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Metformin reverses prostate cancer resistance
to enzalutamide by targeting TGF-β1/STAT3
axis-regulated EMT

Qiuli Liu1, Dali Tong1, Gaolei Liu1, Jing Xu1, Khang Do2, Kyla Geary2, Dianzheng Zhang2, Jun Zhang1, Yao Zhang1, Yaoming Li1,
Gang Bi1, Weihua Lan*,1 and Jun Jiang*,1

Although the newly developed second-generation anti-androgen drug enzalutamide can repress prostate cancer progression
significantly, it only extends the survival of prostate cancer patients by 4–6 months mainly due to the occurrence of enzalutamide
resistance. Most of the previous studies on AR antagonist resistance have been focused on AR signaling. Therefore, the non-AR
pathways on enzalutamide resistance remain largely unknown. By using C4-2, CWR22Rv1 and LNCaP cell lines, as well as mice
bearing CWR22Rv1 xenografts treated with either enzalutamide or metformin alone or in combination, we demonstrated that
metformin is capable of reversing enzalutamide resistance and restores sensitivity of CWR22Rv1 xenografts to enzalutamide. We
showed that metformin alleviated resistance to enzalutamide by inhibiting EMT. Furthermore, based on the effect of metformin on
the activation of STAT3 and expression of TGF-β1, we propose that metformin exerts its effects by targeting the TGF-β1/STAT3 axis.
These findings suggest that combination of metformin with enzalutamide could be a more efficacious therapeutic strategy for the
treatment of castration-resistant prostate cancer.
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Prostate cancer is the most commonly diagnosed cancer in
men in thewestern world which causes over 80 deaths per day
in the United States of American.1 Androgen-deprivation
therapy (ADT) has been used as a standard treatment for
advanced prostate cancer for more than six decades.2

Although the recently developed ADT drugs abiraterone and
enzalutamide slow down tumor growth effectively,3–5 recur-
rence with metastases after ADTare still the major concern in
the treatment of castration-resistant prostate cancer (CRPC).6

Lin et al.7 found that bicalutamide and enzalutamide can even
induce macrophage migration and tumor cell invasion in
orthotopic tumor models of CRPC. Mechanistically, enzaluta-
mide exerts its anti-prostate cancer effects by interrupting the
interaction between AR and DHT, blocking AR nuclear
translocation, and preventing recruitment of AR to androgen
responsive elements.8 Nevertheless, enzalutamide is only
capable of extending survival of CRPC patients by 4–6months
partially due to the development of enzalutamide resistance9

but the underlying mechanisms have not been well defined.
Epithelial mesenchymal transition (EMT) was initially

identified as a developmental process from an epithelial
phenotype to an invasive mesenchymal phenotype. Many
transcriptional factors including Twist, Snail, Slug and Zeb1/2
are involved in this process.10 EMTalso plays essential roles in
cancer cell invasion and metastasis.10–14 In prostate cancer,
elevated levels of mesenchymal biomarkers and reduced
epithelial differentiation markers are highly correlated with
invasion, metastasis and resistance to ADT.15–18 It has also

been proposed that ADT itself may exert a causal effect in
EMT19 and subsequently lead to resistance to enzalutamide
treatment.20,21

Metformin possesses anti-tumor effects to many cancers,
including melanoma,22 colon cancer,23 ovarian cancer,24

bladder cancer,25 prostate cancer.26 Different mechanisms
have been proposed including inhibiting proliferation, enhan-
cing apoptosis, repressing EMT, targeting cancer stem cells
and inhibiting autophagy. Results from a multicenter phase 2
clinical trial showed that metformin could yield objective
PSA responses and induce disease stabilization for
chemotherapy-naive CRPC.27 We found that combinatorial
treatment of metformin and bicalutamide can additively
repress the growth of prostate cancer.26 In this research,
we demonstrated that metformin is capable of inhibiting
enzalutamide-induced EMT in prostate cancer cells via
repressing TGF-β1/STAT3 axis.

Results

Metformin enhances enzalutamide’s inhibitory effect on
prostate cancer cell growth. To investigate whether met-
formin can enhance the anti-tumor effect of enzalutamide
on prostate cancer, three prostate cancer cells, C4-2,
CWR22Rv1 and LNCaP were treated with either enzaluta-
mide (20 μM) or metformin (5 mM) alone or in combination of
both. As shown in Figures 1a–c, comparing to the non-
treatment control, the growth rates of all three cancer cell
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lines were inhibited when they were treated with either agent
alone. However, the inhibitive effect is more dramatic when
they were combined. In addition, we tested the additive/

synergistic effects between enzalutamide and metformin
using colony formation assays. Again, colony formation was
significantly inhibited for both C4-2 and LNCaP cells when

Figure 1 Combinatorial effects of enzalutamide and metformin on prostate cancer growth. (a–c) C4-2, CWR22Rv1 and LNCaP cells were seeded in 96-well plates with
0.5 × 105 cells per well in growth media with or without enzalutamide (20 μM) and metformin (5 mM) and cultured for 48 h. Cell viabilities were estimated by CCK-8. (d) Those
three cell lines were seeded in six-well plates with 1000 cells per well and treated as indicated for 14 days. Cells were fixed with methanol, stained with crystal violet, and the
numbers of colonies were counted. (e) Mice bearing CWR22Rv1 xenografts were treated with vehicle control, enzalutamide, metformin or their combination for 3 weeks; the
tumors were collected and weighed. The data represent means±S.D. *Po0.05
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they were treated with either reagent alone, and no colony
was detectable when they were treated with the combination
of both reagents (Figure 1d). It is well established that
CWR22Rv1 cells are resistant to enzalutamide treatment
mainly due to the increased expression of the AR-V7, an AR
variant constitutively active even in the absence of andro-
gens. To test whether metformin can reverse the resistance of
CW22Rv1 cells to enzalutamide, mice bearing xenografts
derived from CWR22Rv1 cells were treated with either
vehicle, enzalutamide and metformin alone or combination
of enzalutamide and metformin for 3 weeks as described in
methods. As shown in Figure 1e, the sizes and weights of the
tumors were comparable between the enzalutamide-treated
and those in the vehicle group and the mouse body weights
were comparable in all the four groups. However, metformin
alone decreased the sizes and weights of the tumors derived
from the CW22Rv1 cells. Surprisingly, the combination of
enzalutamide and metformin showed more dramatic inhibitive
effect than metformin alone although enzalutamide itself
had no effect on the tumors formed from these cells. An
alternative explanation is that metformin may be able to
reverse the resistance of CWR22Rv1 xenografts to
enzalutamide.

Effect of metformin on enzalutamide-mediated cancer
cell invasion and migration. Multiple lines of evidence
suggest that enzalutamide can promote cell invasion28 and
metastasis.29 To determine whether metformin can antag-
onize this effect, we measured the invasion and migration of
different prostate cancer cells using transwell assays with or
without a Matrigel-coated membrane. Enzalutamide treat-
ment alone indeed enhanced both invasion and migration in
all three cell lines tested (Figures 2a and b). Similar to that
reported previously30 that metformin is capable of inhibiting
invasion and migration of PC-3 and CWR22Rv1 cells, we
found that metformin inhibited the invasion and migration of
both LNCaP and C4-2 cells (Figures 2a and b). More
importantly, metformin is capable of inhibiting enzalutamide-
induced invasion and migration of all three prostate cancer
cell lines (Figures 2a and b).

Effect of metformin on enzalutamide-induced EMT. It has
been reported that enzalutamide can promote prostate
cancer metastasis via the TGF-β1/smad3/MMP9 axis.28

Since this axis plays important role in EMT, we decided to
test whether enzalutamide can induce EMT and whether
metformin can counteract enzalutamide-induced EMT. Three
prostate cancer cells C4-2, CWR22Rv1, and LNCaP were
treated with enzalutamide or metformin alone, or combination
of both for 48 h followed by western blot assays to estimate
the levels of factors involved in EMT. Figures 3a–c showed
that enzalutamide treatment alone upregulated the levels
of the mesenchymal biomarkers (N-cadherin, Vimentin
and TWIST) and downregulated the epithelial markers
(E-cadherin), suggesting enzalutamide is capable of promot-
ing EMT. On the other hand, metformin is capable of
counteracting enzalutamide-mediated up- and downregulat-
ing of the factors involved in EMT (Figures 3a–c). To quantify
the expression of EMT-associated proteins, we used
‘Image J’ to analyze bands in western blots, the results of

statistical analysis were showed in Supplementary Figure S1.
Furthermore, these effects have been further substantiated
by the IHC results in the CWR22Rv1-derived xenografts
(Figure 3d).

Metformin represses enzalutamide-induced STAT3 acti-
vation and TGF-β1 expression. Since TGF-β1 plays an
important role in the enzalutamide-induced invasion and
metastasis28 and metformin is capable of inhibiting TGF-β1
by activating AMPK in both breast cancer patients and
mouse model,31 we decided to determine if metformin
counteracts enzalutamide-induced EMT in prostate cancer
by downregulating TGF-β1. Western blot assays showed
that enzalutamide upregulated the levels TGF-β1 in all
three tested prostate cancer cell lines (Figures 4a–c) and
metformin is able to counteract enzalutamide upregulated
TGF-β1. These findings are consistent with the levels of
TGF-β1 in culture media estimated by ELISA assays (Figures
4d–f). Finally, results from IHC staining of the xenografts
derived from CWR22v1 cells (Figure 5a) further substan-
tiated above-mentioned findings. Since STAT3 not only
regulates a broad range of genes32 involved in EMT in
different cancers33 but activated STAT3 also has been shown
to confer enzalutamide resistance,7,34 we then examined the
effect of metformin on STAT3 activation. First, enzalutamide is
capable of activating STAT3 in all three prostate cancer cell
lines evidenced by the elevated levels of phosphorylated
STAT3 (pSTAT3) without affecting the total levels of
STAT3 (Figures 4a–c). More importantly, metformin is able
to counteract enzalutamide-mediated STAT3 activation
(Figures 4a–c). These findings were further substantiated
by IHC staining of the CW22RV1 xenografts (Figure 5b). To
further substantiate the inhibitory effect of metformin on
enzalutamide-induced TGF-β1/STAT3 axis-regulated EMT,
we used different concentrations of metformin (1, 5, 10 and
20 mM) combined with enzalutamide (20 μM) to treat the
three cell lines. We found that metformin was indeed capable
of inhibiting enzalutamide-induced EMT via TGF-β1/STAT3
axis in a dose dependent manner (Supplementary
Figure S2). Altogether, these results indicate that metformin
can reverse enzalutamide resistance by counteracting
enzalutamide-mediated STAT3 activation, subsequent upre-
gulation of TGF-β1 and ultimate prostate cancer invasion and
metastasis (Figure 6), suggesting that combination of
metformin and enzalutamide could be more efficient in
treating castration-resistant prostate cancer.

Discussion

As a second-generation AR antagonist, enzalutamide has
been widely used in treatment of advanced prostate cancer
although the development of resistance is inevitable.35 In this
study, we showed that EMT plays an important role in the
development of enzalutamide resistance and metformin is
capable of reversing enzalutamide-induced EMT. Mechan-
istically, we demonstrated that metformin exerts its effect by
inhibiting TGF-β1 expression and STAT3 activation. These
findings were highly consistent in our prostate cancer cell
models in vitro and CWR22Rv1 xenograft micemodels in vivo,
suggesting that combination of metformin and enzalutamide
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would be more efficient in treating patients with advanced
prostate cancer, especially the ones with enzalutamide-
resistant cancer.
It is well established that alteration of TGF-β1 signaling and

aberrant activation of STAT3 are closely correlated with the
progression of various types of tumors, and an active STAT3
signaling pathway is essential for TGF-β-induced EMT.36–38

By directly binding to the promoter region of Snail, STAT3
serves as a regulatory transcriptional factor in regulation of the
expression of Snail and subsequent induction of EMT.39 We

have reported that activation of STAT3 is associated with
EMT30 and CSCs repopulations.40 In this study, we found that
metformin is capable of inhibiting enzalutamide-induced
TGF-β1 expression and STAT3 activation. Based on that (1)
elevated levels of TGF-β1 in enzalutamide-treated prostate
cancers occurred concurrently with activation of STAT3 and
enhanced EMT; and (2) metformin is capable of down-
regulating TGF-β1, inhibiting STAT3 activation and more
importantly the enzalutamide-induced EMT, we speculate that
one of the mechanisms in metformin-mediated reversal of

Figure 2 Metformin inhibits enzalutamide-induced cell invasion and migration. (a and b) C4-2, CWR22Rv1 and LNCaP cells were seeded in 24-well transwell chambers with
or without Matrigel in growth media with or without enzalutamide (20 μM) and metformin (5 mM) and cultured for 48 h. Cell invasion (a) and migration (b) were estimated.
Quantifications were shown on right. The data represent means± S.D. *Po0.05
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enzalutamide resistance is by targeting EMT via TGF-β1/
STAT3 axis. It has also been reported that metformin is
capable of inhibiting the interaction between TGF-β1 and its
receptor as well as type II TGF-β1 receptor dimerization.41

However, whether metformin’s effect on the interaction
between TGF-β1 and its receptor is unclear and worth of
further examination.
In addition, both ligand binding domain (LBD) mutation of

AR and formation of constitutively active AR variants,
especially AR-V742,43 play crucial roles in the develop-
ment of enzalutamide resistance. Chengfei et al.44 showed
that chronical treatment of prostate cancer patient with
enzalutamide upregulated the expression of AR variants.
Antonarakis et al.45 found that presence of AR-V7 in CTCs
prior treatment conferred the cancer cells’ resistance to
both enzalutamide and abiraterone. In addition, one of
our previous studies26 has demonstrated that metformin
is capable of downregulating ARV7. Therefore, we do

not exclude the possibility that metformin counteracts
enzalutamide-induced resistance by targeting either the
mutant full-length AR or AR variants. Since autophagy has
been considered as a novel mechanism for CRPC cells to
evade enzalutamide treatment46 and metformin can inhibit
autophagy in prostate cancer cells via AMPK/mTOR signaling
pathway, it is worthy to explore the effect of metformin along
this axis.
In summary, we demonstrated that metformin is capable of

improving the efficacy of enzalutamide treatment by inhibiting
enzalutamide-induced EMT. This finding provides the ratio-
nale for using combination of enzalutamide and metformin as
a more efficient therapeutic strategy in the treatment of
advanced prostate cancer.

Materials and Methods
Reagents and cell culture. Human prostate cancer cell lines (LNCaP,
C4-2 and CWR22Rv1) were obtained from Cell Bank of Shanghai Institutes for

Figure 3 Metformin reverses enzalutamide-induced EMT. (a–c) C4-2, CWR22Rv1 and LNCaP cells was seeded in six-well plates and exposed to enzalutamide (20 μM) or/
and metformin (5 mM) for 48 h. Cell lysates were assayed by western blot with antibodies against E-cadherin, N-cadherin, Vimentin and Twist. (d) Tumors collected from 22RV1
cell xenograft model of nude mice treated as indicated were conducted IHC staining with antibodies against E-cadherin, N-cadherin, vimentin and twist. Magnifications: × 400
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biological Sciences (Chinese Academy of Sciences), and cultured in RPMI 1640
supplemented with 10% FBS (Gibco) at 37 °C with 5% CO2. Enzalutamide was
kindly provided by Dr. Lei and metformin was purchased from Sigma.

Cell viability assay. C4-2, CWR22Rv1 and LNCaP cells were seeded into 96-
well plates and after grown to 60–75% confluence, were treated with vehicle control,
enzalutamide, metformin, and combination in RPMI 1640 with 10% FBS for 48 h.

Figure 4 Metformin represses enzalutamide-induced TGF-β1 expression and STAT3 activation. (a–c) C4-2, CWR22Rv1 and LNCaP cells was seeded in 6-well plates
and treated as indicated for 48 h. The levels of TGF-β1, p-STAT3 and STAT3 were estimated by western blot assays. (d–f) and the culture media were collect for ELISA assays of
TGF-β1. The data represent means±S.D. *Po0.05

Figure 5 Tumor tissues from 22RV1 cell xenograft model of nude mice were stained for TGF-β1 (a) and p-STAT3 (b). Magnifications: × 400; higher magnification images,
bottom panels
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The viabilities of the cells were evaluated using the Cell Counting Kit-8 (CCK8)
assay. Briefly, at termination of exposure, cells were aspirated and rinsed with PBS
then treated with 10 μl/well CCK-8 for 2 h at 37 °C. Absorbance was measured at
450nm spectrophotometrically (Bio-Rad, Hercules, CA, USA).

Clonogenic assays. C4-2, CWR22Rv1 or LNCaP cells were seeded in 6-well
plates with 1000 cells per well and incubated at 37 °C in culture media containing
either enzalutamide (20 μM) and metformin (5 mM) alone or in combination for
14 days with the medium changed every 7 days. At the end of the experiment, cells
were fixed with methanol, stained with crystal violet and the numbers of colonies
were counted.

Transwell assays. To assess cell migration and invasion in vitro, we used
24-well transwell chambers with or without Matrigel. LNCaP, C4-2 and
CWR22Rv1 cells were trypsinized and seeded into the top chamber at a density
of 5 × 104 cells per well in 200 μl Dulbecco’s modified Eagle’s medium containing
metformin (5 mM), enzalutamide (20 μM) or combination of metformin (5 mM) and
enzalutamide (20 μM). The outer chambers contained 800 μl of medium (10% fetal
calf serum). After incubation at 37 °C for 48 h, cells attached to the upper surface of
the membrane were carefully removed with cotton swabs, whereas cells that
reached the underside of the chamber were fixed with 10% formalin and stained
with crystal violet for 3 min at room temperature and counted.

Western blotting. LNCaP, C4-2 and CWR22Rv1 cells were seeded in six-well
plates, 2 × 105cells/well, treated with corresponding reagents, including metformin
(5 mM), enzalutamide (20 μM) or combination of metformin (5 mM) and
enzalutamide (20 μM). Cell lysates were separated on SDS-PAGE followed by
western blotting assay as described previously26,47with the following primary
antibodies: E-cadherin (1:1000 Proteintech, Rosemont, IL, USA), N-cadherin (1:500
Proteintech), TWIST (1:500 Santa Cruz Biotechnology, Dallas, TX, USA), Vimentin
(1:1000 Proteintech), STAT3 (1:2000 Abcam, Cambridge, MA, USA), p-STAT3
(Tyr705) (1:2000 Cell Signaling, Danvers, MA, USA), TGF-β1 (1:200 Proteintech)
and β-actin(1:5000 Cell Signaling). Image J (NIH, USA) was used to quantify the
expression of proteins.

TGF-β1 ELISA assay. C4-2, CWR22Rv1 and LNCaP Cells were seeded in
six-well plates and treated with enzalutamide (20 μM), metformin (5 mM) or
combination for 24 h. The supernatant was collected and TGF-β1 released to the
culture media was measured using commercially available enzyme-linked
immunosorbent assay (ELISA) kits from Proteintech.

In vivo tumorigenesis assay. CWR22Rv1 cells (four million/50 μl) mixed
with matrigel (1:1) were injected subcutaneously into the flanks of 6–7 weeks
castrated male nude mice. Three weeks after injection, tumor-bearing mice (tumor
volumes were around 50–100 mm3) were randomized into four groups (with 4 mice
in each group) and treated with vehicle control (NC group), or enzalutamide (25 mg/
kg/day) (ENZ group), or metformin (300 mg/kg/day) (MET group), or combination of
enzalutamide (25 mg/kg/day) and metformin (300 mg/kg/day) (ENZ+MET group) for
3 weeks via esophageal gavaging. After killing the mice, the transplanted tumors
were weighed and then fixed in 10% formalin and paraffin embedded for
immunostaining examination.

Immunohistochemical staining. Transplanted tumor specimens were fixed
in 10% formaldehyde solution and embedded in paraffin, and sections were
mounted onto glass slides. The sections were then deparaffinized in xylene, re-
hydrated through ethanol, and heated for 30 min to enhance the heat-induced
antigen retrieval. To block non-specific reactions, slides were blocked in respective
serum at 4 1C overnight. Primary antibodies against E-cadherin (1:500 Proteintech),
N-cadherin (1:50 Proteintech), TWIST (1:50 Santa Cruz Biotechnology), Vimentin
(1:100 Proteintech), p-STAT3 (Tyr705) (1:100 Cell Signaling), TGF-β1 (1:50
Proteintech) were used. Tissue sections were incubated with each antibody
overnight at 4 1C, and then incubated with horseradish peroxidase-conjugated anti-
rabbit IgG secondary antibodies. Slides were subsequently treated with a
streptavidin-peroxidase reagent and incubated in phosphate-buffered salinediami-
nobenzidine and 1% hydrogen peroxide, followed by counterstaining with Mayer’s
haematoxylin.

Statistical analysis. GraphPad Prism 5.0 (San Diego, CA, USA) was used for
all statistical analyses. Data were presented as means±S.D. Differences between
individual groups were analyzed by one-way analysis of variance followed by the
LSD procedure for comparison of means, a P-value of o0.05 was considered
statistically significant.
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