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A B S T R A C T

Introduction: Longitudinal magnetic resonance imaging (MRI) analysis has an important role in multiple
sclerosis diagnosis and follow-up. The presence of new T2-w lesions on brain MRI scans is considered a prog-
nostic and predictive biomarker for the disease. In this study, we propose a supervised approach for detecting
new T2-w lesions using features from image intensities, subtraction values, and deformation fields (DF).
Methods: One year apart multi-channel brain MRI scans were obtained for 60 patients, 36 of them with new T2-
w lesions. Images from both temporal points were preprocessed and co-registered. Afterwards, they were re-
gistered using multi-resolution affine registration, allowing their subtraction. In particular, the DFs between both
images were computed with the Demons non-rigid registration algorithm. Afterwards, a logistic regression
model was trained with features from image intensities, subtraction values, and DF operators. We evaluated the
performance of the model following a leave-one-out cross-validation scheme.
Results: In terms of detection, we obtained a mean Dice similarity coefficient of 0.77 with a true-positive rate of
74.30% and a false-positive detection rate of 11.86%. In terms of segmentation, we obtained a mean Dice
similarity coefficient of 0.56. The performance of our model was significantly higher than state-of-the-art
methods.
Conclusions: The performance of the proposed method shows the benefits of using DF operators as features to
train a supervised learning model. Compared to other methods, the proposed model decreases the number of
false-positives while increasing the number of true-positives, which is relevant for clinical settings.

1. Introduction

Multiple Sclerosis (MS) is an inflammatory disease of the central
nervous system, which is characterized by the presence of lesions in the
brain and spinal cord. Magnetic Resonance Imaging (MRI) has become
one of the most important clinical tools to diagnose and monitor MS,
since structural MRI depicts WM lesions with high sensitivity (Rovira
et al., 2015). MRI allows to show with high specificity and sensitivity
the dissemination of WM lesions in time and space, a key factor in re-
cent diagnostic criteria (Filippi et al., 2016). On longitudinal studies,
new T2-w lesions are a high-impact prognostic factor to predict evo-
lution to MS or risk of disability accumulation over time (Tintoré et al.,
2015).

Different methodologies and approaches have been proposed for
getting MS biomarkers from individual patients by combining clinical
and MRI criteria evaluated after 6 or 12 months from therapy start

(Freedman et al., 2013; Prosperini et al., 2014; Rio et al., 2014; Sormani
et al., 2013; Sormani and De Stefano, 2013; Stangel et al., 2015).
However, the detection of this disease activity is performed visually by
comparing the follow-up and baseline scans. Due to the presence of
small lesions, misregistration, and high inter-/intra-observer varia-
bility, it is difficult to visually detect active T2-w lesions in patients
with MS (Altay et al., 2013). Automatic methods can overcome these
issues by eliminating stable lesions and also highlighting evolving T2-w
lesions (Moraal et al., 2010a,b).

Based on a study proposed by Lladó et al. (2012), methods can be
classified into either intensity-based approaches or deformation-based
approaches. In the intensity-based approaches, voxel-wise comparisons
are performed between successive scans. Moraal et al. (2009) men-
tioned that subtraction imaging allowed direct quantification of posi-
tive and negative disease activity. They also mentioned that 3D sub-
traction imaging increased the detection of active MS lesions in various
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parts of the brain compared with 2D subtraction imaging (Moraal et al.,
2010a). Elliott et al. (2013) presented a framework for automated de-
tection of new MS lesions using a two-stage classifier that first per-
formed a joint Bayesian classification of tissue classes at each voxel of
the baseline and follow-up images using intensities and subtraction
values, and then a lesion-level classification was performed using a
random forest classifier. Ganiler et al. (2014) extended the pipelines of
Moraal et al. (2010a) and Elliott et al. (2013) by adding multi-channel
information and several additional steps, for instance constraining the
region of interest to the white matter (WM) and using simple post-
processing steps based on the baseline and follow-up image intensities.
Supervised learning is a machine learning task which consists inof
predicting a function from labeled training data (Mohri et al., 2012).
Different algorithms can be used to learn a mapping function from input
feature vectors to the desired output values (Gentleman et al., 2008;
Pedregosa et al., 2011). Sweeney et al. (2013) proposed the SuBLIME
method for segmenting lesion incidence between two MRI studies au-
tomatically based on a supervised logistic regression model trained
using features only from the follow-up study and the subtraction be-
tween timepoints.

In the deformation-based approaches, the new T2-w lesion detection
is performed by analyzing the DFs obtained by non-rigid registration
between successive scans. Non-rigid registration provides a discrete
local displacement field that defines the deformation occurring between
two images. Thirion and Calmon (1999) and Rey et al. (2002) used the
DF to detect evolving lesions in longitudinal MRI. They defined several
DF operators to automatically detect regions that present changes.
Recently, Cabezas et al. (2016) improved the subtraction pipeline
proposed by Ganiler et al. (2014) by combining subtraction and DF
operators to decrease the number of false positive lesions detected by
the subtraction pipeline. In their work, an automated threshold was
computed for each subtraction image (PD-w, T2-w, and FLAIR) and
applied separately to obtain three initial lesion masks. The thresholds
were computed as the mean of the subtraction image within the WM
plus five standard deviations to guarantee that only hyperintense re-
gions were detected and while maintaining a large number of true-
positives (TPs). Lesions whichwhose size was smaller than three voxels
were excluded to reduce noise effects. The intersection of the three
masks (PD-w, T2-w, and FLAIR) was used to differentiate errors and
true lesions in each mask. Finally, two different postprocessing ap-
proaches were used independently to refine the initial lesion mask. The
first one was based on intensity by applying different rules to the
baseline and follow-up images while the second was based on DFs in
which Divergence, Jacobian, and Concentricity were used to accept or
reject the candidate lesions.

In this study, we merge intensity- and deformation-based ap-
proaches in an automated multi-channel supervised logistic regression
classification. In contrast with the previous supervised approaches, our
model uses features not only from the baseline, follow-up, and sub-
traction images but also from the DF operators obtained from the non-
rigid registration between timepoints scans. We evaluated the perfor-
mance of the method using leave-one-out cross validation on 36 images
presenting new T2-w lesions on the follow-up scan and also on 24
images without new lesions.

2. Materials and methods

2.1. Study population

The database used in this paper consists of images from 60 different
patients with a clinically isolated syndrome (CIS) or early relapsing MS
who underwent brain MR imaging in the Vall d’Hebron Hospital’s
center for monitoring disease evolution and treatment response. Each
patient underwent brain MRI within the first 3 months after the onset of
symptoms (baseline) and at 12 months’ follow-up after the onset. Based
on the appearance of new T2-w lesions, 36 of the patients were

confirmed MS, while the rest 24 patients did not present new lesions.
The basal and follow-up scans for all the patients were obtained in

the same 3T magnet (Tim Trio; Siemens, Erlangen, Germany) with a 12-
channel phased array head coil. The MRI protocol included the fol-
lowing sequences: 1) transverse proton density (PD)- and T2-weighted
fast spin-echo (TR=3080 ms, TE=21−91 ms, voxel si-
ze=0.78×0.78×3.0 mm3), 2) transverse fast FLAIR (TR=9000 ms,
TE=87 ms, TI=2500 ms, flip angle=120°, voxel si-
ze=0.49×0.49×3.0 mm3), and 3) sagittal T1- weighted 3D magne-
tization-prepared rapid acquisition of gradient echo (TR=2300 ms,
TE=2.98 ms, TI=900 ms, voxel size=1.0×1.0×1.2 mm3). The Vall
d’Hebron Hospital’s ethics committee approved the study, and a written
informed consent was signed by the participating patients.

Only new T2-w lesions or pre-existing ones exhibiting considerable
growth detected visually on the follow-up scan were annotated. The
task was carried out on the PD-w images and semi-automatically deli-
neated using Jim 5.0 software1. The annotation was performed in three
steps. First, an expert neuroradiologist detected changes visually by
using baseline and follow-up scans. Second, a trained technician deli-
neated them semi-automatically using, additionally, the subtraction
image. Finally, the expert neuroradiologist confirmed the final seg-
mentation. This analysis was used as the reference standard for com-
parison.

The 36 patients with new T2-w lesions exhibited a total of 198 le-
sions with a total volume of 1264112,641 voxels. Distribution of lesions
was: 15.15% small (3–10 voxels), 53.53% medium (11–50 voxels), and
31.31% large (50+ voxels).

2.2. Proposed method

2.2.1. Preprocessing
Fig. 1 depicts the whole pipeline used for the detection of new T2-w

lesions. For each patient, the same preprocessing steps were performed
on both baseline and follow-up images. First, a brain mask was iden-
tified and delineated on the PD-w image using the ROBEX Tool2

(Iglesias et al., 2011). Second, the four images underwent a bias field
correction step using the N4 algorithm available in the ITK library3 with
the standard parameters for a maximum of 400 iterations (Tustison
et al., 2010). Finally, baseline and follow-up intensity values were
normalized per modality using a histogram matching approach4 based
on Nyúl et al. (2000).

2.2.2. Registration and subtraction
For each patient, T1-w and FLAIR images from the same study were

registered to the PD-w image using a 3D multi-stage multi-resolution
registration approach. Initially, a 3D rigid registration with only one
resolution level was performed. Then, a 3D affine registration was
performed with three levels of resolution. Both registration methods
were carried out using ITK v4 framework (Johnson et al., 2015). The
Mattes Mutual Information cost function was minimized through Reg-
ular Step Gradient Descent Optimization, and re-sampling was per-
formed using B-spline interpolation.

To perform the image subtraction, the baseline images were warped
to the follow-up space. The same 3D multi-stage multi-resolution re-
gistration approach described above was considered. The affine trans-
formation was computed between both PD-w images and then applied
to the other three modalities (using B-spline interpolation) to compute
the subtraction. To avoid interpolation more than once, baseline T1-w
and FLAIR were re-sampled using the combined affine transformation.

Since multi-channel data increases the probability of lesion activity

1 http://www.xinapse.com/home.php
2 https://www.nitrc.org/projects/robex
3 https://itk.org/Doxygen/html/classitk_1_1N4BiasFieldCorrectionImageFilter.html
4 https://itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.html
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detection (Bosc et al., 2003), for each modality (T1-w, T2-w, PD-w, and
FLAIR), the follow-up and baseline images were subtracted after the
affine registration. As stated in Diez et al. (2014), the rigid and affine
registration methods are not sensible to the presence of lesions, and
only deformation models can show the effect of new lesions as a dis-
tortion around those regions. DF can be obtained using a non-rigid
registration technique. In this study, we applied the multi-resolution
Demons registration approach from ITK v.4 initialized with the pre-
vious affine transformations (Thirion, 1998). This algorithm can pro-
duce large localized deformations and has been widely used in brain
MR imaging.

To be able to incorporate the DF information as features, we com-
puted the following three DF operators at each voxel (Cabezas et al.,
2016):

• Jacobian (Rey et al., 2002): represents the local volume variation.
This operator is widely used in continuum mechanics (Bro-Nielsen,
1996).

• Divergence (Thirion and Calmon, 1999): represents the volume
density of the outward flux of a vector field from an indefinitely
small volume around a given point.

• NormDiv: corresponds to the multiplication of the divergence and
the norm of the DF. As successfully tested by Thirion and Calmon
(1999), this operator helps in detecting active lesions.

Fig. 2 shows slices from the baseline, follow-up, and subtraction
image, and the DF operators (Jacobian, Divergence, and NormDiv) with
the Ground Truth (GT) overlaid in red.

2.2.3. Deformation-subtraction based logistic regression model
Our model uses a voxel-level logistic regression (LR) classifier

(Friedman et al., 2001) to predict the lesion probability of each voxel
using the baseline and follow-up intensities, subtraction values, and the
DF operators on T1-w, T2-w, PD-w, and FLAIR images. To train the
model, we performed a voxel selection step where candidate voxels that
were likely to be part of a new lesion were selected to decrease the
number of training samples. As new lesions appear hyperintense in the
T2-w subtraction images, we only trained the logistic regression model
with those candidate voxels. Some regions may exhibit high intensity in
the subtraction images as a result of noise, inhomogeneity, registration
errors, or small anatomic differences. To avoid that, the T2-w sub-
traction images were smoothed with a Gaussian kernel and only voxels
with a value larger than the T2-w subtraction intensities mean were
included as candidates. As the aim of the study was to detect new T2-w
lesions inside WM, a WM mask was used to limit the region of interest.
This WM mask was computed using an automated atlas-based multi-
channel tissue segmentation algorithm (Cabezas et al., 2014) on both
the baseline and follow-up images before registration. This algorithm
uses an expectation maximization algorithm to maximize the log-like-
lihood between the real MRI data and a Gaussian mixture model of four

Fig. 2. Relationship among baseline, follow-up, Ground Truth (GT), subtraction image and the DF operators (Jacobian, Divergence, and NormDiv) of the four modalities. From top to
bottom, each row represents T1-w, T2-w, PD-w, and FLAIR respectively. All the images are both from the same patient and slice. The Ground Truth (GT) is overlaid in red in the third
column.
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classes: pure tissue classes (WM, gray matter (GM), and cerebrospinal
fluid (CSF)) and partial volume class (GM/CSF). For pure tissue classes,
prior probabilities are provided by an atlas, while for the partial volume
class, a weighted one for CSF and GM is used. Afterwards, lesions are
segmented by applying a threshold on the FLAIR image. For each time
point, we combined the WM mask and the lesion mask to obtain both a
baseline and a follow-up mask. Even though new and enlarging lesions
may be misclassified in the follow-up WM mask, these voxels should
appear as normal WM in the baseline image. After registering the
baseline WM mask to the follow-up space, the final WM mask was
obtained as the union of the baseline and follow-up WM masks in the
follow-up space. After the voxel selection step, a logistic regression
model was fitted over these candidate voxels.

2.2.4. Postprocessing
After training the model, we created 3D maps of the estimated le-

sion probability at each voxel. As done by Sweeney et al. (2013), we
smoothed these maps with Gaussian kernels mainly to decrease noise
and to remove some small false positive regions. The smoothed prob-
abilistic maps were thresholded to get the final binary lesion segmen-
tation. The threshold was empirically selected as the best trade-off
between sensitivity (i.e. true positive fraction, TPF) and specificity (i.e.
1−FPF, being FPF being the false positive fraction). Specifically, the
value maximizing the F-score formula,

=
−

+ −

TPF FPF
TPF FPF

F‐score 2 *(1 )
(1 )

was chosen as threshold. A more detailed description is provided in the
results section, showing how this parameter is determined and the ef-
fect of using different probability thresholds. Moreover, all lesions with
size lower than three voxels were removed from the generated masks.

2.3. Evaluation

We evaluated the proposed framework in two scenarios. Firstly, we
analyzed the detection accuracy using a leave-one-out cross-validation
strategy on the 36 patients with new MS lesions. This strategy was
applied per patient on our 36 images from the MS patient dataset. From
all these images, the candidate voxels were around four million, in-
cluding about 1300013,000 voxels classified as (ground truth) lesions
while the rest were negative samples. The classifier was trained using
35 patients and tested with the remaining one. This process was re-
peated until all patient images were used as a test image. Secondly, we
analyzed the specificity of the method with the 24 patients with no new
T2-w lesions. To do this, we performed a new training using all the 36
images with new MS lesions. We compared the obtained results with
those on recent state-of-the-art approaches (Cabezas et al., 2016;
Ganiler et al., 2014; Sweeney et al., 2013).

Standard measures such as the true positive fraction (TPF), the false
positive fraction (FPF), and the Dice similarity coefficient (DSC), which
were computed as follows, were used for the evaluation:

=

+

TPF TP
TP FN

=

+

FPF FP
FP TP

=
×

× + +

DSC TP
TP FP FN

2
2

where TP, FN, and FP are the number of true positives, false negatives,
and false positives, respectively. In terms of detection, a lesion was
considered as a TP if there was at least one overlapping voxel. In terms
of segmentation, only the voxel-wise DSC was computed.

To depict the impact of both the deformation field operators and the
baseline intensities features in the detection and segmentation of new
T2-w lesions, we analyzed the following models:

• LR-NDFNB (Logistic Regression without DF without Baseline): This
model uses the four image intensities (T1-w, T2-w, PD-w, and
FLAIR) in only follow-up images and the subtraction values per
voxel. This model is used for comparison with LR-NDF to highlight
the impact of the baseline intensities in the absence of DF operators.
This model corresponds to our implementation of the approach
proposed by Sweeney et al. (2013).

• LR-NDF (Logistic Regression without DF): This model incorporates
the four image intensities (T1-w, T2-w, PD-w, and FLAIR) in both
baseline and follow-up and the subtraction values per voxel but DF
are not used. This model is used for comparison with LR-DF to
highlight the impact of the DF operators.

• LR-DFNB (Logistic Regression with DF without Baseline): This
model uses the four image intensities (T1-w, T2-w, PD-w, and
FLAIR) in only the follow-up images, the subtraction values, and the
DF operators (Jacobian, Divergence, and NormDiv) per voxel. This
model is used for comparison with LR-DF to highlight the impact of
the baseline intensities.

• LR-DF (Logistic Regression with DF): This is our main model which
uses the four image intensities (T1-w, T2-w, PD-w, and FLAIR) in
both baseline and follow-up, the subtraction values, and the DF
operators (Jacobian, Divergence, and NormDiv) per voxel.

Moreover, similarly to the works of Ganiler et al. (2014) and
Cabezas et al. (2016), we studied the performance of the model ac-
cording to different lesion sizes. We analyzed the same categories,
where lesions of [3−10] voxels were considered small, lesions of
[11−50] voxels were considered medium, and lesions of 50+ voxels
were considered large. This division is useful to investigate the effect of
the deformation fields on different lesion sizes.

2.4. Statistical analysis

The statistical significance of the performance between proposed
methods was computed by running a series of permutation tests be-
tween the DSC (Segmentation) and DSC (Detection) obtained by each
method (Menke and Martinez, 2004; Valverde et al., 2017). Permuta-
tion tests select random subsets of independent subjects of the dataset,
and for each pair of methods, perform all possible permutations of their
values in the corresponding subset, counting the number of times that
the differences of one method are significant with respect to the other
with (p≤ 0.05). After repeating this process over a number of iterations
S, the mean and standard deviation (μ0, σ0) of the fraction of times
when each method produced significant p-values is calculated over all
the iterations. With this approach, methods with higher means achieve
a higher significance of their reported values. The methods were then
ranked into three different levels according to the difference between
the mean score of the best method μ0± σ0 and the distance with respect
to the mean scores of the rest of the methods. Hence, Rank 1 contained
methods with mean scores of (μ0−σ0, μ0], Rank 2 contained those with
mean scores of (μ0−2σ0, μ0−σ0] and Rank 3 those in the interval
(μ0−3σ0, μ0−2σ0]. For all the tests, we set the number of comparisons
between each pair of methods to S=1000.

Additionally, the Pearson’s correlation coefficient was also used to
analyze the linear relationship between manual annotations and the
automatic detections obtained with our approach.

3. Results

Table 1 summarizes the new T2-w lesion detection and segmenta-
tion mean results for our full model (LR-DF), and the three variants with
less features (LR-DFNB, LR-NDF, LR-NDFNB). We also included two
state-of-the-art approaches for comparison (Cabezas et al., 2016;
Ganiler et al., 2014). Notice that our full model outperformed all the
other approaches and had the best values for all the evaluation mea-
sures. Fig. 3 (a) and (b) showshows visually the result of the
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permutation tests for the segmentation and the detection DSC values,
respectively. Permutation tests permit to compute the exact P-value,
and are not limited by any assumptions on statistical distributions or
minimum number of subjects. Essentially, each method is compared
against all others using randomly selected subsets of data using statis-
tical difference-of-mean test that do not require data to follow the
normality condition. Notice that data variability is still present in the
fact that mean values obtained by all methods are not too high (best
methods obtain μDetection=0.50 and μSegmentation=0.67). It is, however,
possible to see how some methods do better than otherothers in pair-
wise comparisons that bear statistical significance. Notice that the
methods in rank 1 included only approaches that used DF-based fea-
tures, whereas non-DF based approaches were placed in ranks 2 and 3.
Because ranking between the approaches differed, we can conclude that
there is a significant difference in performance when including DFs.

Analyzing the results per patient, we had 12 patients with a TPF of
100% and FPF of 0%, and five patients with a TPF of 100% and less
than a 33.33% of FPF. The worst cases we had were three patients with
a TPF lower than 30%. Those patients had mainly small lesions
([3−10] voxels) that the pipeline failed to detect. Fig. 4 shows a dis-
persion plot summarizing these results where, per each case, the
number of lesions in the ground-truth is compared with the number of
automatically detected lesions. A significant Pearson’s correlation
(R=0.85; Pvalue<0.001; confidence band=95%) was found between
annotations based on visual detection (GT) and our approach (only LR-
DF) for detecting new T2-w lesions. Regarding the number of the data
points used, all the MS patients with lesion progression were used for
this correlation (36 data points - 36 patients), but different patients had
the same number of GT and automatically detected lesions. Therefore,
several points are overlapping in the plot. For example, there are 5, 6,
and 4 cases with (2 GT lesions, 2 detected lesions), (1 GT lesion, 1
detected lesion), and (3 GT lesions, 2 detected lesions), respectively.
Notice that there are numerous cases in which the number of new

lesions per patient is actually very small.
Table 2 summarizes the performance of our pipeline according to

the different lesion sizes described in Section 2.3. The LR-DF model had
a better performance than LR-NDFNB and LR-NDF in all lesion size
categories, although the results with small lesions had a worse perfor-
mance when compared with larger lesions. Moreover, LR-DF had a
better performance than Cabezas et al. (2016) for medium and large
lesion size categories.

The selection of the Gaussian smoothing σ and the threshold value
in the postprocessing step was done by maximizing the F-score of TPF
and FPF using a leave-one-out cross validation, obtaining the results
shown in Fig. 5. The leave-one-out cross validation was applied per
patient on our 36 patients with MS dataset. Notice that increasing σ
requires decreasing the threshold value to obtain better results. The
highest F-score value was obtained with σ=0.75 and threshold = 0.3.
Table 3 shows how TPF, FPF, DSC (Detection), DSC (Segmentation),
and F-score were varying based on the threshold on the probability
maps smoothed with σ=0.75. A higher TPF could be obtained by de-
creasing the threshold but obtaining a higher FPF. The threshold 0.3
was selected as the best trade-off between TPF and FPF, computed using
the F-score value (Fig. 5). Notice that this thresholding analysis should
be also done when using different datasets acquired with different MRI
scanners and image protocols to optimize the obtained results. To
evaluate the effect of postprocessing, we tested also our approach
without it, i.e. no smoothing was applied and the class with the highest
probability was selected (argmax). The results showed better TPF va-
lues but with more FPF, especially in those cases with smaller lesions.

Finally, we evaluated the 24 patients with no new T2-w lesions,
after training the LR-DF model with all the 36 patients with new T2-w
lesions. This allows to clearly study the specificity of our pipeline. Only
5 FP detections were found (in 4 cases) with a total size of 40 voxels.

Fig. 6 shows a visual example of the performance of our pipeline,
where each column corresponds to the baseline T2-w image, follow-up
T2-w image, the visually annotated lesions, and the results obtained by
LR-DF, LR-NDF, and LR-NDFNB approaches, respectively.

4. Discussion

The proposed pipeline is fully automated, simple and adjustable to
the application in terms of sensitivity and specificity. To improve the
classifier accuracy, we added DF operators to the approach of Sweeney
et al. (2013), as suggested by Cabezas et al. (2016). The DF helps to
reduce the detection errors caused by local inhomogeneities and small
changes that affect the accuracy of the subtraction pipelines.

As lesions are clusters of voxels and our approach is a voxel-wise
pipeline, spatial information between voxels should also be included in
our model. Although the model was not trained with standard spatial

Table 1
Lesion detection results: Comparison between the different models evaluated. Results for
mean detection TPF, FPF DSCd and mean segmentation DSCs. Best values are depicted in
bold.

Method TPF FPF DSCd DSCs

LR-NDFNB 48.69±38.11 16.78± 28.91 0.54± 0.37 0.38± 0.29
LR-NDF 48.46±38.44 13.90± 28.25 0.54± 0.37 0.39± 0.30
LR-DFNB 69.88±31.71 11.94± 19.34 0.74± 0.28 0.52± 0.24
LR-DF 74.30± 28.70 11.86± 18.40 0.77± 0.23 0.56± 0.23
Ganiler et al.

(2014)
51.62 35.87 0.46 0.37

Cabezas et al.
(2016)

70.93 17.80 0.68 0.52

Fig. 3. Permutation test results for the evaluated methods. Final ranks based on (a) the DSC (Segmentation) and (b) the DSC (Detection).
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features or textures, the neighboring information between voxels was
incorporated when smoothing the generated probability maps during
the postprocessing step. Moreover, a registration technique that im-
plements a free-form deformation incorporates this local information
into the resulting DF and provides better insight of changes occurring
due to development of new or enlarging lesions. And, since they are
computed using the gradient image of the DF, the DF operators encode
spatial relationships too.

In the postprocessing step, we selected the parameters (Gaussian
smoothing σ and threshold value) using the maximum F-score value but
the pipeline can also be used without parameters tuning by not
smoothing the probability maps and selecting the class with the highest
probability (using argmax). In that case, the pipeline had an increase in
TPF (83.20%) but also in FPF (23.24%) with the same DSC in seg-
mentation and detection compared with our best configuration using
postprocessing, mostly due to FPs eliminated by the Gaussian
smoothing step in the latter. Since the voxel probabilities are decreased
after smoothing, an increase in the smoothing σ value requires a de-
crease in the threshold value. There is a trade-off between the number
of false positives and true positives. The smoothing also eliminates
small regions that may be FPs or TPs. For instance, this step had a high
impact in reducing the number of false positives in the 24 patients with
no new T2-w lesions.

Our results showed that the combination of DFs and supervised
classification may help to increase the performance when detecting new
T2-w lesions. To analyze the effect of DFs, we trained a logistic re-
gression classifier with different features. We trained the model with

Fig. 4. Correlation between the number of ground
truth lesions and the number of automatically de-
tected ones using the proposed LR-DF model
(Pearson’s coefficient R=0.85, Pvalue<0.001). All the
MS patients with lesion progression were used for this
correlation (36 data points - 36 patients). Notice that
different patients have the same combination of
number of GT lesions and LR-DF detections.
Therefore, several points are overlapping in the plot.

Table 2
Analysis of the classifier performance for different sizes. Results for mean detection TPF,
FPF DSCd and mean segmentation DSCs.

Method TPF FPF DSCd DSCs

Small lesions (3–10)
LR-NDFNB 11.76 30.0 0.08 0.08
LR-NDF 11.76 25.0 0.12 0.10
LR-DFNB 28.13 25.56 0.25 0.21
LR-DF 34.40 24.09 0.26 0.24
Medium lesions (11–50)
LR-NDFNB 40.84 9.16 0.45 0.29
LR-NDF 40.83 9.21 0.46 0.30
LR-DFNB 61.52 12.65 0.65 0.39
LR-DF 65.70 12.50 0.67 0.39
Large lesions (50+)
LR-NDFNB 77.80 11.76 0.81 0.49
LR-NDF 77.80 11.11 0.81 0.50
LR-DFNB 91.24 6.25 0.93 0.57
LR-DF 91.30 5.88 0.93 0.59

Fig. 5. Parameter selection. The F-score values of TPF and FPF using leave-one-out cross
validation. The maximum F-score was obtained with σ=0.75 and threshold=0.3.

Table 3
The effect of varying probability thresholds after smoothing with σ=0.75: Results for
mean detection TPF, FPF, DSCd, mean segmentation DSCs, and F-Score. Best values based
on F-Score are depicted in bold.

Threshold TPF FPF DSCd DSCs F-score

0.0 99.26 99.01 0.05 0.007 0.02
0.1 86.84 43.40 0.64 0.49 0.685
0.2 82.53 22.52 0.77 0.57 0.799
0.3 74.30 11.86 0.77 0.56 0.806
0.4 57.83 6.32 0.65 0.43 0.715
0.5 46.16 6.15 0.54 0.30 0.619
0.6 31.80 6.17 0.40 0.18 0.475
0.7 17.53 3.40 0.24 0.10 0.296
0.8 9.14 0.0 0.12 0.05 0.168
0.9 7.78 0.0 0.09 0.02 0.144
1.0 0.0 0.0 0.0 0.0 0.0
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different combinations of the baseline and follow-up intensities, the
subtraction values and DF operators. Using only features from in-
tensities within a lesion (baseline + follow-up) or subtraction could
trigger the detection of new lesions. As mentioned in Table 1, the
models which do not include DF features (LR-NDFNB and LR-NDF)
could detect new lesions with TPF of 48.69% and 48.46% and FPF of
16.78% and 13.90% respectively. As in previous works (Cabezas et al.,
2016), our results show that the addition of DFs helps to significantly
increase the detection of new T2-w lesions while maintaining the
number of false positives low. Our model is capable of improving the
results of other unsupervised methods due to the use of a supervised
classification model instead of an unsupervised rule-base approach
(Cabezas et al., 2016; Ganiler et al., 2014). Furthermore, these im-
proved results are backed by a strong correlation between the number
of automatically detected lesions and the number of visually detected
ones. This suggests that our automatic segmentation may help the
radiologist to estimate the number of new lesions before annotation.

Given the difficulty to obtain MRI datasets with expert annotations,
our evaluation dataset was composed of a single database of 60 cases
(36 MS and 24 non-MS) obtained with the same scanner and protocol.
This limits the generalizability of the here presented performance re-
sults. Likely, the performance would differ with different input data due
to MR scanner and sequence differences which require new parameter
adjustments to optimize the performance on new datasets. Although the
available data comprised MS patients with different lesion sizes, the
volume of most of the new/enlarging T2-w lesions was relatively low.
This can bias the results obtained by our approach, since we noticed
that for small lesions, the pipeline had lower accuracy than for larger
lesions. As the lesion size increases, the DFs are able to better represent
these volume changes. In this regard, one could study the use of dif-
ferent strategies for each lesion size and combine the different outputs
(i.e. probability maps) to improve the overall obtained results.

Our pipeline was only tested with the kind of images mentioned in
the data section but this does not mean that the approach is limited to
them. Further testing with images with different resolution (2D and 3D)
and from different scanners and image protocols should be performed.
Previous subtraction works such as Ganiler et al. (2014) tested their
subtraction pipeline with other scanners, image resolutions 2D for in-
stance, and 1.5T and 3T and worked well. Although, one should tune
properly the threshold in the postprocessing section for the best per-
formance or use the pipeline without the postprocessing step (argmax).

In conclusion, the obtained results indicate that the combination of
DFs and supervised classification increases the accuracy when detecting
new T2-w lesions. Given the sensitiviy and limited number of false
positives, we strongly believe that the proposed method may be used in
clinical studies in order to monitor the progression of the disease. The
proposed method is currently available for downloading at our research
website5.
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