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Design and bio‑inspired 
optimization of direct contact 
membrane distillation 
for desalination based 
on constructal law
Amir H. Keshavarzzadeh

At the present study, a one-dimensional model for the flat sheet direct contact membrane distillation 
(DCMD) for desalination purposes is proposed. Flows and membrane properties have been estimated 
by appropriate temperature-dependent correlations. Results show that the numerical model is 
in a very good agreement with experimental data at various feed temperatures, flow rates and 
concentrations. A constructal design is investigated for DCMD to assess how constructal law can 
improve the DCMD performance. With the same thermal efficiency of 93.5%, constructal design 
improves the water mass flux by 37.5% in comparison with the conventional DCMD design. Also, an 
evolutionary-based optimization algorithm is employed to increase the efficiency of the constructal 
and conventional design. The Pareto frontier of the constructal and conventional design is compared 
with each other and the correlations between design variables are investigated. Overall, the present 
study demonstrates how constructal law can increase the performance of energy systems with a 
simple modification.

The deficiency of freshwater resources would cause a serious crisis in the foreseeable future. Searching for an effi-
cient desalination method, as a result, has been surged in the past recent years. Among conventional desalination 
methods, membrane distillation (MD) is one of the newest technologies that is under development1–5. MD is a 
thermally driven system which water vapor is condensed by crossing the hydrophobic membrane. This technol-
ogy could be used in a vast range of applications ranging from food industries to wastewater treatments. This 
technology benefits from several advantages. Operating in a lower temperature in comparison with other desali-
nation systems such as multiple-effect desalination (MED) system and the ability to operate in highly saline water 
are two of the major advantages of this technology6–10. Such merits make the MD suitable for integrating with 
solar flat plate collectors. Several MDs are investigated such as direct contact membrane desalination (DCMD), 
vacuum membrane desalination (VMD), air gap membrane desalination (AGMD) and swiping gas membrane 
desalination (SGMD). At the present study, DCMD has been chosen with a focus on the flat sheet membrane 
configuration11. Countless mathematical models were developed to simulate the DCMD performance12–14.

Bandini et al.15 studied the effect of different operating conditions and membrane properties on the efficiency 
and mass transfer of the DCMD. Their results show that applying polarization coefficient alone, cannot lead to 
a satisfactory analysis of various resistances. They suggested novel sensitivity factors for the distillate flux based 
on convective heat transfer rate, membrane heat and mass transfer coefficient.

Al-Obaidani et al.13 conducted an experiment, investigating the hollow fiber DCMD exergy analysis, sensitiv-
ity study and economic evaluation in an effort to provide an optimization guideline. Hwang et al.16 carried out 
an experimental and analytical study on the flat sheet DCMD. They studied the impact of module dimensions 
and operating parameters on the DCMD performance. They also, obtained mass transfer coefficients for differ-
ent module designs.

OPEN

School of Mechanical Engineering, University of Tehran, P.O. Box  11155‑4563, Tehran, Iran. email: 
keshavarzzadeh.a@ut.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-73964-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:16790  | https://doi.org/10.1038/s41598-020-73964-7

www.nature.com/scientificreports/

Bahmanyar et al.17 studied the impact of membrane morphology and operating parameters on the DCMD 
performance. The effect of those parameters on the concentration polarization and temperature was examined. 
Their results demonstrated that one of the most prominent parameters for permeate flux is the feed inlet tem-
perature. Also, they showed that the feed temperature and feed circulation velocity have a meaningful correlation 
with concentration polarization.

Wu et al.18 investigated the impact of the membrane thickness on the transmembrane flux for DCMD. They 
calculated that the optimal membrane thickness increases with the reduction of the heat transfer coefficient and 
feed inlet temperature. However, the optimal membrane thickness decreases with the drop of the feed salinity 
and membrane permeability.

Bouchrit et al.19 evaluated the capability of treating hypersaline solution using flat sheet DCMD. They devel-
oped a model for mass and heat transfer and studied the effect of operating parameters on the DCMD perfor-
mance. They determined the optimum operation parameters and constructed a lab-scale DCMD to concentrate 
the RO discharge for achieving the super-saturation saline with the aim of the salt crystallization. A long-term 
experiment was also constructed to monitor the permeability and the scaling of the membrane.

Imdakm and Matsuura20 developed a Monte Carlo simulation model to study the effect of membrane physi-
cal properties such as membrane pore size distribution, thickness, porosity, and thermal conductivity on the 
membrane flux. They proposed a DCMD’s porous membrane by a three-dimensional network model of the 
interconnected cylindrical pores with the distributive effective pore sizes.

Deshpande et al.21 completed a systematic numerical analysis, focusing on exergy destruction inside the 
hollow fiber DCMD module. They investigated the impact of different design and operation parameters on the 
exergy efficiency and recovery ratio of the DCMD system. They found that regardless of packing arrangement, the 
higher inlet feed temperature, the better recovery ratio. Also, they pointed out the important role of membrane 
properties on the recovery ratio.

Heat transfer is of great importance in a vast range of technologies. The very epitome of this could be seen 
at the heat exchangers, fuel cells and so forth. DCMD is one of the technologies which is highly dependent on 
the heat transfer. Multi-objective optimization, therefore, has been employed to obtain the optimized opera-
tion conditions22–26. Bejan et al.27,28 calculated the suitable size and shape of the heat exchanger which leads to 
a minimum thermodynamic loss. Bejan’s theory, constructal law, has the ability to increase the rate of the heat 
transfer significantly. In broad terms, constructal law can enhance the effectiveness of heat exchangers29. For 
instance, constructal theory can reduce the system cost by 50% in comparison with its conventional system30.

The present study tries to improve the performance of the flat sheet DCMD by combining the DCMD 
enhanced model with constructal law. The Nusselt correlation which considers the entry effects (both thermal 
and hydrodynamic) for rectangular cross-sections31 is also employed to improve the accuracy of the model. 
The most commonly cited issues in the literature were lack of proposing a constructal design with a thorough 
analysis of the DCMD design parameters. The following highlight the novelty of this research and its importance:

•	 Proposing a novel constructal DCMD design.
•	 Conducting a thorough analysis of DCMD design and operational parameters.
•	 Conducting an evolutionary-based optimization for constructal and conventional DCMD design.
•	 The performance of constructal and conventional DCMD design is compared with each other.
•	 Correlations between decision parameters are obtained.

Modeling.  The schematic of the flat sheet DCMD is illustrated in Fig. 1. The DCMD consists of three main 
parts namely: feed channel, permeate channel and membrane. The whole flat plate is divided into smaller con-
trol volumes and governing equations are solved for each control volume. It is worth mentioning that because 
of the coupling nature of governing equations these control volumes should be co-directed along the width of 
the DCMD.

While hot saltwater flows through the feed channel, cold freshwater streams in the opposite direction at the 
permeate channel whereas a porous hydrophobic membrane separates these water streams. This temperature 
difference causes a water vapor pressure gradient which is perpendicular to the membrane direction. The mass 
transfer through the membrane is proportional with the pressure gradient32:

where Pw.f .m and Pw.p.m are the water pressure at the feed and permeate channel, respectively. B is the membrane 
flux coefficient which can be evaluated by empirical or theoretical correlations. Chung et al.33 proposed an 
empirical equation to evaluate the mass flux through the membrane. Although the membrane flux coefficient 
changes with operating conditions, some of existed DCMD models select a constant value and employ it as a 
calibration parameter.

where R is the gas constant, Mw is the water molecular weight and T is the membrane temperature. The mem-
brane properties rp , δ , ǫ and τ are pore size, thickness, porosity and tortuosity, respectively. The membrane 
tortuosity and porosity can be calculated as33:
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pa is the air pressure inside the membrane pores and D is the water diffusion coefficient. The total pressure 
can be assumed constant in both DCMD’s channels module and equal to the atmospheric pressure. The viscous 
flow, as a result, would be negligible34. PD for the water–air mixture can be written:

where the water vapor pressure at each side of the membrane can be written:

here Psat.w(T) indicates the saturation pressure of water at the temperature T. The presence of salt at the feed 
channel causes the deviation of vapor from pure water. To considering impurities due to the NaCl, the activity 
coefficient ( γw ) can be determined as follows35:

The water vapor pressure at the feed channel can be expressed as:

here X is the molar solute concentration. The saturation pressure of water can be calculated by the Antoine 
equation. Psat.w is calculated as follows:

Mass flux throughout the membrane is dependent on the temperature of channels. By applying the energy 
equation on each control volume, the temperature distribution along the channel can be obtained. Since the 
membrane module consists of three segments, the energy equation applies to each separately as is demonstrated 
in Fig. 2. In this regard, the energy equation is applied for the feed channel with the assumption of adiabatic walls:

where ṁf  is the water mass flow rate, hf .b is the bulk enthalpy of liquid water and hv.f .m represents the vapor 
enthalpy at the membrane surface which flows through the membrane into the permeate channel. Also, qm is 
the heat flux through the membrane.

(3)τ =
1

ǫ

(4)PD = 1.895× 10−5T2.072

(5)Pw.p.m(T) = Psat.w(T)

(6)γw = 1− 0.5X − 10X2

(7)Pw.f .m(T) = γw(1− X)Psat.w(T)

(8)Psat.w(T) = exp

(

23.1964−
3816.44

T − 46.13

)

(9)ṁf hf .b|z+dz = ṁf hf .b|z −
(

Jmhv.f .m + qm
)

dA

Figure 1.   The schematic of the DCMD module.
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An energy balance for the permeate channel yields:

where ṁp is the water mass flow rate at the permeate channel. hp.b and hv.p.m represent the bulk liquid and vapor 
enthalpy at the permeate channel, respectively.

It is assumed that no mass is added or removed inside the membrane and all vapor flows from the feed channel 
into the permeate channel without any condensation in the membrane pores. Following equations, as a result, 
are given based on a continuity equation:

The vapor enthalpy at the boundary, hv.m can be considered as the latent heat of vaporization and saturated 
enthalpy of water at that temperature.

Substituting previous equations into Eqs. 9 and 10 yields:

here dhf .b and dhp.b represent the bulk enthalpy difference in the feed and permeate channel, respectively. The 
convective heat transfer of the membrane sides can be calculated as follows:

where Tf .b , Tp.b , Tf .m , Tp.m are the bulk and membrane surface temperature of the feed and permeate channel, 
respectively. ht.f  and ht.p are the convective heat transfer coefficient at the feed and permeate side which deter-
mined by the appropriate Nusselt number correlation. The total membrane thermal conductivity consists of 
two parts, the thermal conductivity of the solid part ( ks ) and the heat conduction through the gas inside pores 
with the thermal conductivity of kg . The thermal conductivity of air and water vapor, however, have the same 
order of magnitude so the thermal conductivity of water vapor is considered as kg . By applying the parallel heat 
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)

dA
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Figure 2.   The schematic of control volumes.
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flow assumption through the gas inside pores and solid parts, the membrane thermal conductivity (km) can be 
calculated as follows 36:

The thermal conductivity of water vapor and PTFE membrane, which is employed in this study, are depended 
on the temperature. These values can be calculated using the following equations:

Previous equations are valid between the temperature of 273–373 K. It is worth mentioning that the convec-
tion heat transfer within the membrane pores is negligible:

where ǫ and δm are porosity and membrane thickness, respectively.
For solving the above equations along the channel length, a proper Nusselt number is needed for each sec-

tion of the channel. Various correlations based on the geometry and flow regime are suggested and used in the 
previous studies. At the present study, a general relationship for an arbitrary cross-sectional shape, considering 
the entry effects (both thermally and hydrodynamically), is applied31.

Here m is the blending parameter which is given by:

where a = 2.27 and b = 1.65. The product of friction factor (f) and Reynolds number which is defined based upon 
the square root of cross-sectional area, is given by:

f (Pr) for the uniform wall heat flux boundary condition is calculated as follows:

where ε , z∗ , Pr and γ are the aspect ratio of duct, dimensionless position of thermally developed flows, Prandtl 
number and shape parameter, respectively. γ is considered − 0.3 due to the low aspect ratio of the duct. The input 
parameters of the DCMD is represented in Table 1.

(19)km = ǫkg + (1− ǫ)ks

(20)ks = 0.087+ 6.0× 10−4T

(21)kv = 2.72× 10−3 + 5.71× 10−5T

(22)qm = km
Tf .m − Tp.m

δm

(23)Nu√A

�

z∗
�

=







�

f (Pr)√
z∗

�m

+











0.501

�

fRe√A

z∗

�

1
3







5

+
�

3.86

�

fRe√A

8
√
πεγ

��5




m/5






1/m

(24)m = a+ bPr1/3

(25)fRe√A =
12

√
ε(1+ ε)

[

1− 192ε
π5 tanh

(

π
2ε

)]

(26)f
(

pr
)

=
0.886

[

1+
(

1.909Pr1/6
)9/2

]2/9

Table 1.   Geometrical and operational parameters of DCMD module.

Value Unit

Geometrical parameters

Length, L 5 m

Width, w 0.5 m

Channel depth, hch 5 mm

Membrane thickness, δm 200 μm

Porosity, ǫ 0.7 –

Pore size, rp 0.45 μm

Operational parameters

Feed inlet temperature,Tin.f 70 °C

Permeate inlet temperature, Tin.p 25 °C

Feed inlet volumetric flow rate, qin.f 10 l/min

Permeate inlet volumetric flow rate,qin.f 10 l/min

Feed Inlet salinity, sin 35,000 ppm
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Validation.  Based on the equations proposed in the modelling section, the DCMD model is developed and 
validated with the experimental data which are reported by Martı́nez-Dı́ez and Vazquez-Gonzalez37. The PTFE 
membrane (with 80% void fraction, 60 μm thickness, 0.2 mm nominal pore size) was implemented to perform 
experimental tests. The membrane module in that study was a counter flow flat sheet with 9 feed channels and 9 
permeate channels. The water mass flux ( Jm) versus the average bulk temperature of the feed saltwater ( Tb1 ) are 
compared in Fig. 3 for two recirculation rates (7 and 11 cm3/s) at various salt feed water concentrations (0, 0.55, 
1.15 and 1.67 molar NaCl). As is represented in Fig. 3 the simulation results are in an excellent agreement with 

Figure 3.   Water mass flux across membrane (a) Inlet flow rate, Q = 7 cm3/s (b) Inlet flow rate, Q = 11 cm3/s. 
Symbols indicate experimental data25 and lines show model results.
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experimental data. It is worth mentioning that Tb1 in Fig. 3 is the average of the inlet and outlet bulk temperature 
of the feed channel.

Constructal design and optimization.  Speed-constrained Multi-objective particle swarm optimization 
(SMPSO) is an improved particle swarm optimization (PSO) characterized by the use of a strategy to limit the 
velocity of the particles. PSO is a bio-inspired evolutionary-based which imitating social behavior of bird flock-
ing or fish schooling38. SMPSO use a strategy to put a constraint on particle velocity. In this regard, SMPSO 
produces new particles when the velocity becomes too high. Also, SMPSO benefits from polynomial mutation as 
a turbulence factor and external archive to store the non-dominated solutions found during the search39.

Constructal law, which was proposed for the first time in 199640, states that for a flow system to persist in time 
it needs to evolve in a way that it provides easier access to its current41. The very epitome of this notion could be 
seen everywhere in nature42. Dendritic shapes, which is ubiquities in nature, are an icon of constructal design. 
These patterns could be seen in blood vessels, river basins and most recently the quantum footprint43–45. The 
present study tries to implement constructal law to enhance DCMD performance. While, the water mass flow 
rate and the size of channels are kept constant, as is demonstrated in Fig. 4, a new configuration is adopted to 
give the flow architecture the freedom to morph. The hot brine after entering in the feed channel is distributed 
into two other equally spaced feed channels (1 → 2,3). The same design is also considered for permeate channels. 
This configuration is also known as a canopy-to-canopy design.

Two different designs including constructal and conventional DCMD are considered for optimization. The 
schematic diagram of the constructal DCMD is illustrated in Fig. 4. The constructal DCMD consists of three 
parts. Each part of the constructal DCMD is one-third of the conventional DCMD. The inlet volume flow rate is 
divided into two equal portions while entering part 2 and 3. Nine design parameters including the inlet volume 
flow rate at the feed side, inlet volume flow rate at the permeate side, inlet feed water salinity, bulk temperature 
of the feed side, bulk temperature of the Permeate side, membrane length, membrane width, porosity and mem-
brane pore size are considered for both conventional and constructal design. SMPSO algorithm is employed for 
optimization. The thermal efficiency and water mass flux are considered as two objective functions. The thermal 
efficiency of the DCMD can be defined as the ratio of latent heat of vaporization to the total heat transfer across 
the membrane which can written as:

The amount of the water mass flux ( Jm ) is calculated based on the previous equations. At the present study, 
the main goal of the optimization is to maximize both objective functions. The applicable ranges for relevant 
decision variables in this study are listed in Table 2.

Results and discussion
The Pareto frontier of the conventional and constructal designs is represented in Fig. 5. As is shown the con-
structal design indicates a better performance before the water mass flux of about 4.4 kg/m2s as it is closer to 
the ideal point. Its performance, however, drops after the efficiency of 89% and mass flux of 4.4 kg/m2s. After 
this point the conventional design has a better performance. Therefore, for the efficiencies below 89% or mass 
fluxes more than 4.4 kg/m2s, the conventional design is preferable to the constructal design. The equilibrium 
point is closer to the constructal Pareto frontier so as a result, the constructal design can strike a better balance 
between the thermal efficiency and water mass flux. The Pareto optimal front of the constructal DCMD design 
is started from point (a), showing the single objective optimization (Thermal efficiency). Point (a) has the high-
est thermal efficiency. Its water mass flux, however, is at its lowest value. The constructal DCMD design has the 
thermal efficiency of 96.5% at point (a) meanwhile, its mass flux is 2.57 kg/m2s. On the contrary, the constructal 

(27)η =
Jmhfg

Jmhfg + km
δ

(

Tf .m − Tp.m

)

Figure 4.   Schematic of constructal DCMD structure.
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DCMD has the largest mass flux with the amount of 4.69 kg/m2s and the thermal efficiency of 85.5% at point 
(b). Point (c) indicates the single-objective optimization (thermal efficiency) of the conventional DCMD which 
has the value of 93.5%. Point (b) is the most suitable design from a water mass flux viewpoint as it has the larg-
est quantity (4.57 kg/m2s) among other points. Nevertheless, it is the worst design for the thermal efficiency. 
Aforementioned points are the result of single objective optimizations. As is illustrated, the conventional design 
is dominated by the constructal design from a thermal efficiency perspective, in contrast, the conventional design 
can have a larger amount of mass flux as point (b) is lower than the point (d). Three lines (A, B and C) are added 
to assess the impact of the constructal design on DCMD performance. Line A shows that with the same thermal 
efficiency of 93.5%, the constructal design can improve the water mass flux by 37.5% from 2.45 to 3.37 kg/m2s 
which is a considerable enhancement. Line C, on the other hand, indicates that with the same thermal efficiency 
of 87.5%, the constructal design leads to decreasing the mass flux by 2.4%. Line B is considered as the reference 
line inasmuch as the constructal design is more appropriate above this line. In contrast, the conventional DCMD 
is more suitable below this line.

Since in the most parts the constructal design has a superior, the design and operational parameters of this 
design will be discussed. The correlation between each parameter (Pair Plot) is illustrated in Fig. 6. Pair plot 
illustrates the relation between decision variables, helping to identify the influence of parameters on each other. 
The diagonal of the pair plot shows the distribution of design parameters. Description of each decision variable 
is shown in Table 2. As is represented in Fig. 6 most of the design and operational parameters follow a dominated 
trend which can provide a useful insight into what range of decision variables can lead to an optimal design. 
Decision-makers and designers, as a result, can use these design parameters to design an optimal constructal 
DCMD. It can also suggest optimum operational conditions for the constructal DCMD.

For precise investigation, the distribution of each decision variable is represented in Fig. 7.
The frequency distribution of decision variables reveals the most appropriate value for each decision vari-

able. Generally, the frequency distribution of decision variables can be categorized into two main sections. First, 

Table 2.   Ranges of decision variables in the present study.

Parameter Symbol Unit Lower bound Upper bound

Inlet volume flow rate at feed side qr l/s 0.1 0.6

Inlet volume flow rate at permeate side qp l/s 0.1 0.6

Inlet feed water salinity sin ppm 15,000 40,000

The bulk temperature of the feed side a °C 50 90

The bulk temperature of the Permeate side b °C 15 35

Membrane length L m 4 7

Membrane width W m 0.4 0.7

Porosity kisi.ε – 0.4 0.9

Membrane pore size rp m 0.4e−6 0.9e−6

Figure 5.   Pareto frontiers for conventional and constructal DCMD designs.
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design and operational variables that have one peak (Fig. 7a, h). In such categories, there is a dominant value that 
causes an optimal constructal DCMD design. On the other hand, some frequency distributions of the decision 
variables have two peaks. In such cases, each optimal design could have one of these values. The very epitome 
of this could be seen in Fig. 7b. Also, there is a possibility that a decision variable has three peaks (Fig. 7d). As 
is shown in Fig. 7a, almost all of the optimal points have the value of 0.59 l/s which means it is the most suitable 
quantity for the inlet volume flow rate at the feed side. Figure 7b shows the optimal points for the inlet volume 
flow rate at the permeate side. As is discussed before, it has two peaks (0.2 and 0.6 l/s). Choosing one of these 
values are depended on other decision variables. Figure 7c represents the most suitable inlet feed water salin-
ity. This figure reveals that the best inlet feed water salinity for the constructal DCMD is between 15,000 and 
15,100 ppm. In other words, the constructal DCMD will be performed optimally if it works in this range of inlet 
feed water salinity. Figure 7d shows the most optimal bulk temperature. Although each peak could lead to an 
optimal operation condition, the highest one (89 °C) is the most dominant value. The most frequent value of 
the permeate side bulk temperature, however, is 34 °C as is shown in Fig. 7e. Most of the appropriate values for 
the membrane length, membrane width, porosity and membrane pore size, with the same procedure, are 4 m, 
0.4 m, 0.89 and 0.89 e−7, respectively.

Another important question is whether decision variables have a correlation with each other or not. Figure 8 
shows the Pearson correlation coefficients to determine whether there is any relation between decision variables. 
This can help designers to understand what effect a change in one parameter has on the other parameters so they 
can modify design parameters effectively.

Figure 6.   Pair plots of decision variables.
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Pearson’s correlation coefficient calculated by dividing the covariance of the variables, which are decision vari-
ables here, to the product of their standard deviations. As is shown there is some conspicuous relation between 
some design parameters which at the first glance seems to have nothing to do with each other. Starting from the 
inlet volume flow rate and bulk temperature at the permeate side. As is demonstrated in Fig. 8 these variables 

Figure 7.   Frequency distribution of decision variables.
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move in the opposite direction. In broad terms, for having an optimized constructal DCMD, if the inlet volume 
flow rate at the permeate side is increased, the bulk temperature of the permeate side must be decreased to keep 
the constructal DCMD optimized. Another interesting correlation exists between the porosity and membrane 
pore size. These two design parameters are move in the same direction so for having an optimized constructal 
DCMD, the quantity of both variables have to increase or decrease simultaneously. The membrane width and 
bulk temperature of the feed side have a weaker yet very interesting relation. As is shown these parameters move 
in the same direction. More correlations can be discovered as is shown in Fig. 6. Pearson’s correlation coefficient 
more than 0.3 or less than − 0.3 can be called as a moderate or strong correlation between parameters and can 
have a conspicuous impact on objectives. These relations can help decision-makers to increase or decrease the 
values of design parameters more wisely to keep the constructal DCMD optimized.

The marginal plot of several decision variables is also represented in Fig. 9. Marginal plots help to examine 
decision variables distributions and how designers should choose decision variables to build an optimal con-
structal DCMD. Decision variables which have a considerable Pearson’s correlation coefficient are shown in Fig. 9. 
For easier visualization data have been normalized between 0 and 1. Figure 9a shows that both the membrane 
pore size and porosity have to be chosen from their highest frequency as the deepest part of the Fig. 9a is located 
in this part. Figure 9b illustrates that the most optimal points happen when the bulk temperature is chosen from 
its high frequency values while the inlet volume flow rate at the permeate side should choose from its second 
peak. Other values of design parameters can also be employed by designers based on other parts of the figures 
but the most optimal designs happen with the aforementioned values. Figure 9c, with the same procedure, reveals 
that the porosity and membrane pore size have to be selected from their highest frequency value. Figure 9d can 
be analyzed with the same method.

Conclusion
At the present study, a novel DCMD design is proposed based on the constructal theory. Flow and membrane 
properties are estimated by the temperature-dependent correlations to reduce the model input parameters. A 
generalized Nusselt number correlation is employed for the thermal and hydrodynamic flow. The average mass 

Figure 8.   The Pearson correlation coefficient of decision variables.
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flux which is calculated by this model is in a very good agreement with experimental data. SMPSO optimization 
algorithm is implemented to assess whether the constructal design can improve the performance of the DCMD. 
Results reveal that the constructal DCMD design leads to better performance under the water mass flux of about 
4.4 kg/m2s or less than that. The conventional design, on the other hand, illustrates better performance after 
this point. Also, the results indicate that the constructal design is more desirable for higher thermal efficiencies. 
The constructal design dominates the conventional design from a thermal efficiency perspective, in contrast, 
the conventional design can perform under higher mass flux. For instance, the optimization outcomes show 
that with the same thermal efficiency of 93.5% the constructal design can improve the water mass flux by 37.5% 
from 2.45 to 3.37 kg/m2s. In the next step, the pair plot is employed to investigate the relation between deci-
sion parameters. It indicates that there are dominated trends among design and operational parameters which 
can provide a useful insight into what range of decision variables can lead to an optimal design. The frequency 
distribution of decision variables demonstrates that decision variables could be categorized into two main parts. 
First, operational and design variables that have one peak which means that there is one dominant value that 
causes an optimal constructal DCMD design. Second, decision variables that have two or three peaks. In such 

Figure 9.   Marginal plot of decision variables.
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categories, each peak could lead to optimal design. The quantities of each parameter are discussed in the results 
and discussion section. The results show that the bulk temperature and inlet volume flow rate of the permeate 
side move in the opposite direction which means for obtaining an optimized constructal DCMD, if the bulk 
temperature of the permeate side is increased, the inlet volume flow rate at the permeate side must be decreased 
to keep the constructal DCMD optimized. Also, results demonstrate that the amount of the membrane pore size 
and porosity must increase or decrease simultaneously. Data disclose that the membrane pore size and porosity 
have to be chosen from their highest frequency.
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