
1864 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 6, JUNE 2021

Lung Lesion Localization of COVID-19 From
Chest CT Image: A Novel Weakly

Supervised Learning Method
Ziduo Yang, Lu Zhao, Shuyu Wu, and Calvin Yu-Chian Chen

Abstract—Chest computed tomography (CT) image data
is necessary for early diagnosis, treatment, and prognosis
of Coronavirus Disease 2019 (COVID-19). Artificial intelli-
gence has been tried to help clinicians in improving the
diagnostic accuracy and working efficiency of CT. Whereas,
existing supervised approaches on CT image of COVID-19
pneumonia require voxel-based annotations for training,
which take a lot of time and effort. This paper proposed a
weakly-supervised method for COVID-19 lesion localization
based on generative adversarial network (GAN) with image-
level labels only. We first introduced a GAN-based frame-
work to generate normal-looking CT slices from CT slices
with COVID-19 lesions. We then developed a novel feature
match strategy to improve the reality of generated images
by guiding the generator to capture the complex texture of
chest CT images. Finally, the localization map of lesions
can be easily obtained by subtracting the output image
from its corresponding input image. By adding a classifier
branch to the GAN-based framework to classify localization
maps, we can further develop a diagnosis system with
improved classification accuracy. Three CT datasets from
hospitals of Sao Paulo, Italian Society of Medical and In-
terventional Radiology, and China Medical University about
COVID-19 were collected in this article for evaluation. Our
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weakly supervised learning method obtained AUC of 0.883,
dice coefficient of 0.575, accuracy of 0.884, sensitivity of
0.647, specificity of 0.929, and F1-score of 0.640, which
exceeded other widely used weakly supervised object lo-
calization methods by a significant margin. We also com-
pared the proposed method with fully supervised learning
methods in COVID-19 lesion segmentation task, the pro-
posed weakly supervised method still leads to a compet-
itive result with dice coefficient of 0.575. Furthermore, we
also analyzed the association between illness severity and
visual score, we found that the common severity cohort had
the largest sample size as well as the highest visual score
which suggests our method can help rapid diagnosis of
COVID-19 patients, especially in massive common severity
cohort. In conclusion, we proposed this novel method can
serve as an accurate and efficient tool to alleviate the bot-
tleneck of expert annotation cost and advance the progress
of computer-aided COVID-19 diagnosis.

Index Terms—Coronavirus disease 2019, weakly
supervised learning, generative adversarial network,
lesion localization, lesion segmentation.

I. INTRODUCTION

THE worldwide spread of Coronavirus Disease 2019
(COVID-19) pandemic, which is caused by the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
posed a tremendous challenge for global public health security
[1], [2]. Currently, early rapid diagnosis and intervention for
this newly discovered virus remain immature. Although reverse
transcription polymerase chain reaction (RT-PCR) is typically
used as a gold standard for COVID-19 screening[3], it has been
shown to suffer a high false-negative rate [4]. Chest computed
tomography (CT) has been identified as an important comple-
mentary tool for the diagnosis of COVID-19, since it has a
shorter testing cycle and can provide more detailed information
related to the pathology as well as help diagnose the extent or
severity of lung involvement. However, manually delineating
infected lung region of COVID-19 based on chest CT images
by radiologists is a labor-intensive and highly-subjective task.
Artificial intelligence (AI) is now being developed rapidly to
combine with CT to help radiologists and clinicians improve
diagnostic accuracy and working efficiency.

Convolution neural networks (CNNs) have increased in versa-
tility due to efficient regularization methods and fast graphical-
processing units, allowing CNN structures to grow in depth and
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width, thereby increasing the learning capacity tremendously.
CNN-based computer-aided diagnosis (CADs) of COVID-19
have been well studied [5], which can be mainly divided into
two categories.

The most common one is the automatic COVID-19 diagnostic
based on CT volumes or slices. For example, Bai et al. [6] pro-
pose an EfficientNet-based [7] model for CT slices classification
and suggest that deep learning assistance improved radiologists’
performance in distinguishing COVID-19 from non-COVID-19
at chest CT. In contrast, Wang et al. [8] attempt to leverage a 3D
CNN taking a CT volume with its 3D lung mask to make de-
cisions directly. However, the CNN-based classification model
can only provide final decisions without power of reasoning. Al-
though visualization methods such as Gradient-weighted Class
Activation Mapping (Grad-CAM) [9] can be used to mitigate this
shortage [6], [8], [10]–[12] the lesion localization map obtained
by such visualization methods is coarse and provide less useful
information for treatment assessment.

Another category is the COVID-19 lesion segmentation [13]–
[16]. For instance, Fan et al. [15] propose an automatic COVID-
19 lung infection segmentation method based on a carefully
designed network combing with edge information of infected
regions and demonstrate the segmentation accuracy can be fur-
ther improved by leveraging pseudo segmentation labels. Wang
et al. [16] propose a noise-robust framework for COVID-19
lesion segmentation to tackle the inaccurate annotation caused
by complex appearances of pneumonia lesions and high inter-
and intra-observer variability. Intuitively, these supervised learn-
ing methods can provide a more accurate automatic delineation
of lung infected regions than weakly supervised visual aug-
mentation techniques. However, such fully supervised learning
methods require large pixel-level annotated CT slices to achieve
promising results. Most of the existing CT scan datasets of
COVID-19 with manual annotation of infected regions could not
meet this demand. In contrast, most of the current COVID-19
datasets only provide the patient-level labels (i.e., class labels) to
indicate whether the person is infected or not and lack elaborate
annotations.

To largely alleviate the drawbacks mentioned above, we
proposed a weakly supervised learning method for accurate
COVID-19 lesion localization based on generative adversarial
network combing with feature match as shown in Fig. 1. The
proposed model consisted of a generator, a discriminator, and
a feature extractor. The generator and the discriminator worked
together to produce a normal-looking image [17]–[19] by re-
moving ground-glass opacity (GGO) and pulmonary consoli-
dation from CT slices with COVID-19. However, the complex
texture of chest CT images may not be well captured by such
a GAN-based framework. To improve the image reality of the
generated images, we designed a feature extractor to guide the
generator to output images with similar low-level features to
the inputs, which increases lesion localization accuracy. By
equipping the GAN-based framework with a classifier branch
[17] as shown in Fig. 2, we developed a diagnosis system with
improved classification accuracy and interpretability. Computer-
aided diagnosis of COVID-19 from chest CT is of emergency
and importance during the outbreak of SARS-CoV-2 worldwide.

Fig. 1. An overview of the proposed weakly supervised COVID-19
lesion localization. (a) During model training, a generator and a discrimi-
nator work together to remove potential lesions. The image quality of the
generated fake normal images is boosted by feature match. (b) During
model inference, we obtained the localization map by subtracting output
from its input of the generator. The localization map is added to the
original image to augment the COVID-19 diagnosis.

Fig. 2. The proposed network architecture for COVID-19 lesion local-
ization. The encoder-decoder and the patch discriminator work together
to remove potential COVID-19 lesions from input CT slices. Shallow
layers of the pre-trained ResNet-18 are used to perform low-level feature
match between input and output to increase the image quality of the gen-
erated CT slices. Another ResNet-18 is used to classify the localization
maps.
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In this study, we showed that the proposed method could relieve
radiologists from laborious workloads, such that contribute to
the large-scale screening of COVID-19.

II. METHODOLOGY

A. COVID-19 Dataset

Three datasets were included in this work. The first dataset
was from Brazil [20], which containing 1252 CT scans that
were positive for SARS-CoV-2 infection (COVID-19) and 1230
CT scans for patients non-infected by SARS-CoV-2, 2482 CT
scans from 120 patients in total. These data had been collected
from real patients in hospitals from Sao Paulo, Brazil. However,
segmentation labels were not available in this dataset, and we
only used this dataset for training. To evaluate the lesion lo-
calization accuracy of the proposed method, we collected the
second dataset [21], which consists of 98 axial CT slices from
different COVID-19 patients. All the CT slices were collected
by the Italian Society of Medical and Interventional Radiology.
A radiologist segmented the CT images using different labels
for identifying lung infections. The 98 CT slices were further
divided into a validation set and a testing set. The validation set
included 50 CT slices aim at hyper-parameters tuning and model
selection. The remained 48 CT slices were used to evaluate the
model performance. We denoted this testing set as Testing Set
1. Testing Set 1 is the same as [15]. The third one was from
China Medical University, which including 300 CT scans from
7 patients infected by SARS-CoV-2. Pixel-level annotations are
not available in this dataset, and thus we invite a radiologist to
evaluate the lesion localization accuracy. (See Section III.D for
detail experimental setup). We denoted this testing set as Testing
Set 2.

B. Network Architecture

Our goal was to accurately localize the potential lesions in CT
slices with COVID-19 when only the image-level labels were
available. Based on this assumption, we proposed a novel weakly
supervised learning method using GAN with feature match. The
network architecture is showed in Fig. 2.

A generator with encoder-decoder architecture was trained to
remove the potential COVID-19 features and generate fake nor-
mal CT slices. The input CT slices contained normal cases and
abnormal cases. In the input slices were normal, the generator
was trying to output slices the same as inputs. By subtracting the
generator’s output from the corresponding inputs, the infected
lung region of COVID-19 can be easily localized and segmented.

To help the generator output a CT slice that looks like a real
normal one, a discriminator was added to judge that the output
CT slice was real normal or fake normal. The discriminator
helped the generator to remove as many COVID-19 signals as
possible from the original CT slice. It is clear that the generator
and the discriminator together form a generative adversarial
network (GAN) [22]. It was important to note that training the
model does not need paired images.

However, the GAN-based framework without additional con-
straints cannot sufficiently capture the complex texture of chest

CT images. In other words, the low-level features such as edge,
textures, and color of the generated images may look distorted
and consequently dropped the localization ability of the model.
To solve this problem, we first trained a ResNet-18 [23] to
classify normal and abnormal cases. The output of the ResNet-18
was whether the CT slice contains lesions or not. The shallow
layers of the pre-trained ResNet-18 were then adopted as a
feature exactor to guide the generator to output images with low-
level features similar to inputs. Specifically, we first fed paired
CT slices sampled from the input and output of the generator
to the pre-trained ResNet-18 to extract paired low-level features
from the first five convolutional layers, as shown in Fig. 2. It has
been shown that the features extracted from shallow layers of
the CNN respond corners, edge/color conjunctions, and mesh
patterns [24]. We then computed the L1 loss of these paired
features. The feature-level loss helps match low-level features
between the generator’s input and output to improve the reality
of the generated images.

Moreover, by adding a classifier branch into the network as
shown in Fig. 2, we can develop a diagnosis system based on
localization maps. Ideally, if the input of the classifier contains
only lesions for abnormal images and contains nothing for
normal images (zero values everywhere), the classifier would
more easily and accurately predict the category of the input
images. Besides, training a more accurate classifier may help
the generator’s output keep the normal regions while removing
lesions from the original image [17].

C. Loss Function

We aimed to learn a mapping function G : X → Y between
two domains X and Y given training samples {xi}Ni=1 ∈ X and
{yj}Mj=1 ∈ Y , where X represents CT slices with COVID-19
and normal CT slices, and Y represents the normal CT slices.
A discriminator D is used to distinguish between slices {y}
and translated slices G(x). Our objective contained four terms:
adversarial losses for matching the distribution of generated
images to the data distribution in the target domain; a consistency
loss aims to emphasize the similarity between output and input
of generator; a feature match loss to guide the generator to
perform feature match, and a cross-entropy loss aims for training
the classifier. For the mapping function G : X → Y and its
discriminator D, we expressed the adversarial losses as:

Lgan(G,D,X, Y ) = Ey∼pdata(y)[(D(y)− 1)2]

+ Ex∼pdata(x)
[D(G(x))2]. (1)

where G tries to generate images G(x) that look similar to
images from the domain Y , while D aims to distinguish be-
tween translated samples G(x) and real samples y. It was worth
noting that (1) was different from the original implementation of
GAN. We replaced the negative log-likelihood objective with a
least-square loss. This loss performs more stably during training
and generates higher quality results [25]. The consistency loss
and feature match loss can be expressed as

Lcons(G,X) = Ex∼pdata(x)[|G(x)− x|1] (2)
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Lfeat(G,F,X) = Ex∼pdata(x)

[
5∑

i=1

wi|Fi(G(x))− Fi(x)|1
]

(3)

where | · |1 denotes L1 norm, F is a feature extractor and Fi(x)
represents the feature map calculated by forwarding propagation
after ith convolutional layer of F under the input x as shown in
Fig. 2, wi controls the relative importance of the five objectives.
The cross-entropy loss can be computed as:

Lce(G,C) = Ex∼pdata(x)[−t log(s)−(1− t) log(1−s)] (4)

s = C(φ(x−G(x))) (5)

where C is a classifier in which C(x) is the output of the
classifier for the inputx,φ(x−G(x)) represents the localization
map, t represents classification labels in which normal cases are
denoted as 0 and abnormal cases are denoted as 1, and φ is a
ReLU activation.

The total loss function for optimizing the proposed model was

Ltotal(G,D,C) = − Lgan(G,D,X, Y ) + αLcons(G,X)

+ βLfeat(G,F,X)+γLce(G,C) (6)

where α, β , and γ are three hyper-parameters for losses balanc-
ing. We aimed to solve:

G∗ = argmin
G,C

max
D

Ltotal(G,D,C) (7)

It was worth noting that the feature extractorF was pre-trained
in a binary classification task, and we did not need to update F
during the training of GAN.

D. Implementation Detail

Experiments were performed using a NVIDIA GeForce GTX
1080TI with 11 GB memory under the PyTorch framework
[26]. Adam optimizer [27] with 5e-6 learning rate was used to
update the generator G. Two-timescale learning rates (TTUR)
[28] were used to stabilize training by setting the learning rate
of the discriminator D to four times G. The learning rate of the
classifier C was set to 1e-4. We used a batch size of 8 due to
the limitation of GPU memory. During training, samples were
random horizontal and vertical flipped and resized to 256 × 256
on the fly, and the pixel values were normalized from 0 to 1
before sending to the model.

In our experiments, we used a modified U-Net [29] as the
generator G. In particular, we replaced the max pooling oper-
ation with 3× 3 convolution with the stride of 2. Batch nor-
malization [30] was replaced by instance normalization [31] for
improving the discrimination between different generated slices.
Residual connections [23] were added to each convolution block
to mitigate gradient vanishing. A patch GAN [32] was used as
the discriminator D, which output N ×N array instead of a
single scalar output indicating real or fake. Mini-batch standard
deviation layer [33] was added to the second to last convolutional
layer of Patch GAN to stabilize the training of GANs. We used
a ResNet-18 as the classifier C.

The training set contained 2482 CT scans with only image-
level labels available. Real normal slices for training the discrim-
inator were the 1230 normal CT slices from the training set. The
validation set included 50 CT slices with pixel-level annotation.
Testing Set 1 including 48 CT slices with pixel-level annotation
and Testing Set 2 including 300 CT slices without labels were
used to testing our model. During model training, an alternating
strategy was adopted by updating different parts of the model in
an iterative manner as

min
G

max
D

L1 = − Lgan(G,D,X, Y ) + αLcons(G,X) (8)

min
G

L2 = βLfeat(G,F,X) (9)

min
G,C

L3 = γLce(G,C) (10)

where α is set to 3.0, β is set to 1.0, γ is set to 0.4 as suggested in
[17], and hyper-parameters w1, w2, w3, w4, and w5 were set to
3.0, 2.5, 2.0, 1.5, and 1.0, respectively. Note that we treated
the localization map φ(x−G(x))in (5) as a fixed constant
while updating (10), which means that we did not update the
parameters of the generator G while training the classifier C.
We explained this setting in Section III.F. Since the localization
map generated by the proposed method was scatter and may
contain some noises, we used a gaussian kernel with σ = 4.5 to
smooth the results. Finally, min-max normalization was used to
map the localization map ranging from 0 to 1.

III. EXPERIMENTS AND RESULTS

A. Compare With Different Weakly Supervised
Learning Methods

To evaluate the performance of the proposed weakly su-
pervised learning method for infected region localization of
COVID-19 in CT slices, we compared the proposed method with
three widely used weakly supervised object location methods,
including Grad-CAM [9], Smooth-Grad [34], and multi-scale
Grad-CAM adopted to COVID-19 localization from CT slices
recently [35]. These three methods were also trained on the
training set with only image-level labels available. The attained
localization maps were normalized from 0 to 1. All weakly
supervised learning methods were testing in Testing Set 1. The
area under the curve (AUC) score computed on pixel-level
of our proposed method, multi-scale Grad-CAM, Grad-CAM,
and Smooth-Grad were 0.883, 0.712, 0.674, and 0.530, re-
spectively. The corresponding receiver operating characteristic
(ROC) curve is shown in Fig. 3(a). We observed that the proposed
method could localize the infected regions precisely, while the
other three methods could only approximately localize poten-
tially infected regions. We also found that Smooth-Grad is much
worse than other weakly supervised localization methods. Since
the pneumonia lesions often shared similar low-level features
with its surrounding tissue, using the gradients with respected to
the input images as proxy for features importance is not optimal.
To further demonstrate the effectiveness of the proposed method,
we converted the localization maps into binary images using the
threshold determined by grid search in the validation set. The
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Fig. 3. Comparing different weakly supervised learning methods in
Testing Set 1. (a) The ROC curve of different weakly supervised learning
methods for COVID-19 lesion localization. (b) Quantitative comparison
of different weakly supervised learning methods. (c) Qualitative com-
parison of different weakly supervised learning methods. Lesions are
denoted as orange color contours in the input images.

binary images reveal the possible infected regions. We used dice
coefficient, accuracy, sensitivity, specificity, F1-score as perfor-
mance indicators to evaluate segmentation results. The proposed
method overwhelms the other three methods by a significant
margin with a dice coefficient of 0.575 as shown in Fig. 3(b),
which demonstrates the effectiveness of our proposed method.
Moreover, we illustrate several typical lesion localization results
qualitatively in Fig. 3(c).

B. Compare With Fully Supervised Learning Methods

In this group of experiments, we investigated the segmentation
accuracy of the proposed method by comparing the segmentation
results with the state of art segmentation method called Inf-Net
[15]. Inf-Net is trained on a training set contained 50 CT slices
and tested in 48 CT slices, which is the same as us. We wanted
to evaluate whether the weakly supervised learning method can
be an alternative to the fully supervised learning method as the
annotated data is limited. We used dice coefficient [36], sensi-
tivity, and specificity to evaluate the segmentation results. Fig. 4
presents a comparison between the proposed weakly supervised
learning method with several fully supervised learning methods
[15], [29], [37]–[40]. The proposed method exceeded U-Net
and Dense U-Net trained in a fully supervised manner in all
performance indicators while was inferior to Inf-Net.

Fig. 4. Compared with fully supervised learning methods in Testing
Set 1.

Fig. 5. Analysis of the feature match in Testing Set 1. (a) Evaluating
image quality between with and without feature match. All metrics are
the lower the better (b) The performance of lesion localization between
with and without feature match. (c) Qualitative comparison between with
and without feature match.

C. Feature Match Increases the Accuracy
of Lesion Localization

In this group of experiments, we investigated the influence
of feature match strategy for infected regions segmentation. For
images quality evaluation, we used Fréchet Inception distance
(FID) [28], activation maximization score (AM) [41], maximum
mean discrepancy [42] (MMD), multi-scale structural similarity
(MS-SSIM) [43] and sliced Wasserstein distance (SWD) [33]
as performance indicators. For lesion localization evaluation,
we used the dice coefficient, sensitivity, specificity, F1-score,
and AUC for quantitative evaluation. As presented in Fig. 5(a),
adding feature match to the model helps improve the image
quality, and results in a more accurate lesion localization as
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shown in Fig. 5(b). However, we founded that adding feature
match to the model lower the sensitivity. This finding probably
due to the fact that the generated slices with less detailed
information tend to cause over-segmented results which lead
to a higher sensitivity. Fig. 5(c) shows some qualitative results.
As presented in Fig. 5, adding feature match help guide the
generator to capture complex texture, which also results in more
accurate lesion localization.

D. Visualization Comparison Between Different Methods

To further demonstrated the effectiveness of the proposed
method, we had invited a radiologist to evaluate the lesion
localization accuracy by estimated the intersection over union
(IoU) between localization map and ground truth in a visual way.
The IoU is defined as

IoU =
|A ∩B|
|A ∪B| (11)

In particular, given a localization map and a CT slices from
Testing set 2, the radiologist was asked to give a visual score
of 5.0, 4.0, 3.0, 2.0, 1.0 corresponding an IoU of 0.8–1.0,
0.6–0.8, 0.4–0.6 and 0.0–0.2 respectively. We compared the
visual score between different weakly supervised learning meth-
ods. A supervised learning model pre-trained on a large-scale
COVID-19 dataset with pixel-level annotations was also com-
pared with the proposed method. Quantitative and qualitative
results are shown in Fig. 6. The visual score with the pro-
posed method was 4.35±0.96. With Grad-Cam, multi-scale
Grad-Cam, Smooth-Grad, and pre-trained supervised model,
the visual scores were 3.29±1.11, 3.69±1.11, 1.09±0.34, and
2.08±1.33, respectively. With a Student’s t-test, we found that
the differences between our method and the other weakly su-
pervised learning methods were statistically significant (P <
0.001).

E. Visualization Comparison Between Different Methods

In this study, the 300 COVID-19 CT slices have been stratified
as mild, common, severe and critical according to the severity
by calculating the percentage of lesion to lung size [44], [45],
with mild: percentage < 10%; common: 10% < percentage <
30%; severe: 30%< percentage < 50% and critical: percentage
> 50%. The sample size of mild, common, severe, and critical
were 77, 152, 50, and 21, respectively, and the percentage of
the lesion to lung size of each cohort were 5.46%±2.41%,
20.32%±5.80%, 39.45%±6.00%, and 59.64%±5.96%, respec-
tively. We then evaluated the correlation between severity and
visual score (Fig. 7), where the visual score of mild, common,
severe, and critical were 3.77±1.01, 4.78±0.44, 4.32±1.04,
and 3.48±1.54, respectively. Our data showed that the common
cohort had the largest sample size, and the visual score of this
cohort was higher than the other three cohorts respectively with
statistical differences (P < 0.05).

F. Evaluate the Classifier

In this group of experiments, we investigated the influence
of the classifier branch for lesion localization and evaluated

Fig. 6. Comparison of visual score between different methods in Test-
ing Set 2. (a) Quantitative comparison of different weakly supervised
learning methods with a Student’s t-test, ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P <
0.001. (b) Compared with pre-trained fully supervised learning model.
(c) Qualitative comparison between different methods.

Fig. 7. Correlation between severity and visual score. The severity
was divided into mild, common, severe and critical according to the
percentage of lesion to lung size (mild: percentage < 10%, common:
10% < percentage < 30%, severe: 30%< percentage < 50% and
critical: percentage > 50%). We compared the visual score between
common group and the other groups with a Student’s t-test, ∗P < 0.05;
∗∗P < 0.01; ∗∗∗P < 0.001.

the classification accuracy. Specifically, we wanted to know
whether the lesion localization accuracy can be improved by
the classifier C. We set hyper-parameter γ in (10) to 0.4 as
suggested in [17]. We compared the segmentation accuracy
between updating generator G and classifier C simultaneously
and updating classifier C only using (10). The results are shown
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Fig. 8. Comparison of classification results between Plain-ResNet-18
and LM-ResNet-18. (a) The classification performance of Plain-ResNet-
18 and LM-ResNet-18. (b) Testing curves of Plain-ResNet-18 and LM-
ResNet-18.

in Appendix Fig. S1. The generator G could not gain from the
classifier G. Therefore, we set the localization map as a fixed
constant while training the classifier.

Since Testing Set 1 and 2 contain only positive samples, to
evaluate the classification accuracy, we split the 2482 CT slices
with image-level labels (original training set) into a training set
(n = 1737) and an independent testing set (n = 745) randomly.
Note that Testing Set 1 and 2 were excluded in this exper-
iment. Since the inputs of the classifier C were localization
maps, we denoted it as LM-ResNet-18. We built a baseline
model (ResNet-18) trained on original normal and abnormal
CT images for comparison. We denoted the baseline model as
Plain-ResNet-18. The hyper-parameters of these two models
remain the same during experiments. For a fair comparison,
the data augmentations described in Section II.D were also
adopted in Plain-ResNet-18 during training. Fig. 8(a) shows the
classification results of Plain-ResNet-18 and LM-ResNet-18.
The LM-ResNet-18 achieved accuracy, sensitivity, specificity,
and F1-score were 0.982, 0.972, 0.989, and 0.981, respectively
while those of the Plain-ResNet-18 were 0.953, 0.949, 0.956,
and 0.954 respectively. Fig. 8(b) shows the testing curve of the
two models. Since the localization maps keep updating during
training, the generalization ability of the LM-ResNet-18 may be
improved.

IV. DISCUSSION

In this study, we proposed a novel weakly supervised learning
method for COVID-19 lesion localization. The performance of
our method was superior to other widely used weakly supervised
learning methods. This AI effort was driven by the desire to
develop a tool to assist radiologists in combating this pandemic.
The proposed method can ease radiologists’ workload by pro-
viding clues of COVID-19 in a visual augmentation manner.
Moreover, the generated localization maps can be used as pseudo
labels, which can be further refined as annotations by radiolo-
gists. This human-in-the-loop strategy can reduce the annotation
time significantly [16].

Lung lesion localization is essential in the procedure of
COVID-19 diagnosis since it provides explainable results, while
the CNNs-based classification model can only provide final
decisions without power of reasoning. To remedy the defect
of the CNNs-based classification model, Cam-based methods
[9] and gradient-based methods [34] are proposed to provide

explainable results to support the final decisions. However,
these weakly supervised learning visualization methods can only
approximately localize potential biomarkers at low resolution in
images after training a classifier. In contrast, we demonstrated
that the GAN-based weakly supervised learning method can
accurately localize COVID-19 lesions at high resolution. Be-
sides, we also found that multi-scale Grad-Cam is better than
single-scale Grad-Cam, suggesting that multi-scale features help
object localization. This observation also reveals the effective-
ness of the proposed method in the lesion localization since
the generator is trying to integrate features of all levels instead
of manually picking features on a particular level to form the
localization map.

Several studies have achieved promising results in COVID-19
lesion segmentation using fully supervised learning methods.
However, these fully supervised learning methods require a
large scale of pixel-level annotations to reduce the over-fitting
problem. In this study, we demonstrated another algorithm that
performs well, is based on GAN with feature match, and does
not need pixel-level annotations. Compared with the fully su-
pervised learning methods trained on 50 CT slices with pixel-
level annotations, the proposed weakly supervised method still
achieves a competitive result with a dice coefficient of 0.575.
However, the dice coefficient of 0.575 is inferior to the fully
supervised method [16] trained on a large-scale dataset with
pixel-level annotations by a significant margin.

A good AI-assisted tool for COVID-19 diagnosis must pro-
vide visual cues to help decision-making. To evaluate whether
the proposed method provides useful visual information for
radiologists or not, we designed a metric named visual score to
estimate the overlap degree of predictive localization map and
ground truth localization map. The proposed method obtained
promising results with a visual score of 4.35±0.96 in Testing
Set 2, indicating the predictive results are highly consistent with
the observations for supporting the radiologist’s final decision.
We also observe that the pre-trained fully supervised model
achieves poor results than those of the proposed method, as
shown in Fig. 6(b). This finding probably due to the domain gap
[46] between their training set and our Testing Set 2, and the
different image pre-processing between their method and ours.
This observation also reveals the imperfection of the AI system
currently since these systems are brittle and sensitive to slight
data distribution changes [47]. One way to tackle this problem
is to re-train the model on a new dataset. In such a case, weakly
supervised learning methods have a great advantage since we
only need to provide weak labels of the new dataset instead of
elaborate annotations used in fully supervised learning.

We also analyzed the association between severity and visual
score to preliminarily evaluate the accuracy of our diagnosis
augmentation strategy in COVID-19 patients with different pul-
monary lesion severity. We found that the lesion localization
results were highly consistent with the radiologist in the common
severity cohort with the highest visual score (Fig. 7). Mean-
while, the common cohort accounts for over half of research
cases (152/300), more than the other three cohorts put together.
These results suggest that the proposed method can serve as
an accurate and efficient tool to fast screening of patients with
common severity evaluated by the percentage of the lesion to
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Fig. 9. Qualitative analysis of the model robustness.

lung size, which can help rapid diagnosis of COVID-19 during
large outbreaks and epidemics, especially in massive common
severity population. The mild and critical cohort’s visual scores
were 3.77±1.01 and 3.48±1.54, respectively, which was also
acceptable and demonstrated the robustness of the proposed
method. Qualitative results of some extreme cases are shown in
Fig. 9. From the visual scores given by the radiologist, we can
see that the proposed method is more robust than other methods.
Besides, from the first two cases shown in Fig. 9, we can observe
that the proposed method may help radiologists detecting some
lesions which are not so easy to observe.

Several studies also proposed to used the GAN-based frame-
work for lesion localization [17]–[19]. However, these GAN-
based frameworks are not suitable for COVID-19 lesion local-
ization due to the complex texture of chest CT images. Based on
this observation, we proposed a feature match strategy to guide
the model to capture the complex texture of chest CT images,
which increases the image quality of generated images. We
observed that the feature match could reduce the noises and help
the model to generate images with a more fine-grained texture.
We showed that by combing the GAN-based framework with
the feature match, the lesion localization accuracy is improved,
as shown in Fig. 5. Overall, the feature match was a simple
but effective strategy to improve the GAN-based framework for
lesion localization.

By adding a classifier branch to the network [17], we can
further develop a diagnosis system with good interpretability
since the diagnosis results are based on infected regions. The
diagnosis system can not only output diagnosis results but also
provide the lesion’s location. The diagnosis system achieved a
superior classification performance than the vanilla classifier
trained on original CT slices, as shown in Fig. 8. The im-
proved lesion localization accuracy and classification accuracy
suggested that the proposed GAN-based diagnosis system may
be an alternative to the CAM-based diagnosis system. This
diagnosis augmentation strategy takes over some of the load
on doctors by reducing personal experience dependency and
repetitive labor-intensive practice and confirmation. With the

help of the proposed augmented lesion diagnosis technology,
doctors can make decisions faster and more accurately, while
non-professional, such a medical interns and general practition-
ers, can perform pseudo-professional diagnoses.

Our study has the following limitations. First, the proposed
method can only provide potential lesion localization without
differentiation of GGO and pulmonary consolidation, which
is also crucial in severity evaluation. Second, the analysis of
this study is based on slice-level instead of volume-level, so
the conclusion of this study cannot represent volume-level
cases. However, the proposed method can be easily extended
to volume-level cases by aggregating the results within a CT
volume.

V. CONCLUSION

This paper proposes a weakly supervised learning method
for COVID-19 lesion localization using a GAN combing with
feature match. The generator is used to translate a CT slice
containing lesions into the corresponding slice where the lesions
have been removed, while the discriminator is to boost the
generator to output fake normal CT slices that look more real. To
improve the image quality of the generated slices, a pre-trained
feature extractor is used to enhance the fine-grained features.
Several strategies including advanced loss function, TTUR, and
mini-batch standard deviation layer are used to stabilize model
training. Experimental results corroborated the superiority of the
proposed method, which exceeded other widely used weakly
supervised localization methods significantly. In addition, the
proposed method leads to a competitive result compared to the
fully supervised method in lesion segmentation task. We believe
that the proposed method can be used as a powerful tool to
alleviate the bottleneck of expert annotation cost and advance the
progress of computer-aided COVID-19 diagnosis. Code is avail-
able at https://github.com/guaguabujianle/COVID-19-GAN
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