi-

rect (functional) associations of proteins were derived from

four methods: (a) literature-reported protein interactions,

(b) high-throughput experiments, (c) genome analysis and

Fig. 3. Diagnostic accuracy of miR-101-3p in HCC. (A) Sensitivity (SENS) and specificity (SPEC) with corresponding heterogeneity statistics.

(B) SROC curves for miR-101-3p with CI in the diagnosis of HCC.
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prediction and (d) coexpression studies. By scrutinizing the

connectivity degrees of the nodes in the PPI networks, we

determined the hub genes. A node with a high degree of

connectivity is perceived as a hub node.

Results

Clinicopathological significance of miR-101-1/

miR-101-2 in HCC tissues

The relationship between miR-101-1/miR-101-2 and

clinicopathological parameters in HCC was mined

from TCGA, as shown in Tables 1 and 2. Data profil-

ing revealed that when compared with the expression

in para-non-cancerous normal tissues (16.93 � 0.62),

miR-101-1 expression was significantly reduced in

HCC tissues (15.25 � 1.05, P < 0.001). In addition,

the AUC of the low miR-101-1 level for HCC diagno-

sis was 0.925 (95% CI: 0.896–0.953, P < 0.001, Fig. 2)

with a cut-off value of 16.17 (82.6% sensitivity and

90.0% specificity). Similar results were also obtained

for miR-101-2 (15.27 � 1.05 in HCC and 16.94 � 0.61

in para-non-cancerous liver tissues, P < 0.001). Addi-

tionally, the altered expressions of miR-101-1 and

miRNA-101-2 were both associated with pathological

stage, pathological T stage and histological stage.

Compared with the expression in advanced stage (III

and IV) HCC patients, the relative expression of miR-

101 in early stage patients was notably increased (I

and II, P < 0.05), and the Spearman correlation test

confirmed that the correlations between miR-101 and

the pathological stage, pathological T stage and histo-

logical stage were r = �0.17, P = 0.001; r = �0.17,

P = 0.001 and r = �0.18, P < 0.001, respectively.

Diagnostic value of miR-101-3p and miR-101-5p

Study selection

Through the literature search, 341 relevant articles

were identified, 339 of which were excluded for being

case reports, reviews, letters, repeat publications and

Fig. 4. Fagan diagram and likelihood matrix for miR-101-3p to diagnose cancer or to eliminate the diagnosis of cancer. (A) Pre-test

probability of the miR-101-3p assay in HCC detection. (B) Likelihood matrix showing individual (circles) and pooled (diamond) values of PLRs

combined with NLRs. LLQ, left lower quadrant; LUQ, left upper quadrant; RLQ, right lower quadrant; RUQ, right upper quadrant.
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studies not specifically pertaining to miR-101-3p/5p.

The two remaining publications were examined by

three researchers and ultimately included. Moreover,

GEO microarrays that detected miR-101-3p and/or

miR-101-5p were identified for further analysis and

were combined after assessment. Finally, 12 datasets

including 315 HCC and 330 normal control samples

were downloaded from the GEO database to calculate

the miR-101-3p diagnostic value (GSE39678,

GSE21279, GSE67882, GSE65708, GSE12717, GSE

10694, GSE22058, GSE21362, GSE40744, GSE41874,

GSE54751 and GSE57555); five datasets including 308

HCC and 114 normal control samples were down-

loaded from the GEO database to calculate the miR-

101-5p diagnostic value (GSE74618, GSE21362,

GSE40744, GSE41874 and GSE57555). In addition,

the precursors of miR-101 identified from TCGA were

also considered.

Heterogeneity analysis

The analysis of heterogeneity is widely used to

evaluate the accuracy of statistical pooling from

multiple studies [45]. Since heterogeneities may come

Fig. 5. Diagnostic accuracy of miR-101-5p in HCC. (A) Sensitivity (SENS) and specificity (SPEC) with corresponding heterogeneity statistics.

(B) SROC curves for miR-101-5p with CI in the diagnosis of HCC.

71FEBS Open Bio 8 (2018) 64–84 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

X. Yang et al. Diagnostic value and bioinformatics analysis of miR-101 in HCC



from a threshold effect and a non-threshold effect, the

threshold effect was first explored by the Spearman

test to calculate the heterogeneity of miR-101-3p/5p

among the included studies. In other words, the corre-

lation coefficient and P value between the logit of sen-

sitivity and logit of 1 – specificity were calculated. As

Fig. 6. Fagan diagram and likelihood matrix for miR-101-5p to diagnose cancer or to eliminate the diagnosis of cancer. (A) Pre-test

probability of the miR-101-5p assay in HCC detection. (B) Likelihood matrix showing individual (circles) and pooled (diamond) values of PLRs

combined with NLRs. LLQ, left lower quadrant; LUQ, left upper quadrant; RLQ, right lower quadrant; RUQ, right upper quadrant.

Fig. 7. The Deeks’ test that assesses potential publication bias in the miR-101 assay. (A) Potential publication bias assessment of miR-101-

3p. (B) Potential publication bias assessment of miR-101-5p.
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a result, the Spearman correlation coefficients for

miR-101-3p and miR-101-5p were 0.386 (P = 0.215)

and �0.059 (P = 0.912), respectively, indicating that

heterogeneity from the threshold effect was not found.

However, the I2 values in the forest plots of sensitivity

and specificity (more than 50%) revealed that we can-

not ignore the non-threshold effect from the included

studies.

Diagnostic accuracy of miR-101-3p and miR-101-5p in

HCC

Evident heterogeneity for pooled sensitivity and speci-

ficity of miR-101-3p was seen in the collected data

(I2 = 87.02% and 83.73%, respectively, P < 0.05);

thus, a random effects model was finally selected,

based on which the pooled sensitivity and specificity of

Fig. 8. The KEGG pathway analysis of

miR-101-3p predicted target genes in

HCC. Pathway analyses were performed

to identify significantly enriched pathways

by using CYTOSCAPE v3.4.0. The top 30

pathways are displayed; the map node

size represents the P value of targets, low

values are indicated by large nodes, and

the node color represents the gene count

number with low values indicated by pink.

Fig. 9. The KEGG pathway analysis of miR-101-5p predicted target genes in HCC. Pathway analyses were performed to identify significantly

enriched pathways by using CYTOSCAPE v. 3.4.0. The top 30 pathways are displayed; the map node size represents the P value of targets,

low values are indicated by large nodes, and the node color represents the gene count number with low values indicated by pink.
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miR-101-3p was 78.0% (95% CI: 65.0–88.0%) and

79.0% (95% CI: 67.0–88.0%), respectively (Fig. 3A).

In addition, the summary SROC of miR-101-3p was

0.86 (95% CI: 0.82–0.89; Fig. 3B). In addition, the

PLR and NLR for HCC diagnosis were 3.803 (95%

CI: 2.398–6.033) and 0.272 (95% CI: 0.169–0.439),
respectively. Furthermore, the pre-test probability was

20 for miR-101-3p, and the corresponding positive and

negative post-test probabilities of miR-101-3p were 49

and 6, respectively, suggesting that the power of miR-

101-3p to diagnose real patients as HCC was 3.8 times

the normal control (Fig. 4A). In addition, the likeli-

hood ratio scattergram disclosed that the summary

point of the PLR together with the NLR lies in the

right lower quadrant (PLR < 10, NLR > 0.1; Fig. 4B).

With regard to miR-101-5p, a random effects model

was also selected for further analysis (I2 = 78.79% and

92.24%, for sensitivity and specificity, respectively,

P < 0.01). The overall sensitivity and specificity were

79.0% (95% CI: 75.0–83.0%) and 60.0% (95% CI:

27.0–86.0%), respectively (Fig. 5A). The calculated

AUC of the summary SROC was 0.80 (95% CI: 0.76–
0.83; Fig. 5B). Additionally, the PLR was 1.981 (95%

CI: 0.831–4.721), and the NLR was 0.349 (95% CI:

0.174–0.698); the pre-test probability of miR-101-5p

was 20, and the corresponding positive and negative

post-test probability of miR-101-5p was 33 and 8,

respectively, suggesting that the power of miR-101-5p to

diagnose real patients as HCC was 1.98 times the nor-

mal control (Fig. 6A). In addition, the summary point

Table 3. KEGG functional annotation for most significantly related targets of miR-101.

KEGG ID Term Gene no. P Genes

MiR-101-3p

hsa04520 Adherens junction 5 8.53 9 10�4 MAP3K7, MAPK1, TGFBR1, NLK, SSX2IP

hsa05140 Leishmaniasis 5 8.53 9 10�4 MAP3K7, MAPK1, FOS, PTGS2, JAK2

hsa04917 Prolactin signaling pathway 5 8.53 9 10�4 MAPK1, FOS, SOCS2, GSK3B, JAK2

hsa05200 Pathways in cancer 9 2.18 9 10�3 CEBPA, MAPK1, FOS, PTGS2, TGFBR1, GSK3B, PTCH1, CDK6,

CXCL12

hsa04010 MAPK signaling pathway 7 4.09 9 10�3 MAP3K7, MAPK1, FOS, DUSP1, TGFBR1, NLK, SRF

hsa05210 Colorectal cancer 4 6.16 9 10�3 MAPK1, FOS, TGFBR1, GSK3B

hsa04360 Axon guidance 5 7.10 9 10�3 MAPK1, EPHA7, NRP1, GSK3B, CXCL12

hsa05162 Measles 5 8.34 9 10�3 MAP3K7, GSK3B, IL13, CDK6, JAK2

hsa04068 FoxO signaling pathway 5 8.56 9 10�3 MAPK1, TGFBR1, NLK, CCNG2, BCL2L11

hsa05166 HTLV-I infection 6 1.86 9 10�2 FOS, NRP1, ETS1, TGFBR1, GSK3B, SRF

MiR-101-5p

hsa05200 Pathways in cancer 35 7.08 9 10�16 XIAP, PTGS2, FOXO1, MMP1, TPM3, CCNE2, IGF1R, KRAS,

CDKN2B, BCL2, SOS1, ITGAV, MYC, AKT3, PRKCA, BMP4, IL6,

RALBP1, TGFBR1, CREBBP, et al.

hsa04068 FoxO signaling pathway 21 5.59 9 10�14 IL6, SGK3, TGFBR1, CREBBP, SMAD4, SMAD3, FOXO1, SMAD2,

MAPK10, IL7R, CCNG2, BCL2L11, ATM, IGF1R, NRAS, MAPK1,

KRAS, CDKN2B, CCND2, SOS1, AKT3

hsa05161 Hepatitis B 20 2.82 9 10�12 PRKCA, IL6, YWHAZ, TGFBR1, CREBBP, MAP2K4, CYCS, SMAD4,

CDK6, MAPK10, STAT2, CCNE2, NRAS, MAPK1, KRAS, DDX3X,

BCL2, NFATC2, MYC, AKT3

hsa04151 PI3K–Akt signaling pathway 27 7.91 9 10�11 YWHAZ, RPS6KB1, IL7R, CCNE2, IGF1R, KRAS, SOS1, ITGAV,

BCL2, ANGPT2, MYC, AKT3, GHR, PRKCA, IL6, FLT1, SGK3,

MET, CDK6, BCL2L11, et al.

hsa04917 Prolactin signaling pathway 12 2.43 9 10�8 MAPK1, NRAS, KRAS, TNFRSF11A, SOCS2, PRLR, CCND2, SOS1,

ESR1, ESR2, MAPK10, AKT3

hsa04520 Adherens junction 12 2.43 9 10�8 MAP3K7, MAPK1, IGF1R, TGFBR1, CREBBP, MET, SMAD4,

SMAD3, SMAD2, WASL, YES1, CTNNA1

hsa05220 Chronic myeloid leukemia 12 2.83 9 10�8 MAPK1, NRAS, KRAS, CRKL, HDAC2, TGFBR1, SOS1, SMAD4,

CDK6, MYC, AKT3, PTPN11

hsa05205 Proteoglycans in cancer 18 3.80 9 10�8 PRKCA, ERBB4, MET, ESR1, RPS6KB1, SDC2, FZD7, PTPN11,

IGF1R, NRAS, MAPK1, KRAS, ITGAV, SOS1, MYC, FRS2, AKT3,

TWIST1

hsa05210 Colorectal cancer 11 7.32 9 10�8 MAPK1, KRAS, TGFBR1, BCL2, CYCS, SMAD4, SMAD3, SMAD2,

MAPK10, MYC, AKT3

hsa04630 Jak–STAT signaling pathway 15 1.37 9 10�7 IL6, SOCS2, IL6ST, LEPR, CREBBP, IL7R, STAT2, PTPN11, LEP,

PRLR, CCND2, SOS1, MYC, AKT3, GHR
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Table 4. GO functional annotation for most significantly related targets of miR-101-3p.

GO ID Term

Gene

no. P Genes

BP

GO: 0045944 Positive regulation of transcription

from RNA polymerase II promoter

20 1.90 9 10�8 CEBPA, SOX6, ZEB1, ZIC1, TET2, SOX9, PROX1, SRF,

MYCN, PGR, MEF2D, FOS, ETS1, ZNF148, GSK3B,

ASH1L, NEUROD1, TCF4, BCL9, SMARCA4

GO: 0045893 Positive regulation of transcription,

DNA-templated

15 3.19 9 10�8 KLF6, RSF1, TGFBR1, ARID1A, SOX9, ZIC1, PROX1,

MYCN, MAPK1, FOS, ETS1, NEUROD1, PTCH1, TCF4,

SMARCA4

GO: 0032355 Response to estradiol 6 4.40 9 10�5 DUSP1, SOCS2, PTGS2, ETS1, EZH2, PTCH1

GO: 0008285 Negative regulation of cell

proliferation

10 4.72 9 10�5 CEBPA, PTGS2, ETS1, CDK6, JAK2, ZEB1, ARID2, PROX1,

SRF, CDH5

GO: 0001764 Neuron migration 6 8.71 9 10�5 NRP1, GJA1, PAFAH1B1, TOP2B, CXCL12, SRF

GO: 0001701 In utero embryonic development 7 1.49 9 10�4 TGFBR1, MYO1E, GJA1, PTCH1, SOX6, SRF, BCL2L11

GO: 0000122 Negative regulation of transcription

from RNA polymerase II promoter

12 2.32 9 10�4 CUL3, CEBPA, JDP2, ZNF148, EZH2, PTCH1, ARID1A,

SOX6, ZEB1, TCF4, PROX1, SMARCA4

GO: 0006366 Transcription from RNA polymerase

II promoter

10 3.32 9 10�4 CEBPA, MEF2D, FOS, ZNF148, ETS1, ASH1L, NEUROD1,

ZIC1, SOX9, SRF

GO: 0018107 Peptidyl-threonine phosphorylation 4 5.73 9 10�4 MAPK1, TGFBR1, GSK3B, NLK

GO: 0007179 Transforming growth factor beta

receptor signaling pathway

5 6.53 9 10�4 MAP3K7, FOS, TGFBR1, NLK, CDH5

CC

GO: 0005654 Nucleoplasm 30 2.50 9 10�7 ING3, RSF1, XPO5, XPO4, EZH2, ZEB1, SOX6, ZIC1, SOX9,

SRF, ARID2, LARP1, CUL3, PGR, FOS, FBXW7, ZNF148,

TOP2B, BCL9, NLK, et al.

GO: 0005634 Nucleus 40 1.24 9 10�5 ING3, JDP2, RSF1, PTGS2, XPO5, EZH2, SOX6, ZEB1,

SOX9, ZIC1, TIMP3, SRF, MAP3K7, CUL3, PGR, FOS,

MSI1, SSX2IP, TOP2B, TCF4, et al.

GO: 0009897 External side of plasma

membrane

6 1.54 9 10�3 CLCN3, FGA, IL13, ABCA1, CXCL12, CDH5

GO: 0005901 Caveola 4 2.17 9 10�3 MAPK1, PTGS2, PTCH1, JAK2

GO: 0009986 Cell surface 8 5.50 9 10�3 CLCN3, NRP1, FGA, TGFBR1, CFTR, SPARC, CDH5,

SLC7A11

GO: 0043234 Protein complex 7 5.73 9 10�3 MAPK1, FBXW7, PTGS2, CFTR, SSX2IP, SOX9, SMARCA4

GO: 0000790 Nuclear chromatin 5 7.16 9 10�3 EZH2, ARID1A, TCF4, SRF, SMARCA4

GO: 0005737 Cytoplasm 31 1.21 9 10�2 ING3, PTGS2, XPO5, XPO4, EZH2, IL13, ZEB1, ZIC1,

CCNG2, SRF, LIN28B, LARP1, MAP3K7, FBXW7, MSI1,

TOP2B, ZMYM2, SOCS2, MYO1E, CFTR, et al.

GO: 0005769 Early endosome 5 1.28 9 10�2 MAPK1, CLCN3, NRP1, GJA1, CFTR

GO: 0005794 Golgi apparatus 9 2.02 9 10�2 CUL3, MAPK1, CLCN3, ZNF148, ASH1L, GJA1, PTCH1,

ABCA1, BCL9

MF

GO: 0005515 Protein binding 62 1.67 9 10�9 JDP2, NRP1, RSF1, PTGS2, XPO5, XPO4, EZH2, IL13,

GJA1, ZEB1, LARP1, MAP3K7, PGR, CUL3, FOS, ZNF148,

SOCS2, CFTR, ARID1A, CDK6, et al.

GO: 0000978 RNA polymerase II core promoter

proximal region sequence-specific

DNA binding

11 2.20 9 10�6 PGR, CEBPA, MEF2D, FOS, JDP2, ZNF148, NEUROD1,

TCF4, ZIC1, SRF, SMARCA4

GO: 0001077 Transcriptional activator activity,

RNA polymerase II core promoter

proximal region sequence-specific

binding

9 6.46 9 10�6 PGR, CEBPA, MEF2D, FOS, NEUROD1, TCF4, ZIC1, SOX9,

SRF

GO: 0008134 Transcription factor binding 9 2.47 9 10�5 CEBPA, MAPK1, FOS, ETS1, NLK, NEUROD1, ZEB1, SRF,

SMARCA4
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of the PLR combined with the NLR also lies in the right

lower quadrant (PLR < 10, NLR > 0.1), which was

consistent with the Fagan’s nomogram result (Fig. 6B).

Publication bias

Publication bias was conducted by using the Deeks’

funnel plot asymmetry test. According to the results,

the funnel plots that represented every study were

almost symmetric, suggesting that publication bias

from the studies included was absent in our study. The

obtained P-values of 0.718 and 0.447 for miR-101-3p

and miR-101-5p, respectively, also revealed the

absence of publication bias (Fig. 7).

Bioinformatic analysis

To improve understanding of the function of miR-101,

the potential target genes of miR-101-3p and miR-101-

5p in HCC were identified separately. Based on the

prediction software and NLP, 73 target genes corre-

sponding to miR-101-3p and 90 target genes corre-

sponding to miR-101-5p were obtained. Subsequently,

bioinformatic analyses were conducted to investigate

the function and pathways of target genes of miR-101

associated with HCC. All of the target genes were

inputted into DAVID for bioinformatic analysis.

KEGG pathway enrichment analysis

Our study revealed that 23 KEGG pathways corre-

sponding to miR-101-3p were enriched, from which

the top five pathways in which target genes were

enriched were (a) the adherens junction pathway

(hsa04520: P = 8.53 9 10�4), (b) the leishmaniasis

pathway (hsa05140: P = 8.53 9 10�4), (c) the prolactin

signaling pathway (hsa04917: P = 8.53 9 10�4), (d)

pathways in cancer (hsa05200: P = 0.002) and (e) the

mitogen-activated protein kinase (MAPK) signaling

pathway (hsa04010: P = 0.004). For miR-101-5p, 90

KEGG pathways were enriched, and the top pathways

were (a) pathways in cancer (hsa05200:

P = 7.08 9 10�16), (b) the forkhead box O (FoxO)

signaling pathway (hsa04068: P = 5.59 9 10�14),

(c) hepatitis B (hsa05161: P = 2.82 9 10�12), (d) the

phosphoinositide-3-kinase (PI3K)–Akt signaling

pathway (hsa04151: P = 7.91 9 10�11) and (e) the

prolactin signaling pathway (hsa04917: P = 2.43 9

10�8). The top 30 pathways associated with miR-101-

3p and miR-101-5p are shown in Figs 8 and 9, respec-

tively, and all of the pathways are displayed in

Table 3.

GO enrichment analysis

As shown in Tables 4 and 5, the GO enrichment was

composed of the BP, CC and MF categories. In the

BP category for miR-101-3p, we can observe that the

73 target genes were mainly enriched in (a) positive

regulation of transcription from the RNA poly-

meraseIIpromoter (GO: 0045944, P = 1.90 9 10�8),

(b) positive regulation of transcription, DNA-tem-

plated (GO: 0045893, P = 3.19 9 10�8) and (c)

response to estradiol (GO: 0032355, P = 4.40 9 10�5).

In addition, in the CC category, (a) nucleoplasm (GO:

0005654, P = 2.50 9 10�7), (b) nucleus (GO: 0005634,

P = 1.24 9 10�5) and (c) external side of plasma mem-

brane (GO: 0009897, P = 0.002) remained the top

three enriched items. With regard to MF, the top

ranking three items were protein binding (GO:

0005515, P = 1.67 9 10�9), RNA polymerase II core

promoter proximal region sequence-specific DNA

binding (GO: 0000978, P = 2.20 9 10�6) and tran-

scriptional activator activity, RNA polymerase II core

Table 4. (Continued).

GO ID Term

Gene

no. P Genes

GO: 0003700 Transcription factor activity,

sequence-specific DNA binding

15 3.92 9 10�5 CEBPA, JDP2, SOX6, ZEB1, SOX9, ZIC1, PROX1, SRF,

MYCN, PGR, MEF2D, FOS, ETS1, NEUROD1, TCF4

GO: 0003677 DNA binding 20 4.29 9 10�5 CEBPA, KLF6, ZMYM2, EZH2, ARID1A, SOX6, ZEB1, TET2,

ARID2, LIN28B, PROX1, MYCN, PGR, MAPK1, FOS, SP2,

ETS1, ASH1L, TOP2B, TCF4

GO: 0030332 Cyclin binding 4 7.72 9 10�5 CUL3, FBXW7, PTCH1, CDK6

GO: 0046982 Protein heterodimerization activity 10 1.38 9 10�4 CUL3, MEF2D, FOS, CLCN3, JDP2, NEUROD1, SOX6,

TOP2B, TCF4, SOX9

GO: 0003682 Chromatin binding 9 2.29 9 10�4 FOS, JDP2, EZH2, ASH1L, NEUROD1, ZEB1, TOP2B, TCF4,

SOX9

GO: 0005102 Receptor binding 8 6.95 9 10�4 PGR, FGA, CADM2, GJA1, JAK2, ABCA1, CXCL12, CDH5
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Table 5. GO functional annotation for most significantly related targets of miR-101-5p.

GO ID Term

Gene

no. P Genes

BP

GO: 0043066 Negative regulation of apoptotic

process

29 2.01 9 10�13 YWHAZ, MTDH, ERBB4, XIAP, IL6ST, FOXO1, PRKDC,

RPS6KB1, IGF1R, DDX3X, BCL2, TPT1, GLO1, MYC,

TWIST1, BMP4, IL6, TBX3, SOCS2, SMAD3, et al.

GO: 0045893 Positive regulation of transcription,

DNA-templated

28 2.34 9 10�11 RSF1, ERBB4, FOXO1, ZIC1, ASPH, NFATC2, MYC, BMP4,

KLF6, IL6, TBX3, TGFBR1, CREBBP, SMAD5, SMAD4,

ESR1, ATAD2, SMAD3, SMAD2, ESR2, et al.

GO: 0045944 Positive regulation of transcription

from RNA polymerase II promoter

38 5.43 9 10�11 PRKDC, FOXO1, ZEB2, NR3C1, SOX6, ZEB1, ZIC1, PGR,

IL17A, BARX2, CDKN2B, DDX3X, ZNF148, NFATC2, YES1,

MYC, TWIST1, CKAP2, BMP4, IL6,et al.

GO: 0000122 Negative regulation of transcription

from RNA polymerase II promoter

32 9.99 9 10�11 JDP2, MTDH, USP2, FOXO1, ZEB2, SOX6, ZEB1, BARX2,

ZNF148, NFATC2, MYC, TWIST1, BMP4, DAB2IP, TBX3,

YY1, CREBBP, SMAD4, ESR1, KLF17, et al.

GO: 0008284 Positive regulation of cell

proliferation

25 4.77 9 10�10 ERBB4, IL6ST, IGF1R, CD47, KRAS, TNFRSF11A, ITGAV,

BCL2, MYC, IL6, FLT1, KLB, TBX3, TGFBR1, PROX1,

TET1, LEP, MAPK1, HDAC2, CRKL, et al.

GO: 0043065 Positive regulation of apoptotic

process

19 7.80 9 10�9 BMP4, IL6, DAB2IP, ERBB4, PTGS2, PRKDC, FOXO1,

FRZB, LATS1, BCL2L11, ATM, BAK1, TRIM35, ITGA6,

DDX3X, SFRP1, ATG7, SOS1, UNC5C

GO: 0050900 Leukocyte migration 12 1.23 9 10�7 NRAS, CD47, KRAS, ITGA6, ITGAV, SOS1, TREM1, YES1,

ANGPT2, MMP1, SLC7A11, PTPN11

GO: 0008285 Negative regulation of cell

proliferation

18 2.36 9 10�6 BMP4, IL6, DAB2IP, ERBB4, PTGS2, SMAD4, SMAD2,

CDK6, ZEB1, FRZB, ARID2, PROX1, SLIT3, BAK1, SPRY1,

CDKN2B, SFRP1, MDM4

GO: 0001568 Blood vessel development 7 3.73 9 10�6 MIB1, LAMA4, CRKL, TBX3, ITGAV, FOXO1, AHR

GO: 0071498 Cellular response to fluid shear

stress

5 7.02 9 10�6 MTSS1, PTGS2, CA2, NFE2L2, TFPI2

CC

GO: 0005829 Cytosol 67 3.59 9 10�8 RPL36A, FOXO1, RPS6KB1, LATS1, MAP3K7, CCNE2,

BAK1, SPRY1, GSTM3, CDKN2B, MAT1A, ATG7, MYC,

PRKCA, DAB2IP, SOCS2, SGK3, RALBP1, G3BP1,

CYCS, et al.

GO: 0005654 Nucleoplasm 53 1.23 9 10�5 RSF1, XPO4, FOXO1, RPS6KB1, ZEB1, ZIC1, PGR, CCNE2,

SPRY1, CDKN2B, ZNF148, MYC, AKT3, PRKCA, DTL,

ESR1, CDK6, ESR2, AHR, MCM6, et al.

GO: 0009897 External side of plasma membrane 12 1.50 9 10�5 EPHA5, VCAM1, CLCN3, IL17A, IL6, TNFRSF11A, ITGA6,

CD40LG, IL6ST, ITGAV, CD274, IL7R

GO: 0005634 Nucleus 84 2.85 9 10�5 JDP2, RSF1, PTGS2, CPEB4, FOXO1, ZEB2, RPS6KB1,

ZEB1, ZIC1, MAP3K7, CCNE2, PGR, GSTM3, BARX2,

CDKN2B, TPT1, LOX, TFPI2, MYC, ANGPT2, et al.

GO: 0005737 Cytoplasm 81 4.65 9 10�5 MTSS1, PTGS2, XPO4, CPEB4, FOXO1, RPS6KB1, ZEB1,

ZIC1, MAP3K7, SPRY1, GSTM3, CDKN2B, ATG7, TPT1,

FRS2, AKT3, PRKCA, DAB2IP, SOCS2, LPGAT1, et al.

GO: 0071141 SMAD protein complex 4 6.01 9 10�5 SMAD5, SMAD4, SMAD3, SMAD2

GO: 0005667 Transcription factor complex 10 1.97 9 10�4 BARX2, YY1, SMAD5, SMAD4, SMAD3, PRKDC, SMAD2,

DACH1, ZEB1, AHR

GO: 0043235 Receptor complex 8 3.74 9 10�4 IGF1R, FLT1, ERBB4, LEPR, TGFBR1, NTRK2, SMAD3,

GHR

GO: 0009986 Cell surface 16 5.76 9 10�4 CLCN3, TGFBR1, MET, RPS6KB1, CFTR, SDC2, SLC7A11,

VCAM1, ITGA6, SULF2, PRLR, SFRP1, CD40LG, ITGAV,

CNTN2, GHR

GO: 0005622 Intracellular 27 1.45 9 10�3 PRKCA, KLB, TGFBR1, G3BP1, SMAD5, SOCS6, SMAD4,

DCDC2, SMAD3, MAPK10, LATS1, SEC63, WSB1,

MAPK1, RND3, NRAS, TRIM35, KRAS, SFRP1,

TRIM33, et al.
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promoter proximal region sequence-specific binding

(GO: 0001077, P = 6.46 9 10�6). In the same way, the

top three enriched pathways of the 119 target genes of

miR-101-5p in the BP category were (a) negative regu-

lation of the apoptotic process (GO: 0043066,

P = 2.01 9 10�13), (b) positive regulation of transcrip-

tion, DNA-templated, negative regulation of transcrip-

tion from the RNA polymerase II promoter (GO:

0045893, P = 2.34 9 10�11) and (c) positive regulation

of transcription from the RNA polymerase II pro-

moter (GO: 0045944, P = 5.43 9 10�11). For the CC

category, (a) cytosol (GO: 0005829, P = 3.59 9 10�8),

(b) nucleoplasm (GO: 0005654, P = 1.23 9 10�5) and

(c) external side of the plasma membrane (GO:

0009897, P = 1.50 9 10�5) were the most enriched

terms. In addition, in the MF category, the utmost sig-

nificant three items were (a) protein binding (GO:

0005515, P = 5.59 9 10�14), (b) transcription factor

binding (GO: 0008131, P = 1.69 9 10�8) and (c) tran-

scriptional repressor activity, RNA polymerase II core

promoter proximal region sequence-specific binding

(GO: 0001078. P = 3.79 9 10�6). All of the GO

enrichment items are visualized in the GO network

(Figs 10 and 11).

Protein–protein interaction network

A PPI network was designed to screen out the hub

genes according to the degree to which each of the

genes appeared in the network. Here, the PPI network

was constructed by using the STRING database. As

shown in Figs 12 and 13, FOX, SMARCA4 and

MAPK1 remained the top three utmost important

genes for miR-101-3p, while ESR1, KRAS, NRAS,

FOXO1, CREBBP and SMAD3 were regarded as the

hub genes for miR-101-5p.

Table 5. (Continued).

GO ID Term

Gene

no. P Genes

MF

GO: 0005515 Protein binding 147 5.59 9 10�14 MTSS1, RPL36A, JDP2, PTGS2, IL6ST, XPO4, FOXO1,

RPS6KB1, PGR, MAP3K7, CD47, BAK1, CDKN2B, ATG7,

TPT1, ASPH, LOX, FRS2, TWIST1, DAB2IP, et al.

GO: 0008134 Transcription factor binding 18 1.69 9 10�8 YWHAZ, CREBBP, ESR1, SMAD3, PRKDC, SMAD2, ZEB1,

AHR, MAPK1, HDAC2, SP1, DDX3X, PSMD10, ATG7,

BCL2, NFATC2, MYC, TWIST1

GO: 0001078 Transcriptional repressor activity,

RNA polymerase II core promoter

proximal region sequence-specific

binding

10 3.79 9 10�6 JDP2, TBX3, ZNF148, YY1, CREBBP, KLF17, FOXO1,

DACH1, NFATC2, PROX1

GO: 0005524 ATP binding 37 5.87 9 10�6 CLCN3, ERBB4, PFKFB2, STK17B, PRKDC, RPS6KB1,

LATS1, MAP3K7, IGF1R, KRAS, DDX3X, MAT1A, HSPE1,

YES1, AKT3, PRKCA, FLT1, SGK3, TGFBR1, UBE4B, et al.

GO: 0000978 RNA polymerase II core promoter

proximal region sequence-specific

DNA binding

15 4.05 9 10�5 JDP2, TBX3, SMAD4, ESR1, KLF17, SMAD3, SMAD2,

NR3C1, ZIC1, PGR, HDAC2, SP1, ZNF148, NFATC2, MYC

GO: 0042802 Identical protein binding 22 8.15 9 10�5 MTSS1, YWHAZ, DAB2IP, XIAP, USP2, SMAD4, ESR1,

SMAD3, CLDN10, RPS6KB1, STAT2, MCM6, PBLD,

IGF1R, BAK1, MAPK1, GLUL, GSTM3, SFRP1, BCL2,

CNTN2, GBP1

GO: 0008270 Zinc ion binding 29 8.19 9 10�5 RSF1, XIAP, NR3C1, ZEB1, LIN28B, MMP1, PGR, GLO1,

XAF1, RCHY1, PRKCA, ZMYM2, YY1, CREBBP, ESR1,

SMAD3, WHSC1, ESR2, TET2, TET1, et al.

GO: 0004672 Protein kinase activity 14 1.79 9 10�4 PRKCA, SGK3, TGFBR1, MET, MAP2K4, STK17B, PRKDC,

RPS6KB1, PBK, MAPK10, MAP3K7, MAP4K4, HIPK2,

AKT3

GO: 0043565 Sequence-specific DNA binding 17 2.04 9 10�4 JDP2, TBX3, SMAD4, ESR1, SMAD3, FOXO1, WHSC1,

NR3C1, ESR2, SOX6, PGR, HDAC2, SP1, ZNF148, BCL2,

NFE2L2, MYC

GO: 0019899 Enzyme binding 13 3.32 9 10�4 PRKCA, PTGS2, UBE4B, ESR1, PRKDC, CFTR, ESR2, PGR,

GSTM3, HDAC2, MDM4, YES1, GBP1
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Discussion

In the present study, we investigated the relationship

between miR-101 expression and clinicopathological

parameters. TCGA data showed that the miR-101

level was significantly lower in HCC than in

para-non-cancerous liver tissues, and great diagnostic

value of miR-101 in HCC was found. Additionally,

Fig. 10. GO functional analysis of miR-

101-3p in HCC. Top 10 terms of each

category are displayed, and every node

represents different BP terms; the map

node size represents the P value of

targets, low values are indicated by large

nodes, and the node color represents the

gene count number with low values

indicated by pink.

Fig. 11. GO functional analysis of miR-101-5p in HCC. Top 10 terms of each category are displayed, and every node represents different BP

terms; the map node size represents the P value of targets, low values are indicated by large nodes, and the node color represents the

gene count number with low values indicated by pink.
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miR-101 was negatively correlated with pathological

stage, pathological T stage and histological grade.

Since these clinicopathological parameters are indica-

tors of tumor deterioration and progression, monitor-

ing the level of miR-101 may have a certain

significance in the progression of HCC.

Accumulating studies have indicated that dysregula-

tion of circulating miRNAs could be a biomarker of

tumorigenesis, development and invasion in various

cancers including prostate cancer, gastric cancer, ovar-

ian cancer, breast cancer and lung cancer [30,46–49]. A
diagnostic value for circulating miR-101-3p/5p in

HCC has also been reported [50,51]. Both of these

studies validated that a lower miR-101-3p/5p level had

diagnostic potential for HCC. However, due to the

limited number of available publications, the exact

diagnostic value of miR-101 and the difference

between miR-101-3p and miR-101-5p are still unclear.

Alpha-fetoprotein (AFP), as the traditional marker of

liver diseases, has been used for HCC diagnosis in the

clinic. Recently, He et al. [33] conducted a meta-analy-

sis with 10 data sets (879 HCC patients and 1028 con-

trols) assessing AFP for HCC diagnosis and revealed

that the AUC–SROC of pooled AFP was 0.82 (95%

CI: 0.78–0.85), with sensitivity of 0.631 (95% CI:

0.552–0.703) and specificity of 0.943 (95% CI: 0.875–
0.975). Here, we first combined gene expression

microarray datasets from the GEO database and

RNA-seq from TCGA database, as well as two stud-

ies, to further confirm the diagnostic efficacy of miR-

101-3p and miR-101-5p and then discover the differ-

ence between the two mature mRNAs. Our findings

suggested that the pooled diagnostic accuracy of miR-

101-3p for HCC (SROC: 0.86 (95% CI: 0.82–0.89);
sensitivity and specificity were 78.0% (95% CI: 65.0–
88.0%) and 79.0% (95% CI: 0.67–88.0%), respec-

tively), which showed a slightly higher diagnostic value

than AFP. As for miR-101-5p, the SROC was 0.80

(95% CI: 0.76–0.83), a little bit lower than AFP, but it

also showed a moderate value for HCC diagnosis,

which is comparable to AFP’s diagnostic value.

Even though miR-101-3p/5p expression showed a

high diagnostic value for HCC, the heterogeneity

among the studies must be considered. Since our study

indicated that heterogeneity from the threshold effect

was absent, we deduced that the heterogeneity may be

caused by the different data platforms and the large

gaps between each study. Considering that the number

of studies was small, we did not conduct a subgroup

analysis.

Fig. 12. The PPI network of miR-101-3p potential targets. Both the

color and the size of the nodes reflect the connectivity degrees of

two nodes; nodes with a green color are perceived as hub genes.

Fig. 13. The PPI network of miR-101-5p

potential targets. Both the color and the

size of the nodes reflect the connectivity

degrees of two nodes; nodes with a blue

color are perceived as hub nodes.
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Subsequently, bioinformatic analysis was performed

to determine the molecular mechanism of miR-101-3p/

5p in HCC. In the past, researchers exploring the

molecular mechanism of miRNAs only concentrated on

one or two target genes. For example, Varambally et al.

[52] first reported that EZH2 was the target gene of

miR-101 (3p and 5p were not distinguished) several

years ago. Another study confirmed that miR-101 (3p

and 5p were not distinguished) inhibits HCC progres-

sion and metastasis through EZH2 down-regulation

[53]. Liu et al. [54] identified another target gene of miR

101 (3p and 5p were not distinguished), VEGF C, which

promotes invasion and migration. MCL-1 and COX-2,

which play a role in tumorigenesis, have also been iden-

tified as the target genes of miR-101 (3p and 5p were

not distinguished) [31,55]. In addition, metastasis of

HCC has been shown to be affected by different target

genes of miR-101 (3p and 5p were not distinguished),

such as STMN1 [56] and PTEN [57]. Since a single

miRNA can target multiple genes to achieve its biologi-

cal and clinical functions, the exploration of the rele-

vant gene network can reveal the widespread molecular

mechanism of miR-101-3p/5p. Hence, we identified

potential target genes of miR-101-3p/5p in silico. More-

over, we further narrowed the list by analyzing the

genes that overlapped with the differentially expressed

genes of HCC identified via NLP. Next, these target

genes were subjected to KEGG pathway annotation

and GO enrichment analysis by using the DAVID. The

target genes of both miR-101-3p and miR-101-5p are

involved in pathways in cancer, hepatitis B and the

MAPK signaling pathway. These results reveal that

miR-101 probably contributes to the tumorigenesis and

metastasis of HCC. Previous studies have reported the

role of these pathways in liver cancer [58,59]. The GO

term analysis indicated that these potential target genes

of miR-101-3p/5p were significantly involved in the reg-

ulation of the cell cycle and cell proliferation, which are

associated with tumor occurrence or stepwise develop-

ment.

Furthermore, we constructed the PPI network with

potential target genes, showing that miR-101-3p proba-

bly targets FOS, SMARCA4, MAPK1, GSK3B and

JAK2 to exert its function in HCC. Li et al. [60]

reported that FOS acts as a regulator of cell prolifera-

tion, differentiation and transformation, and miR-101

inhibits cell invasion and migration via down-regulation

of FOS. MAPK1 has also been reported to be involved

in a variety of cellular processes, such as differentiation,

proliferation and development through the MAPK

pathway [61]. JAK2 is a protein tyrosine kinase, and

recent evidence has demonstrated that miR-101 (3p and

5p were not distinguished) inhibits breast cancer cell

proliferation and promotes apoptosis by targeting

JAK2 [49]. Previous studies reveal that miR-101-3p

might regulate the occurrence and development of HCC

by targeting various genes, and tumorigenesis probably

results from the abnormality of multiple genes. Of

course, the correlation of those potential key genes of

miR-101-3p needs further experimental validation.

Next, a functional analysis of these target genes in vitro

and in vivo will need to be conducted, such as by RNA

interference and cellular transfection, luciferase reporter

assay, western blot and so on. miR-101-5p possibly tar-

gets ESR1, KRAS, CREBBP, FOXO1 and SMAD3

through different pathways. Among them, KRAS, a

Kirsten ras oncogene homolog, was reported to have

functional synergy with HBx in HCC initiation and

progression [62], and FOXO1 has been proposed to

inhibit EMT transcriptional activators in HCC [63,64].

Additionally, Hishida et al. [65] indicated that ESR1 is

a tumor suppressor gene in HCC. Taken together, the

hub genes identified may perform key roles in HCC.

Further investigation appears to be necessary to con-

firm their exact function in HCC.

Taken together, the present study validated the

down-regulation of the two opposing strands, miR-

101-3p and miR-101-5p, in HCC clinical specimens;

however, miR-101-3p held a greater value for HCC

diagnosis. Bioinformatic analysis revealed that miR-

101-3p and miR-101-5p are involved in the same or

similar signaling pathways through regulating a differ-

ent set of target genes. The fact that miR-101-3p and

miR-101-5p are involved in these signaling pathways

suggests that the expression of miR-101-3p and miR-

101-5p is close in HCC tissues, and they may function

cooperatively with each other in the differentiation,

proliferation and development of HCC.

In conclusion, we provide a comprehensive analysis

of miR-101-3p/5p and evaluated the value of miR-101-

3p and miR-101-5p as biomarkers for the early diag-

nosis of HCC. In addition, we investigated the

prospective molecular mechanisms of these two oppos-

ing strands in silico. Our results provide a deeper

understanding of the role of miR-101-3p/5p in HCC

and facilitate the possible development of a miRNA-

based targeted therapy of HCC. However, several limi-

tations should be considered in this study. First, the

total number of studies included was limited; second,

further experiments in vitro and in vivo are still

required to confirm the function of the target genes.
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