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Abstract

The goal of machine learning (ML) is to create informative signals and useful tasks by leveraging 

large datasets to derive computational algorithms. ML has the potential to revolutionize the 

healthcare industry by boosting productivity, enhancing safe and effective patient care, and 

lightening the load on clinicians. In addition to gaining mechanistic insights into cancer-associated 

thrombosis (CAT), ML can be used to improve patient outcomes, streamline healthcare delivery, 

and spur innovation. Our review paper delves into the present and potential applications of 

this cutting-edge technology, encompassing three areas: i) computer vision-assisted diagnosis 

of thromboembolism from radiology data; ii) case detection from electronic health records 

using natural language processing; iii) algorithms for CAT prediction and risk stratification. The 

availability of large, well-annotated, high-quality datasets, overfitting, limited generalizability, the 

risk of propagating inherent bias, and a lack of transparency among patients and clinicians are 

among the challenges that must be overcome in order to effectively develop ML in the health 

sector. To guarantee that this powerful instrument can be utilized to maximize innovation in CAT, 

clinicians can collaborate with stakeholders such as computer scientists, regulatory bodies, and 

patient groups.
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Introduction

Cancer-associated thrombosis (CAT) is now a well-established disease entity and is 

recognized to substantially impact the overall survival, morbidity, quality of life and 

healthcare costs of the cancer subpopulation.1–3 Management of cancer itself has evolved 

rapidly since CAT was first described in the 1800s, with major breakthroughs in surgical, 

radiation and medical interventions. However, data suggest that the rates of CAT continue 

to rise perhaps reflecting improving diagnostics and/or increased survival in patients with 

cancer, including patients treated with novel therapeutic agents such as targeted agents 

and immunotherapies.4,5 Moreover, despite the advances in cancer treatment, venous 

thromboembolism in patients with cancer continues to be associated with increased 

mortality in contemporary cohorts.6,7

Machine learning (ML) refers to a specialized field of computer science that leverages 

algorithms to automatically identify patterns in data and ultimately perform a task. This 

approach has led to numerous transformative applications in diverse fields from voice 

recognition to virtual assistants, traffic prediction, financial market analysis and forecasting, 

fraud/criminal recognition and even self-driving vehicles.8 Considerable interest exists in 

developing applications of ML in healthcare to enhance diagnostic accuracy, improve 

efficiency, safety and quality, and substantially offload physicians. However, the high stakes 

inherent to healthcare as well as limitations intrinsic to ML science bring about somewhat 

unique challenges to its implementation in medicine, tempering enthusiasm and progress.9,10 

It is essential that clinicians work in close partnership with computer scientists to ensure that 

ML models developed are practical, unbiased and meet standards required to be integrated 

into patient care.

Applications for ML in the arena of hemostasis and thrombosis are growing. In this review, 

we catalog the potential areas where ML can enhance clinical care for patients with 

thrombotic disorders, with a focus on CAT. We also briefly review future directions and 

pitfalls that researchers and clinicians will need to be cognizant of as these technologies 

grow from research projects to more practical applications in the clinic.

Opportunities for application of machine learning to prevention and 

treatment of cancer-associated thrombosis

Certain features of thrombotic disorders may make these diseases particularly suitable to 

apply ML.11 A training dataset is a large pool of data used to adjust a ML model’s 

parameters and learn the underlying patterns in data; subsequently, the model is tested 

on an independent dataset to test its performance, known as validation dataset. Thrombotic 

conditions are relatively common and thus curating real-world datasets for training and 
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validation of ML models is potentially feasible. Moreover, thrombosis is a frequent 

complication in cancer patients and feature-rich datasets already exist that could be targeted 

to develop and use ML models.12,13

Secondly, although the precise etiology of thrombosis in individual patients can be hard 

to pinpoint, there are several potential factors that are often available in electronic health 

records contributing to the risk of thrombosis and thus can be used as ‘features’ in ML 

models. Risk factors for CAT are extremely diverse and range from patient factors, (such 

as age and habitus), tumor features (such as site and stage), laboratory values, interventions 

(including surgery and procedures) as well as systemic medications (including cytotoxic 

chemotherapy, hormonal therapy and targeted agents).14

The interventions used to prevent and treat thrombotic disorders usually involve 

anticoagulants, and thus bleeding risk needs to be balanced in patients with or at risk 

for thrombosis. Models based on ML can be envisioned to be developed not only to 

calculate risks associated with thrombosis but also bleeding and thus facilitate informed 

and tailored decisions for clinicians and patients. Patients with cancer are not only at 

increased risk of thrombosis but also have high rates of major and fatal bleeding, which 

makes anticoagulation a challenge for clinicians.15,16 Finally, patients with malignancy 

are relatively complex and can have significant temporal changes in thrombotic and 

hemorrhagic risk factors due to changes in cancer status (disease progression/recurrent or 

metastatic disease in critical sites), alterations in therapeutic interventions and general health 

status leading to institutionalization or immobilization. Thus, CAT risk is dynamic and 

continuous risk assessment would be beneficial to account for variations in risk with time.17

We identified three specific applications of ML to the research and clinical management of 

thromboembolism: i) natural language processing to optimize automated identification of 

thrombotic complications in patients; ii) computer vision to classify radiology images; iii) 

predictive ML modeling for thrombosis (Figure 1, Table 1).

Natural language processing and venous thromboembolism

Natural Language Processing (NLP) refers to the application of ML technology and 

linguistics to enable computers to automatically interpret, manipulate, and comprehend 

human language.18 Within healthcare, this allows automated interpretation of textual 

data within the electronic health record such as those in medical notes or laboratory 

and radiological reports for accurate case detection that can, in turn, aid surveillance 

efforts, augment hospital triage systems, and allow for automated measurement of 

quality metrics.19 For computers to analyze human language, one can rely on keyword 

extraction, predetermined rule-based technology or more advanced techniques that apply 

ML algorithms to make inferences, all approaches which have been studied in text into 

case-detection algorithms in the electronic health records.20 Furthermore, with the advent 

of generative artificial intelligence technology, such as generative pre-trained transformer 

(also known as GPT) models, there is interest in developing NLP applications to reduce 

burdens and time for providers by assisting in tasks such as automation of documentation 
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with human review, prepare orders or compute and synthesize information from electronic 

health records and medical literature.21,22

The application of NLP for the detection of thrombotic disorders including deep vein 

thrombosis (DVT) and pulmonary embolism has been developed for over a decade.23–26 

Although manual extraction is considered the gold standard, this labor-intensive process 

is not feasible for long-term and continuous case extraction. The use of billing or 

administrative diagnostic codes lacks accuracy for VTE detection and compares unfavorably 

to NLP algorithms.27 In a multicenter study that compared NLP to manual chart extraction 

in two orthogonal datasets, the NLP-based VTE identification system was found to score 

>90% on all performance measures calculated including accuracy, sensitivity, specificity, 

and positive and negative predictive in both datasets.28 This supports that NLP could be a 

promising tool for automated surveillance systems. This technology has also been studied 

for VTE surveillance in specific settings such as post-surgery, pediatric populations and 

patients hospitalized with COVID-19.29–31

Various researchers have worked on developing NLP models that can aid acute CAT 

case detection within cohorts of patients with malignancy. Ostensibly CAT may differ 

from thrombosis in the general population given higher patient complexity, cancer-directed 

medications, more frequent interventions such as central access catheters as well as the 

high prevalence of preexisting thrombosis which could make detection of recurrent acute 

events challenging. A transformer NLP model utilizing a combination of clinical notes and 

radiology reports to detect CAT longitudinally was developed that achieved a precision 

(positive predictive value, PPV) and recall (sensitivity) of about 93%.32 A separate group 

demonstrated the successful use of a customized NLP pipeline for clinical notes, used in 

combination with a keyword search of radiology reports and extraction of anticoagulation 

data from pharmacy records to detect VTE events in 14,223 adult patients with solid 

tumor malignancy.33 Li et al. used a longitudinal single-center retrospective dataset of 

patients with cancer to demonstrate that a combined algorithm based on billing codes 

and anticoagulation with a ruled-based NLP classifier had a weighted PPV of 98% and 

a weighted sensitivity of 96%, with a C statistic of 0.98 (95% CI, 0.97–0.98) that 

out-performed either approaches individually.34 This suggests that combining information 

related to VTE from both structured data (billing and procedural codes and laboratory 

results) and unstructured data (such as radiology reports, clinical notes) could lead to 

optimal event detection. The use of NLP to detect thrombotic events in more specific 

oncologic populations such as patients undergoing allogenic stem cell transplants has also 

been described.35

Machine learning applications for image recognition in venous 

thromboembolism

Diagnosis of VTE is routinely established by radiological investigations including computed 

tomography angiograms, pulmonary ventilation perfusion scans and duplex ultrasound 

for extremity DVT.36 This is performed historically with trained physicians reviewing 

imaging visually to identify pathologies and make diagnoses. The field of computer 
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vision leverages ML algorithms to recognize patterns in imaging data fields that exceed 

the limits of the human eye. Those models can be integrated into workflow to improve 

efficiency.37 Moreover, within oncology, ML offers the ability to optimize image acquisition 

sequences to maximize efficiency and reduce radiation exposure and costs, develop 

personalized screening programs for patients, create precise and reliable volumetric-based 

tumor responses to guide cancer-directed therapies and potentially elucidate otherwise 

imperceptible radiographic patterns to investigate cancer biology, as well as predict 

treatment response (also known as ‘radiomics’).38

Given that pulmonary embolism can be clinically misdiagnosed or missed in up to one-

fourth of patients,39 several groups have worked on ML-based automatic detection models 

for this clinical event.38,40,41 A deep learning model (PENet) for automatic detection of 

pulmonary embolism from volumetric computed tomography (CT) pulmonary angiograms 

was developed that achieved an AUROC of 0.85 [95% CI 0.81–0.87] on an external 

dataset.42 Such tools can be envisioned to serve as secondary reading tools and also 

prioritize scans in radiologist review queues to prevent delays in diagnosis. Beyond the 

detection of PE, deep learning-based models to quantify clot burden are also being 

developed that have been shown to correlate with risk stratification markers in acute 

pulmonary embolism, including right ventricular metrics.43,44 Similarly, ML-based tools 

have been developed for computer-aided diagnosis of DVT, although the majority utilize 

MR/CE-MRI or CT-venography, while the most widely employed diagnostic technique 

is compression ultrasound.45–48 Aiming to equip non-specialists to detect DVT, a deep 

learning approach to compression ultrasound images was developed and externally validated 

with a negative predictive value of 98–99%. The authors also performed a cost analysis 

of integrating this ML tool into their current diagnostic pathway and estimated the net 

monetary benefits.49

Studies exploring the role of ML-assisted radiologic diagnosis of pulmonary embolism, 

extremity-associated vein thrombosis and thrombosis in unusual sites such as splanchnic and 

cerebral vasculature specifically in patients with underlying cancer are pending. However, 

several potential uses of ML-assisted radiological imaging at several stages in the cancer 

journey including screening, disease detection, treatment assessment and surveillance have 

already been identified.50 Surveillance imaging is frequent among patients with malignancy, 

and ML could assist in automated detection of thrombosis in patients where a diagnosis is 

not otherwise suspected. Estimating the composition of thrombus using artificial intelligence 

is also an emerging method that has shown to be potentially impactful for prognostic and 

therapeutic decision-making in ischemic stroke.51 Such an approach can be envisioned in 

CAT for determinations that have therapeutic significance such as to differentiate chronicity 

of a thrombus as well as distinguish between bland thrombus and intravascular involvement 

by tumor.52,53

Machine learning for prediction of cancer-associated thrombosis

Modeling the risk of CAT is a potentially impactful application of ML given the importance 

of risk stratification for prophylaxis. The yearly risk of CAT is relatively low overall, with a 

cumulative incidence of less than 10% in most reports.54 Anticoagulant prophylaxis in this 
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patient population has not been shown to be associated with a significant increase in the risk 

of major bleeding overall, however specific subgroups might have a higher risk.55 Monetary 

costs and inconvenience for patients constitute additional downsides of pharmacological 

prophylaxis. In order to maximize net benefit, it is desirable to carefully select candidates 

for thromboprophylaxis, focusing on individuals with the highest risk of thrombosis and the 

lowest risk of bleeding. ML predictive models could conceivably be applied to both sides of 

this equation in order to optimize preventive efforts.

The first broadly used risk stratification algorithm for CAT is the Khorana score.56 Still 

very prevalent in the clinical arena, this clinical prediction rule is derived from a simple 

logistic regression model. It is easy to use and has been extensively validated.57 It has been 

applied in randomized studies of pharmacological prophylaxis for CAT, in which a clinical 

benefit was demonstrated in the intervention group.58 However, in general, the Khorana 

score has exhibited disappointing performance. It does not have an appreciable capacity to 

discriminate thrombosis risk within cancer strata, as the most important predictor in this 

model is tumor type. Using a score threshold of 2, typically half of patients in a diverse solid 

cancer cohort will be retained for prophylaxis, however, left untreated less than 10% of those 

individuals would go on to develop a CAT episode by the 6-month mark.57

Based on those considerations it becomes evident that improved CAT prediction models 

are needed. Beyond additive models like logistic regression, more advanced algorithms 

could conceivably improve model discrimination and accuracy by leveraging complex 

relationships between predictors. Also, doing away with the clinical prediction rule format 

and switching to a model deployed directly from the electronic health record would allow 

the inclusion of a far greater number of predictors than otherwise possible, along with more 

granularity in model inputs.

In the last few years, several authors have explored varied ML algorithms to improve 

risk prediction for CAT. The approaches used include additive models (e.g., logistic 

regression and Fine-Gray regression), tree-based models (e.g., random forests), kernel 

methods (e.g., support vector machines), gradient boosting, ensembles and deep learning.59–

69 The predictors featured in those models included cancer type and stage, routine laboratory 

test results (e.g., hemoglobin, total white blood cell count, etc.), basic demographic 

characteristics, chemotherapy type, circulating procoagulant vesicles, circulating tumor 

DNA levels, germline molecular markers and tumor somatic genetic alterations. As a general 

rule, model discrimination as measured with the C-index did not surpass 0.72 in the test set. 

External validation is lacking for most of those studies, with few instances of a satisfactory 

assessment.

While the findings above are stimulating, much remains to be done to change the paradigm 

of CAT prediction and prevention. At this juncture, it appears unlikely that more complex 

modeling algorithms using the usual static risk markers will improve model metrics. 

Incorporating large amounts of omics data, unstructured data, novel orthogonal biomarkers 

or time series data of predictors commonly available in the electronic health record are 

all approaches with the potential to move the needle further and meaningfully increase the 

net benefit of pharmacological prophylaxis for CAT. Survival methods could generate CAT 
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incidence predictions which factor in the competing risk of death, allowing the clinician 

to estimate risk at different arbitrary time points. Deep learning models can be customized 

extensively and offer the added benefit of transfer learning but are more technically difficult 

to implement and require larger datasets than other ML algorithms to reach their full 

potential. Model generalizability between locales will remain a challenge and federated 

learning is a promising modality to alleviate privacy concerns surrounding the sharing of 

multiple large patient datasets.

Future challenges for the application of machine learning to clinical 

management of cancer-associated thrombosis

Despite the exciting avenues for ML in clinical medicine, researchers and clinicians involved 

in the development of this novel technology need to be mindful of challenges and potential 

pitfalls (Table 2).9,53 Although electronic health records do contain enormous amounts of 

data that could be relevant to CAT, these are often unstructured and siloed in medical 

imaging archival systems, pathology systems, documentation fields, electronic prescribing 

tools and insurance databases which would need to be processed and unified so they are 

accessible to an algorithm. Moreover, datasets for most current ML studies in VTE are 

retrospective and fixed; however, in reality, a ML model for thrombosis would need to 

handle non-stationary input data due to changes in clinical, operational practices as well 

as dynamic patient populations and changing individual health status. Thus, methods to 

address dataset shift and update models prospectively would need to be built in beforehand 

to ensure optimal performance.70 Prospective testing of these computer systems and periodic 

or continuous performance checks are also critical to ensure the models remain accurate 

despite changes in the environment, to detect issues and deploy updates to address them.

Generalizability, so that tools can be utilized outside their training environments, is an 

important goal in developing ML applications.71 Moreover, ML algorithms that operate 

without human oversight can be prone to over-fitting or utilization of unknown confounders 

that would not be reliable in a different setting or dataset.72 Given that, different institutions 

can vary widely in clinical practices, record keeping, and technical equipment; this can be a 

particular challenge in building tools for widespread clinical use. Transfer learning is a ML 

technique that allows computer systems to apply knowledge learned from a task to be reused 

to improve performance on related tasks. This can save computing and time resources, and 

thus can be lever-aged to enhance generalizability.73 Another attractive approach that has 

emerged to improve generalizability is federated learning. Federated learning can be used 

to derive a global model from several distinct datasets belonging to different organizations 

without sharing sensitive clinical data between the participants, thus preserving patient 

privacy.74

A serious concern is that ML algorithms can contain discriminatory biases, that can 

inadvertently affect already disadvantaged groups in healthcare and enhance health 

inequities.75,76 In order to avoid unintentional bias in ML algorithms that could further 

worsen existing racial and ethnic disparities in CAT, developers need to be sensitive of 

potential issues in the databases where the models are trained.77,78 Clinicians should also 
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be mindful of testing and evaluating models by population subgroups (such as race, age, 

socioeconomic strata, or location) before they are deployed. Moreover, rigorous regulatory 

frameworks need to be developed and updated in pace with technological innovation to 

ensure guardrails are in place for the supervised and controlled development of clinical ML 

models.79,80 Towards this goal, the World Health Organization recently outlined six key 

areas for regulation of AI in health including transparency, risk management, data validation, 

data quality, privacy and collaboration between various stakeholders including regulatory 

agencies, healthcare providers and industry partners.81

There is also concern about reluctance and mistrust among clinicians and patients that can 

be a hurdle to the uptake of ML at the bedside. The explainability of a model can be viewed 

as its inner mechanics and behavior being interpretable and understandable by human 

observers. Deep learning models in particular often feature a large number of parameters 

which in isolation do not have any well-defined meaning, which can lead to a perception by 

users that the algorithm is a “black box”, which can decrease confidence in its accuracy and 

reliability. A nationally representative online panel of patients was surveyed and found that 

over half believed that artificial intelligence would improve healthcare delivery.82 In a study 

of paired surveys of clinicians and informaticians that focused specifically on diagnosis and 

prevention of VTE, a majority of clinicians (70%) and informaticians (58%) indicated that 

they believed that AI can ensure appropriate VTE in hospital prophylaxis. However, lack 

of transparency was the most frequently cited barrier by both clinicians and informaticians 

to the use of AI in clinical care of thrombosis.83 Finally, ensuring that ML-based tools 

built for CAT are adequately and rigorously studied prospectively with clinically meaningful 

endpoints (such as recurrent thrombosis, major bleeding and mortality) prior to deployment 

in clinical practice will be essential to ensure that these tools are relevant and safe in 

healthcare and improve patient and physician trust in their use.

Conclusions

ML has the potential to create impactful changes in clinical medicine including cancer-

associated thrombosis. NLP can facilitate VTE case detection from unstructured fields 

including clinical notes and radiological reports to enhance research and surveillance 

activities. Computer vision can optimize detection of thrombotic events from radiological 

data which can decrease missed diagnosis and assist radiologists in triaging studies to avoid 

treatment delays. Finally, ML algorithms are being developed to accurately predict patients’ 

risk of developing CAT, which could in turn be utilized to assign thromboprophylaxis to 

patients who would benefit from this intervention and avoid exposing individuals with a 

higher bleeding risk to unnecessary anticoagulant administration. Experts and clinicians 

need to familiarize themselves with this novel technology to ensure that tools being 

developed are relevant, safe and minimize the risks of inherent bias during development. ML 

needs to be tested for safety and clinically relevant outcomes under the emerging regulatory 

landscape that can ultimately promote safe and effective innovation. Lastly, the ML models 

need to be continuously monitored and periodically retrained.
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Figure 1. 
Applications for machine learning in cancer-associated thrombosis.
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