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Abstract: In the present investigation, the parent compound 4-amino-5-(4-fluoro-3-phenoxyphenyl)
-4H-1,2,4-triazole-3-thiol (1) and its Schiff bases 2, 3, and 4 were subjected to whole-cell anti-TB against
H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by resazurin
microtiter assay (REMA) plate method. Test compound 1 exhibited promising anti-TB activity against
H37Rv and MDR strains of MTB at 5.5 µg/mL and 11 µg/mL, respectively. An attempt to identify the
suitable molecular target for compound 1 was performed using a set of triazole thiol cellular targets,
including β-ketoacyl carrier protein synthase III (FABH), β-ketoacyl ACP synthase I (KasA), CYP121,
dihydrofolate reductase, enoyl-acyl carrier protein reductase, and N-acetylglucosamine-1-phosphate
uridyltransferase. MTB β-ketoacyl ACP synthase I (KasA) was identified as the cellular target
for the promising anti-TB parent compound 1 via docking and molecular dynamics simulation.
MM(GB/PB)SA binding free energy calculation revealed stronger binding of compound 1 compared
with KasA standard inhibitor thiolactomycin (TLM). The inhibitory mechanism of test compound 1
involves the formation of hydrogen bonding with the catalytic histidine residues, and it also impedes
access of fatty-acid substrates to the active site through interference with α5–α6 helix movement.
Test compound 1-specific structural changes at the ALA274–ALA281 loop might be the contributing
factor underlying the stronger anti-TB effect of compound 1 when compared with TLM, as it tends to
adopt a closed conformation for the access of malonyl substrate to its binding site.
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1. Introduction

Mycobacterium tuberculosis (MTB) is the bacterial species underlying tuberculosis (TB) infection.
TB is one of the top10 causes of death globally. In 2018, TB was implicated in ~1.5 million and 251,000
deaths among HIV-negative and HIV-positive people, respectively [1]. The increasing prevalence of
TB in the form of multi-drug-resistant (MDR)-TB [2] and extensively drug-resistant (XDR)-TB [3] has
triggered the necessity for more effective therapeutic regimens with fewer side effects. Treating and
managing MDR-TB and XDR-TB has proven to be more challenging, as second-line drugs have largely
become less effective [4]. This problem has been made worse by the emergence of totally drug-resistant
(TDR) strains of MTB [5], which do not respond to anti-TB drug treatments. Based on the last 40 years
of academic and pharmaceutical industry inventions, only bedaquiline was the first novel anti-TB drug
permitted by the United States Food and Drug Administration (US FDA) authority in December 2012,
for the treatment of MDR-TB, [6] while delamanid was the second anti-TB agent to be approved by the
European Medicines Agency in late 2013 [7] and pretomanid was the third drug to be approved by the
US FDA in August 2019 [8,9] (Figure 1).
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Triazole pharmacophore with various functional groups/substitutions has been reported for its
promising anti-TB [10–21], antiviral [22], antibacterial [23,24], antifungal [25,26], antioxidant [27–30],
and antiglycation properties [31]. In addition, it also serves as an opener of Ca(2+)-activated potassium
(maxi-K) channels [32] and demonstrates molluscicidal [33], hypoglycemic [34], antihypertensive
and blood platelet aggregation inhibition [35] activities. Schiff bases of triazole compounds are
also reported for their potential anti-TB agents [36]. Based on the above observations, and in
continuation to our anti-TB drug discovery program, it was envisaged that the triazole parent compound
4-amino-5-(4-fluoro-3-phenoxyphenyl)-4H-1,2,4-triazole-3-thiol (1) and its Schiff bases 2, 3 and 4 be
tested for their whole-cell anti-TB activity against H37Rv and MDR strains of M. tuberculosis, which is
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resistant to treatment with rifampicin and isoniazid (1 and 0.2 µg/mL, respectively), as determined by
resazurin microtiter assay (REMA) plate method.

Due to the urgent call for novel scaffolds as anti-TB agents, we have recently launched a
medicinal chemistry program aimed at developing novel, natural [37], cyclic depsipeptides [38]
and heterocyclic scaffolds as potential anti-TB agents [39–47]. A new scaffold of triazole thiols
produced antibacterial effects by targeting folate synthesis via bacterial dihydrofolate reductase [48].
Furthermore, 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiol derivatives showed considerable antibacterial
activity by targeting bacterial β-ketoacyl-acyl carrier protein synthase III (FabH) [49]. Additionally,
β-ketoacyl ACP synthase I (KasA) constitutes an important drug target against MTB. Several triazole
derivatives showed a significant correlation between anti-TB activity and the binding potency with
KasA [36,50] Triazole derivatives have been associated with strong anti-TB activity [10–21]. Previous
reports indicated that several molecular targets could be modulated by triazole-based compounds [51];
the 3-aryl-5-(alkyl-thio)-1H-1,2,4-triazole derivative produced anti-TB effects at a concentration of
0.03 µg/mL [16]. A significant correlation was estimated between anti-TB efficacy and binding
score with MTB CYP121 [16,52]. A new triazole thiol derivative was able to inhibit the growth of
MTB in the low micromolar range. Computational studies revealed strong binding with enoyl-acyl
carrier protein reductase [53]. Heterocyclic hybrids of triazole inhibited MTB after binding with
enoyl reductase (inhA) [54]. A virtual screening study against Mycobacterium N-acetylglucosamine
-1-phosphate uridyltransferase discovered several compounds with a triazole nucleus and produced
20–60% inhibition of the enzymatic activity [55]. The previously mentioned targets were used in
computational studies to discover the potential target of our synthetic test compounds. In the
present investigation, we intended to explore the impact of the functionalization on the triazole
nucleus, particularly as related to anti-TB activity against H37Rv and MDR strains of MTB (Figure 2).
A whole-cell anti-TB screening process will help to identify the key substituent responsible for the
activity, thereby uncovering potential molecular target(s) through a computational docking study.
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2. Results and Discussion

2.1. Anti-Tubercular Activity

The concentrations of the test compounds being considered for anti-TB screening were
0.2–32 µg/mL against H37Rv and MDR strains of MTB. The MDR isolates were resistant to first-line
treatments, including rifampicin at 1 µg/mL and isoniazid at 0.2 µg/mL. Of the four compounds
examined for their anti-TB activity, the most promising was parent compound 1 at 5.5 and 11 µg/mL,
respectively, against H37Rv and MDR strains of MTB. Test compounds 2, 3, and 4 were active only
against H37Rv; however, they failed to show anti-TB activity against MDR strains up to concentrations
of 32 µg/mL. Compounds 2 and 4 revealed similar anti-TB activities at concentrations of 2 µg/mL
against H37Rv strains of MTB. In vitro whole-cell anti-TB results of title compound 1 and its Schiff
bases 2, 3, and 4 against H37Rv and MDR strains of MTB are tabulated in Table 1.

Table 1. In vitro anti-TB activity of compound 1 and its Schiff bases 2, 3, and 4 against H37Rv and
MDR strains of MTB.

Compound Code a
MIC (µg/mL)

H37Rv MDR-MTB b

1 5.5 11
2 20 NA
3 11 NA
4 20 NA

Note: MIC, minimum inhibitory concentration. a The synthesis and characterization of test compounds 1–4 are
detailed in our previous reports [56,57]. b These isolates were resistant to rifampicin (1 µg/mL) and isoniazid
(0.2 µg/mL). NA, not active (the concentration considered for screening was 0.2–32 µg/mL).

2.2. Toxicity Studies

The anti-TB compounds from Table 2 were evaluated for safety studies via MTT assay. Overall,
compound 1 exhibited no toxicity up to 450 µg/mL across peripheral blood mononuclear (PBM)
cell lines.

Table 2. IUPAC and cLogP of the title compounds used for whole-cell anti-TB screening against H37Rv
and MDR strains of MTB.

Compound Code Mol Formula
(Mol Weight) IUPAC cLogP

1 C14H11FN4OS
(302)

4-Amino-5-(4-fluoro-3-phenoxyphenyl)-4H-
1,2,4-triazole-3-thiol 3.9987

2 C21H14F2N4OS
(408)

(E)-5-(4-Fluoro-3-phenoxyphenyl)-4-
((4-fluorobenzylidene)amino)-2,4-
dihydro-3H-1,2,4-triazole-3-thione

5.2660

3 C21H14ClFN4OS
(425)

(E)-4-((4-Chlorobenzylidene)amino)-5-
(4-fluoro-3-phenoxy phenyl)-2,4-

dihydro-3H-1,2,4-triazole-3-thione
5.8360

4 C26H23ClFN5O2S
(524)

(E)-4-((4-Chlorobenzylidene)amino)-5-(4-fluoro-3-
phenoxyphenyl)-2-(morpholinomethyl)-2,4-dihydro-

3H-1,2,4-triazole-3-thione
6.7721

2.3. Computational Studies

Molecular docking followed by MD simulation was used to identify the potential target of the
detected anti-TB activity of test compound 1. For this purpose, compound 1 was docked into several
structures with confirmed interactions with triazole derivatives. These targets included various
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metabolic pathways and carrier proteins, including fatty-acid metabolism, cytochrome enzyme, and
cell-wall biosynthesis. By using template construction followed by docking, 10 poses were generated
for compound 1 with the protein structures shown in Table 3. The poses were ranked by their lowest
docking score and root mean square deviation (RMSD). The best pose was selected based on its lowest
docking score and RMSD as compared with the bound substrate. Then, the relative docking score
was calculated according to Equation (1). Based on the relative docking score, KasA was predicted
as the most important target for compound 1 due to the highest relative docking score. For the MD
simulation experiment, the MTB KasA structure bound with test compound 1 was generated from the
docking study. During the MD experiment, the changes in MTB KasA-compound 1 were compared
with ApoKasA and KasA bound with its co-crystal inhibitor ligand TLM.

Table 3. The molecular targets used in the computational study to identify the potential target for test
the compound 1.

Molecular Target
Name PDB ID

Test
Compound 1

Docking Score

Co-Crystalized
Substrate

Docking Score

Relative
Docking Score Reference

β-ketoacyl carrier
protein synthase III

(FABH)
2QX1 −227 −338 0.67 [58]

β-ketoacyl ACP
synthase I (KasA) 2WGE −644 −508 1.27 [59]

CYP121 5WP2 −413 −455 0.9 [60]

Dihydrofolate
reductase 1DF7 −411 −609 0.68 [61]

Enoyl-acyl carrier
protein reductase 4COD −434 −600 0.72 [62]

N-acetylglucosamine-1-
phosphate

uridyltransferase
2QKX −470 −478 0.99 [63]

2.4. The Binding Interactions of TLM and the Most Promising Test Compound 1 (4-Amino-5-(4-Fluoro-3-
Phenoxyphenyl)-4H-1,2,4-Triazole-3-Thiol)

Both TLM and test compound 1 showed conserved interactions with the two catalytic histidine
residues HIS311 and HIS345 (yellow arrows). The C10 of TLM corresponds to SH in compound 1,
which fills a hydrophobic cavity formed by PHE237 and THR313 (red arrows; Figure 3). The isoprene
chain of TLM engages in hydrophobic interactions with ALA279 and PRO280 (green arrows). At a
similar position, the benzene ring of compound 1 is bulkier than the isoprene chain and makes further
hydrophobic contact with the flexible loop ALA274–ALA281. This might be an additional stabilizing
factor for compound 1 when compared with TLM (Figure 4).

To elaborate the conformational stability, the deviations and fluctuations of KasA structure either
alone (blue) or in complex with TLM (orange) or compound 1 (grey) were traced by recording all
atoms Cα-RMSD. At equilibrium, the observed root mean square deviation (RMSD) for ApoKasA was
at 3.4 Å, while it was 2.2 Å for both TLM and compound 1 complexes. However, the compound 1
complex showed lower divergence. In addition, the KasA-compound 1 complex was almost stable
and sowing gradual increase in RMSD during the first 80 ns, while KasA-TLM complex showed an
increase in RMSD in the first 100 ns. The TLM complex showed fluctuations and variations of RMSD
values that are higher than the compound 1 complex. This highlights the improved stability of the
KasA complex with compound 1 over TLM. The RMSD of the α-carbon atom of both KasA-TLM and
KasA-compound 1 showed lower values when compared with ApoKasA. This indicates that both
TLM and compound 1 complexes produced low conformational changes in the protein backbone as
compared with the ApoKasA. Binding of both TLM and parent compound 1 significantly stabilized
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MTB KasA by showing lower RMSD values throughout the simulation time, as compared with
ApoKasA. TLM and compound 1 showed almost similar profiles, although KasA-compound 1 showed
rapid stability and lower RMSD at the start of the simulation. The generalized lower average of RMSD
for KasA-compound 1 indicates greater stability of KasA when bound with compound 1, as compared
with TLM. The average simulation RMSD was 2.97 ± 0.39, 2.41 ± 0.27, and 2.11 + 0.26 for ApoKasA,
KasATLM, and KasA-compound 1, respectively. This indicates the improved complex stability of
compound 1 over TLM.Antibiotics 2020, 9, x FOR PEER REVIEW 6 of 17 
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Figure 4. Chemical structure of the co-crystal ligand thiolactomycin (TLM) of β-ketoacyl ACP synthase
I (KasA).

Per-residue root mean square fluctuation (RMSF) was recorded to assess the fluctuations of the
residues during KasA free form or in complex with TLM or compound 1. RMSF values revealed two
major sites of differences among the checked structures. The first is the α5–α6 helix (residues 115–147),
which showed the highest RMSF value in ApoKasA (Figures 5B and 6). The changes in the RMSF of the
α5–α6 helix did not show significant differences between KasA-TLM and KasA-compound 1. However,
it was at least 2 Å lower than ApoKasA. It was found that α5–α6 helix flexibility is important for KasA
activity and controls the access of the growing lipid substrates to the active site [59]. The binding of
either TLM or compound 1 resulted in a lower RMSD of the α5–α6 helix. This might be the major
contributing factor to their inhibitory properties against KasA. The lower flexibility of α5–α6 will
provide steric hindrance for large-sized fatty-acid substrates and will inhibit enzyme activity.

The second site that exhibited important changes in RMSD was the flexible loop ALA274–ALA281
(Figure 6), which bore specific changes with the binding of compound 1 only. There were little differences
between ApoKasA and KasA-TLM at this position (Figures 5B and 6). In contrast, KasA-compound 1
showed a high RMSD and marked the reorientation of this loop toward the active site. A 15 ns MD
simulation of MTB KasA showed marked flexibility of the ALA274–ALA281 loop, which constituted
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part of the entrance to the malonyl binding site [64]. The initially resolved conformation of this
loop in the crystal structure adopted closed conformation, and after MD simulation, it adopted open
conformation by moving away from the binding site to permit the entrance of the malonyl substrate [64].
In this study, compound 1 induced significant changes in the ALA274–ALA281 loop by adopting a
closer position to the malonyl-binding site. Thus, compound 1 may interfere with malonyl binding by
closing its site via inward movement of the ALA274–ALA281 loop.
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root mean square deviation (RMSD) during 200 ns of simulation. The X-axis represents the residue
number and the Y-axis is the RMSD of the α-carbon atom. The color blue, orange and grey represents
the structures of ApoKasA, KasA bound with TLM, and KasA bound with the compound 1, respectively.

MM(GB/PB)SA was used to calculate the binding free energy (Table 4). The results suggest that
compound 1 has lower free energy as compared with TLM. The calculated free energy and the observed
molecular dynamic changes suggest strong binding of compound 1 with mycobacterial CasA.

Table 4. MM(GB/PB)SA binding free energy and entropy (kcal/mol) for compound 1 and TLM.

Compound Codes
Binding Free Energy

Entropy
MMGBSA MMPBSA

Compound 1 −45.553 (2.15) * −29.096 (2.95) −33.613
TLM −28.042 (1.17) −21.0636 (1.98) −31.732

* standard deviation.
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(encircled by blue circles) and ALA274–ALA281 (encircled by violet circles) and are further represented
by additional insets.

The cell wall of MTB is rich in long-chain lipids, which render it resistant to treatment. KasA is an
important enzyme in bacterial type II fatty-acid synthesis pathways (FASII), which are required for
fatty-acid elongation of up to 56 carbons and can aid in the formation of mycolic acids [59]. TLM is a
natural product from Nocardia spp. Moreover, it showed strong anti-TB activity against saprophytic and
virulent strains of MTB [65,66]. Complete inhibitory action against the growth of M. smegmatis mc2155
and MTB Erdman was detected at 75 µg/mL and 25 µg/mL, respectively [65]. In our study, compound
1 showed a stronger anti-TB effect that was 2–7-fold higher than TLM. Test compound 1 inhibited the
growth of MTB H37Rv and MDR MTB at 5.5 µg/mL and 11 µg/mL, respectively. The improved anti-TB
activity of test compound 1 over TLM was expected to be implemented by its associated MD changes
in KasA structure, where the conserved interaction with the catalytic histidines, and the lowered
flexibility of α5–α6 helix suggests the anti-TB effects of both of TLM and compound 1. Additional
changes in the ALA274–ALA281 loop might contribute to the superiority of compound 1 in terms of
its anti-TB properties.

In the efforts of finding new inhibitors against MDR-MTB, several studies were implemented
worldwide. A high throughput screening study comprising 45,000 compounds discovered a set of
disubstituted oxazole with potent activity against MDR-MTB with potencies of 4–64 µg/mL [67].
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Two rifabutin analogs were recently introduced as potential hopeful anti-MDR-MTB agents owing
to their inhibitory effect on MDR-MTB in the range of 6–8 µg/mL [68]. The potent fluoroquinolone
anti-TB ciprofloxacin showed MIC value >64 µg/mL in MDR-MTB strains. Further modifications of
ciprofloxacin by several 1,2,3-triazole-isatin hybrids improved the parent compound efficiency to be
16 µg/mL [69]. An interesting feature of compound 1 in this study is its effect on MDR-MTB with
high potency against rifampin and isoniazid multidrug-resistant MTB strain. The experimental and
computational competency of this compound renders it as a good lead for future drug discovery studies.

It is well known that, MM(GB/PB)SA program is producing more accurate binding energy in
comparison with other scoring programs like docking. As shown in Table 4 and Figure 7, compound 1
has higher binding free energy as compared to the TLM, and that was supported by the calculated
values of entropy. In addition, van der Waals forces represent the favorable component and the
dominant forces amongst the other forces.

1 
 

 
Figure 7. Total Energy decomposition, van der Waals and electrostatic energy (kcal/mol) for the
complexes of compound 1 and TLM with protein.

3. Materials and Methods

3.1. Chemistry

The synthesis and structural elucidation of the title compounds 1, 2, 3, and 4 were previously
reported by our group, following a synthetic protocol [56,57]. The chemical structure of the parent
compound 4-amino-5-(4-fluoro-3-phenoxyphenyl)-4H-1,2,4-triazole-3-thiol (1) and its Schiff bases 2, 3,
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and 4 are listed in Figure 2. The partition coefficient and IUPAC nomenclature of test compounds 1–4
are tabulated in Table 2.

3.2. Anti-Tubercular Activity

3.2.1. Resazurin Microplate Assay (REMA)

Anti-TB screening of test compounds 1–3 and 4 (Figure 2) was performed using the colorimetric
REMA plate approach [41,70].

3.2.2. Determination of the Minimum Inhibitory Concentration (MIC)

All test compounds (1–3 and 4) were assessed using the agar incorporation approach, which was
performed three times, and targeted in H37Rv and MDR-TB strains (isoniazid, 0.2 µg/mL; rifampicin,
>1.0 µg/mL). MIC determination was then carried out with some modifications [71]. A Level II Biosafety
Laboratory was used to carry out this experiment. MTB reference strain H37Rv (American Type Culture
Collection [ATCC], Manassas, VA, USA: 25177) and MDR-TB were cultured in Middlebrook 7H11
medium for a total of 3 weeks [72]. The strain was supplemented with OADC (0.005%, v/v, oleic acid;
0.2%, w/v, glucose; 0.085%, w/v, NaCl; 0.02%, v/v, catalase; and 0.5%, 171 w/v, bovine serum albumin
[BSA]), and incubated at a temperature of 37 ◦C. Fresh cultures were used to prepare a standardized
inoculum in a sterile tube (5 mm in diameter) containing 0.05% Tween 80 and 4.5 mL of phosphate
buffer for vortexing. The bacterial supernatant was then standardized to McFarland Number 1 with
water, resulting in a bacterial concentration ~1 × 107 cfu/mL. The bacterial suspension was then diluted
with water, after which a total of 100 µL of the dilution was placed onto Middlebrook 7H10 agar
plates with drug doses ranging from 8–0.125 µg/mL (to begin, 8 µg/mL of the drug was dissolved in
distilled water and diluted twofold to achieve the desired concentration prior to being added to the
agar medium). The MICs of the drugs (i.e., the concentration that inhibited >1% of the organism’s
growth when compared with controls) were obtained 3 weeks following incubation. Table 2 presents
the anti-TB results when compared with H37Rv (ATCC: 25177), MDR-MTB, and XDR-MTB.

3.2.3. Safety Studies

Title compound 1, which exhibited anti-TB activity against H37Rv and MDR strains of MTB,
underwent safety studies by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. The MTT cytotoxicity assay evaluated the cytotoxic effects of compound 1, according to the
described protocol [73].

3.3. Computational Studies

3.3.1. Dataset Construction

Triazole thiol derivatives are associated with strong antibacterial and anti-TB actions [41,49,65,74].
In order to identify the potential target of our newly synthesized parent compound 1 and its Schiff
bases 2, 3, and 4, a dataset was constructed comprising the most common molecular targets for triazole
derivatives from the previously published literature [58–63]. The 3D-Crystal structures of target
proteins and their co-crystal structures (Figure 3) were procured from the Protein Data Bank (PDB) as
shown in Table 3.

3.3.2. Preparation of Structures, Compound Files, and Molecular Docking

As described in Table 3, the 3D crystal structures for each molecular target were retrieved from PDB
(www.rcsb.org). Each structure was checked for errors and optimized, and any errors were corrected.
Side-chain errors and missing atoms were corrected. Water and all other non-relevant co-factors were
removed from the binding space; then, charges and non-polar hydrogens were added. The substrates
of each target were kept in the structure, followed by energy minimization. Docking was carried

www.rcsb.org
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out by Molegro Virtual Docker 5.5 software using the MolDock scoring system. At first, the docking
template was constructed using the template docking option in the Molegro software. The substrate for
each molecular target was used to set up and conclude the molecular template interactions. Template
docking was followed by a docking run to generate 10 poses showing the highest binding scores.
Validity of the docking protocol was confirmed by redocking the co-crystalized ligands. The results
showed a low root-mean-square deviation (RMSD) and accurate docking conformations. Compounds
were ranked according to their docking score, and the relative docking score was calculated according
to the following equation:

Relative docking score =
Docking score of compound

Docking score of the co− crystalized compound
(1)

3.3.3. Molecular Dynamic (MD) Simulation

Although docking is a gold standard in understanding the drug–receptor binding interactions,
there could be some limitations depending on docking alone to conclude the molecular forces
associated with ligands binding. MD simulation is a powerful technique to analyze the receptor
binding patterns, the contribution of solvent, and the dynamical aspects associated with ligands
recognition. A combination of both docking and MD simulation can give a full molecular analysis
in the drug discovery and optimization process. For this purpose, after molecular docking, we ran
an expensive MD simulation of 200 ns to obtain a comprehensive insight into compounds-receptor
complexes stability, the substructural changes in the mycobacterial protein in response to ligands
binding as well as the predicted binding energy and its contributing forces.

MD simulation was used to elucidate the stability and sub-structural changes associated with the
binding of test compound 1 with MTB KasA and to compare these properties with ApoKasA (PDB ID
2WGD) and KasA bound with a standard inhibitor (TLM, PDB ID 2WGE; Figure 3). The structure of
KasA with the lowest energy pose of compound 1 was used in the MD studies [75]. An AMBER14 force
field was implemented in YASARA (version 14.12.2). A particle-mesh Ewald algorithm was set for
periodic boundary conditions and to calculate the long-range electrostatic force [76]. The simulation
was run under isothermal and isobaric conditions (NPT ensemble). The protein was immersed in
a simulation box filled with water at a density of 0.997 g/mL with a size of 10Å around the protein.
The temperature was set to 298 K. Then, sodium chloride was added to replace the water to yield a
total sodium chloride concentration of 0.9%. Initial energy minimization was carried out using the
steepest descent method. The distance between the protein and the cell wall was set to 10 Å. The time
step was set to 2 fs; following this, simulation snapshots were collected every 100 ps. The average
energy-minimized structure was used to compare the interactions of TLM (Figure 3) and test compound
1 (Figure 2) with M. tuberculosis KasA. Molecular dynamics was run by a predefined macro implemented
in YASARA software (MD_runfast.mcr). Trajectories were recorded and analyzed by MD_analyse.mcr.

3.3.4. MM(GB/PB)SA Calculation

MM(GB/PB)SA [77] was used to calculate the binding free energy, entropy, and full energy
decomposition for the complexes of compound 1 and the control ligand TLM. Two hundred snapshots
from the last 2 ns of the MD simulation were used to calculate the binding free energy and entropy.

4. Conclusions

The title compound 4-amino-5-(4-fluoro-3-phenoxyphenyl)-4H-1,2,4-triazole-3-thiol (1) has
emerged as a promising anti-TB agent against H37Rv and MDR strains of MTB at concentrations of 5.5
and 11 µg/mL, respectively. This study has established preliminary data that could be considered when
preparing various derivatives to achieve better triazolyl anti-TB agents, as this compound exhibited no
toxicity up to 450 µg/mL. By performing computational studies, it was confirmed that compound 1 is
expected to inhibit KasA and interfere with the synthesis of long-chain fatty acids, which comprise
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the cell wall in Mycobacterium tuberculosis. A comparison of compound 1 with TLM, a strong KasA
inhibitor, revealed conserved interactions at the binding site and structural rearrangements during MD
simulation that favored the stronger antimycobacterial actions of compound 1.
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