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Beauty is subjective, and as such it, of course, cannot be defined in absolute
terms. But we all know or feel when something is beautiful to us personally.
And in such instances, methods of statistical physics and network science
can be used to quantify and to better understand what it is that evokes
that pleasant feeling, be it when reading a book or looking at a painting.
Indeed, recent large-scale explorations of digital data have lifted the veil
on many aspects of our artistic expressions that would remain forever
hidden in smaller samples. From the determination of complexity and
entropy of art paintings to the creation of the flavour network and the prin-
ciples of food pairing, fascinating research at the interface of art, physics and
network science abounds. We here review the existing literature, focusing in
particular on culinary, visual, musical and literary arts. We also touch upon
cultural history and culturomics, as well as on the connections between
physics and the social sciences in general. The review shows that the syner-
gies between these fields yield highly entertaining results that can often
be enjoyed by layman and experts alike. In addition to its wider appeal,
the reviewed research also has many applications, ranging from improved
recommendation to the detection of plagiarism.

1. Introduction

The past decade has seen data science emerge as the new buzzword in the
world of research. In 2012, Thomas H. Davenport and D. J. Patil at Harvard
Business Review called being a data scientist ‘the sexiest job of the 21st century’.
And although some argue that data science is not much more than classical stat-
istics with a touch of modern flair, the richness of digital data today, in terms of
volume, diversity and speed of change [1], requires synergies that transcend
disciplinary boundaries. Data science uses methods and techniques from math-
ematics, physics, computer science, information science and of course statistics
to make sense of the vast amounts of digital data that are daily added to com-
puter servers worldwide. Visualization wizardry is likewise key for the data
science to shine through, as opposed to rather one-dimensional and often
dull representations one often finds in hardcore statistics books.

And it is this deluge of digital data that is often the bridge between the
social and natural sciences, and, as we will review in what follows, also
between art and natural sciences, and between art and physics and network
science in particular. One may wonder whether classical physics has anything
to do with societal challenges and with modern human societies. Yet research
has shown that collectively we often behave no differently than particles in
matter [2]. Not exactly, of course, but close enough for methods of statistical
physics to be applied prolifically to subjects such as traffic [3], crime [4],
epidemics [5], vaccination [6], cooperation [7], climate inaction [8], as well as
antibiotic overuse [9] and moral behaviour [10]. The physics of social systems,
or social physics [11] or sociophysics [12]—regardless of the name tag—has had
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Figure 1. Collective human motion at heavy metal concerts. Left a mosh pit, akin to a disordered gas-like state. Right a circle pit, akin to an ordered vortex-like
state. Both mosh and circle pits can be reproduced in flocking simulations (bottom row), demonstrating that human collective behaviour is consistent with the
predictions of simplified models. For details concerning the mathematical model and the interpretation of insets in the bottom row with refer to the original work.

Reproduced from [25].

an excellent growth pattern over the past couple of decades,
spurred on by advances in statistical and computational
physics, the availability of data, and the coming of age of
related fields of research such as network science [13-16]
and computational social science [17].

Looking at this development historically, it is, in fact, safe
to claim that synergies between physical and social sciences
have been around for centuries. Surely not as precise and
useful as they are now, but nevertheless. Already in the
seventeenth century, Thomas Hobbes based his theory of
the state on the laws of motion, in particular, on the principle
of inertia, which was then deduced by his contemporary
Galileo Galilei. The ‘invisible hand’ proposed by Adam
Smith in the second half of the eighteenth century is also
eerily similar to the now famous notions of economic and
social self-organization [18,19], and at the time was deemed
to be as dependable in operation as the law of gravity [20].
And in the nineteenth century, the evolving physical theories
of matter as a vast collection of atoms and molecules inspired
a statistical view of societies and the predictable averages
therein. French political and economic theorist Henri de
Saint-Simon indeed proposed that society could be described
by laws similar to those in physics. Just as the random move-
ments of molecules in a gas yield the mathematically simple
gas laws, it was fathomed that so might societies be predict-
able in the collective. Thus, as Philip Ball argued aptly [21],
early sociology might have been constructed according to
an unspoken faith that there was a kind of “physics of society’
that exists but is as yet somewhat in the stars.

But it is one thing to investigate and mathematically
describe measurable phenomena in human societies, and a
whole other to try and do the same for art. There is definitively
something to art that will remain forever untouchable to the
coldness of measure and science. But in spite of knowing
full well we will likely never be able to understand it all,
many have tried and succeeded in bridging the divide, with
often deeply satisfying outcomes for both science and art.
An example of this line of research is computational aesthetics

[22], having roots already in the first half of the twentieth cen-
tury, when the American mathematician George D. Birkhoff
proposed the ratio between order and complexity as an aes-
thetic measure [23]. In fact, the key mission of computational
aesthetics is to develop scientific means to quantify beauty
and model human aesthetic perception [24], although it
influences also computer-generated art.

As something of a middle ground, one can come across
research on human collective behaviour that is due to art,
more specifically due to heavy metal music. Silverberg et al.
[25] studied the collective motion of humans at heavy metal
concerts, showing that such social gatherings generate extreme
behaviours, ranging from a disordered gas-like state to an
ordered vortex-like state, as shown in figure 1. The differences
between such so-called mosh and circle pits can be reproduced
in flocking simulations, thus confirming that even relatively
very simple mathematical models can accurately describe the
essence of human collective behaviour.

In what follows, we review research dedicated to culinary
arts, visual arts and musical arts, and where appropriate we
also touch upon cultural history [26,27] and culturomics [28],
and we describe the connections between physics and
the social sciences. We conclude with a discussion of the
reviewed research and an outlook for future research.

2. Culinary arts

It is somewhat debatable whether cooking is art. Putting
together a hamburger at a McDonald’s is more automation
than anything, and it is certainly no art. But creating a delicious
meal for your loved ones can be art, and culinary arts, in par-
ticular, have to do with the preparation and cooking of foods.
But what does this have to do with physics and networks?
Perhaps not much on first glance, yet this is deceiving.
About eight years ago Ahn et al. [29] published a paper
where they introduced the flavour network to uncover funda-
mental principles of food pairing. The backbone of the flavour
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Figure 2. The flavour network. Each node represents an ingredient, the colour of nodes indicates food categories listed top right, and the node size, as show bottom
right, reflects the prevalence of an ingredient in recipes. Two ingredients are connected if they share a significant number of flavour compounds, while the thickness
of links represents the number of shared compounds between the two ingredients. Only statistically significant links at p-value cut-off 0.04 are show as otherwise
the network would be too dense. For further details, we refer to the original work. Reproduced from [29].

network is shown in figure 2. They have argued that, given the
increasing availability of information on food preparation,
such as at cookpad.com and foodpairing.com, a data-driven
approach can open up new avenues towards a systematic
understanding of culinary art. Their research showed that
North American and Western European cuisines have a
statistically significant tendency towards sharing flavour com-
pounds in recipe ingredients. By contrast, East Asian and
Southern European recipes are much less likely to have ingre-
dients that share flavour compounds. And vice versa, the more
compounds are shared by two ingredients, the more likely they
appear together in North American recipes, and less likely
to appear together in East Asian cuisine. In exploring the mech-
anism responsible for these differences, Ahn et al. [29] found
that the food-pairing effect is due to only a couple of ingredi-
ents that are frequently used in a particular cuisine. This
would be milk, butter, cocoa, vanilla, cream and egg in
North America, and beef, ginger, pork, cayenne, chicken and
onion in East Asia, for example. These findings resonates
with the well-known ‘flavour principle’ [30], according to
which regional cuisines are due to just a few key ingredients,
such as soy sauce for Asia or paprika and onion for Hungary.

However, already prior to the flavour network study [29],
Kinouchi et al. [31] studied the statistics of ingredients and
recipes taken from the Brazilian Dona Benta, the British New
Penguin Cookery Book, the French Larousse Gastronomique and
the medieval Pleyn Delit. They have observed universal distri-
butions of ingredients with scale-invariant behaviour, which
motivated a mathematical model akin to growth and prefer-
ential attachment in networks [32], or more generally to the
Matthew effect [33]. The so-called copy-mutate model of
culinary evolution was shown to fit the empirical data well.

The authors also argued that the model indicates an evol-
utionary dynamics governing the evolution of recipes over
the centuries where idiosyncratic ingredients are preserved
in a manner similar to the founder effect in biology [34].

In more recent years, several research works followed up to
study culinary arts with methods of network science, physics
and related approaches. For example, Teng et al. [35] showed
how to improve recipe recommendations based on ingredient
networks. Their research showed that recipe ratings can be
predicted well with features from ingredient networks and
nutritional information. The food-bridging hypothesis was
also proposed, assuming that if two ingredients do not share a
strong molecular or empirical affinity, they may become affine
through a chain of pairwise affinities [36]. Together with the
food-pairing hypothesis [29], four classes of cuisine can then
be distinguished. Namely, East Asian cuisine that tends to
avoid food-pairing and food-bridging, Latin American cuisine
that tends to embrace food-pairing and food-bridging, South-
eastern Asian cuisine that tends to avoid food-pairing but
embraces food-bridging and Western cuisine that embraces
food-pairing but avoids food-bridging [36].

Relatively, smaller-scale research efforts have also been
made, for example, looking specifically at Arab cuisine and
whether it abides to the food-pairing hypothesis [37]. Flavour
pairing was also studied for the medieval European cuisine
[38], where authors investigated the flavour pairing hypothesis
historically, focusing in particular also on the role of data
incompleteness and error. To that effect, two separate chemical
compound datasets with different levels of cleanliness were
used, showing that they give conflicting conclusions with
regards to the flavour pairing hypothesis in medieval
Europe. Possible inferences about the evolution of culinary
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arts when many new ingredients are suddenly made available
were also presented and discussed. The geography and simi-
larity of regional cuisines in China has also been studied [39].
Research showed that geographical proximity rather than cli-
mate similarity is the crucial factor that determines the
similarity of regional cuisines in China. Following the Kinouchi
et al. [31] copy-mutate model of culinary evolution, similar
models have also been proposed specifically for different
Indian cuisines [40]. Authors argued that, in addition to the
identified similarities and differences between the regions, a
comparison of these models at the level of flavour compounds
might open up a path towards molecular level studies that
would associate specific ingredients with non-communicable
diseases such as diabetes.

Apart from geographical interests and periodization,
research at the interface of culinary arts and the more harder
sciences also produced gems such as ‘Tell me what you eat,
and I will tell you where you come from: A data science
approach for global recipe data on the web’ [41] where the
message is squarely in the title. It also gave rise to food comput-
ing [42], which acquires and analyses heterogeneous food data
from disparate sources for perception, recognition, retrieval,
recommendation and monitoring of food. Computational
approaches can then be applied to address food-related
issues in medicine, biology, gastronomy and agronomy.
Online food preferences have also been explored based on
server log data from a large recipe platform on the web [43].
Research revealed that recipe preferences are partly driven by
ingredients, that recipe preference distributions exhibit more
regional differences than ingredient preference distributions,
and that weekday preferences are clearly distinct from week-
end preferences. Along similar lines, food consumption and
dietary patterns were also studied through twitter [44], aptly
concluding ‘you tweet what you eat’, as well as through web
usage logs [45].

We conclude this section with a reference to a contempor-
ary book titled Everyone Eats [46], which explores why we eat
what we eat, why some love spices, sweets and coffee, and
why rice become such a staple food throughout so much of
eastern Asia. With a focus on the social and cultural reasons
for our food choices, the book may be a nice companion for
further exploring this fascinating subject beyond physics
and networks.

3. Visual arts

Patterns in nature are common and often beautiful and intri-
guing [47]. Pattern formation is thus, expectedly, also common
in physics, chemistry and biology research, where emergent
ordered and disordered structures often require quantification
[48-54]. Indeed, the subject has been vibrant and popular
ever since the seminal research by Alan Turing on the chemical
basis of morphogenesis [55]. Perhaps thus not surprisingly,
many methods that are often used in physics to quantify
and study patterns can also be used to study art with hardly
any modification.

The challenge up until recently was how to get visual art
into quality digital form, and how to do so for a large number
of artworks. With wikiart.org this challenge has been beauti-
fully resolved, which opened up the path to large-scale
analysis with methods of physics. Using these data, Sigaki
et al. [56] studied the history of art paintings through the
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The highlighted regions show different art periods (black: Renaissance, Neo-
classicism and Romanticism; red: Modern Art; green: Contemporary/
Postmodern Art). We observe that the complexity—entropy plane correctly
identifies different art periods and the transitions among them. Reproduced
from [56].

lens of entropy and complexity. Almost 140 thousand paint-
ings, spanning nearly a millennium of art history, have been
included in the research. Interestingly, it was shown that the
complexity—entropy plane reflects traditional concepts in art
history, such as Wolfflin’s dual concepts of linear versus pain-
terly and Riegl’s dichotomy of haptic versus optic [57,58].
Linear artworks are composed of clear and outlined shapes,
while painterly artworks have contours that are subtle and
smudged for merging image parts and passing the idea of
fluidity. Similarly, haptic artworks depict objects as tangible
discrete entities, isolated and circumscribed, whereas optic
artworks represent objects as interrelated in deep space by
exploiting light, colour and shadow effects to create the
idea of an open spatial continuum. Relating this to complex-
ity and entropy, it was shown that linear/haptic artworks are
described by small values of entropy H and large values of
complexity C, while painterly/optic artworks are expected
to yield larger values of H and smaller values of C.

These facts then allowed Sigaki et al. [56] to quantify the
evolution of artworks through the history of art. To do so,
the average values of H and C after grouping the images by
date were computed. Results shown in figure 3 reveal that
the artworks produced between the ninth and the seventeenth
century are on average more regular/ordered than those cre-
ated between the nineteenth and the mid-twentieth century.
Also, the artworks produced after 1950 are even more regu-
lar/ordered than those from the two earlier periods. It can be
observed further that the pace of changes in the complexity-
entropy plane intensifies after the nineteenth century. Notably,
this period indeed coincides with the emergence of several
artistic styles such as Neoclassicism and Impressionism. More-
over, the three outlined regions correspond well with the main
divisions of art history, as indicated in figure 3.

Going a step further, complexity and entropy can also be
used to distinguish different artistic styles in the H—C plane
[56]. Since the values of H and C capture the degree of simi-
larity among artistic styles regarding the local ordering of

98906107 :LL pua3ul 20S Y °f  yisi/jeunol/bio-buiysijgndAiaposiesol H


http://www.wikiart.org/

107!

T

distance

102

)

ing
Nouveau Réalisme (New Realism)

Dada
New European Pa.mung
inist A
Baroque -
Rococo

nebrism
Photorealism

Neoplasticism
To
Art Deco
Naturalism
Pop Art
ionalism

S
Ki
and Space
Minimalism
Neo-Dada
Feminist
Lyrical Abstraction
Neo-Pop Art
U
Neo-Rococo
Classicism

Conceptual Art
Constructivism
Regionalism -

Art ‘(f
Fantastic Realism

Post-M

High Renaissance
Northern Renaissance

Hard Edge P:
Light
Mannerism (Late Renaissance)

Post-Painterly Abstraction

Art Brut

Ink and wash painting
lpmsm

ormel

Neo-Expre

Ssionism

Ory

Art Iny
Contemporary Realism

EECEEE EE2Q 8 CEEEEESGQEEEQPEEECZEE
BAL D6 5| @ E‘é 2 ‘“@u,gﬂ,@?%éﬂ ,@g‘,gmggjm,@
WEBEES L WECEEE SB=E 20 C=S =
258257 £3 SEQS'EEEEET SEE58ER6E
N c08e 8 BEWIEO I gN®E SEe3 £
oRE38 -G  m o oEPrSecliu gE- 888 <1
[ ] gl N L (8] > L3 Esogat-ssm 8 =
acPowd EBEC = = £ wsl5ce @ T DS
Se<gf 525° 8 38 S 58 55U g5 080
BETEL SEg (4 i3 8 g3 £ CE o2
= ggE = £ 280 v 8 &
s 22NN E 8 8 z ¢
§ % i 8
2 £
= <

[a]

3

a

Figure 4. Hierarchical organization of artistic styles. Dendrogram representation of the distance matrix obtained by applying the minimum variance method. The 14
groups of styles indicated by the colourful branches are obtained by cutting the dendrogram at the threshold distance 0.03. This value maximizes the silhouette
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image pixels, a test for a possible hierarchical organization of
styles with respect to this local ordering is thus possible. To
do so, the Euclidean distance between a pair of styles in the
complexity—entropy plane can be considered as a dissimilarity
measure between them. Thus, the closer the distance between
two artistic styles, the more significant their similarity, and
vice versa. Results obtained with this procedure are shown in
figure 4, which can be interpreted as a tree of art, akin to the
tree of life in biology, as per the metaphor made famous by
Charles Darwin in his book On the Origin of Species.

Of course, the study by Sigaki et al. [56] is neither the first
nor the last along this line of research. Already four years ear-
lier Kim et al. [59] conducted a large-scale quantitative analysis
of painting arts with the aim to bridge the gap between art and
science, focusing on the usage of individual colours, the variety
of colours, and the roughness of the brightness. Their research
revealed a difference in colour usage between classical paint-
ings and photographs, and a significantly lower colour
variety during the medieval period. An increment in the
roughness exponent in painting techniques such as chiaroscuro
and sfumato has also been reported, consistent with the histori-
cal circumstances of the period. The same group later also
studied the heterogeneity in chromatic distances in images
of the modern era [60], where they noted rightfully that aggre-
gate statistics are a poor measure for the individuality of
painters since the differences can stem from different painters,
or from the same painters simply employing different styles.
An insightful analysis from [60] is shown in figure 5, where
representative individual painters are characterized in detail.
Two distinct yet complementary aspects of stylistic individual-
ity are considered, namely the evolution over their careers,
and uniqueness relative to the dominant style of the period.
Ultimately, this research provides a treasure of insights for an
extraordinary expansion in creative diversity and individuality
that defines the modern era.

In addition to the above-reviewed large-scale research
attempts at quantifying visual art, it is important to note

that the idea itself can be traced as far back as 1933, when the
American mathematician George D. Birkhoff published his
book Aesthetic Measure [23], which also gave rise to compu-
tational aesthetics [22]. Therein, he proposes to use the ratio
between the number of regularities found in an image and
the number of elements in an image as a quantitative aesthetic
measure. But first applications happened only at the turn of the
twenty-first century, where the work of Taylor et al. [61] showed
that Pollock’s paintings are characterized by an increasing frac-
tal dimension over the course of his artistic career. This
subsequently inspired the application of fractal analysis to
the authenticity of paintings [62-66], to the evolution of artists
[67,68], to the statistical properties of paintings [69] and artists
[70-72], to art movements [73] and to other visual expressions
[74-76]. And we would be remiss not to mention that fractal art
is a fascinating subject on its own right [77]. It is common in
Islamic culture, for example on the main dome of the Selimiye
Mosque in Turkey, and in Hindu Temples around the world.
There is also innovative recent research focusing on the
analysis of large-scale datasets of paintings and other visual
art expressions by means of the estimation of their average
brightness and saturation [78,79].

To end the section on visual arts, we note that in addition to
art paintings, sculpture, ceramics, photography, video, film-
making, design, crafts and architecture of course also fall
under this category. Notably, filmmaking has been studied in
terms of actor networks—where two actors are connected if
they appeared together in a movie. One of the more recent
attempts in this direction is the social network analysis of
character interactions in the Stargate and Star Trek television
series [80]. Research revealed that the character networks of
both series have small-world properties, and that the under-
lying network structure of an episode can tell us something
about the complexity of the storyline in that particular episode.
Episode networks were found to be either closed networks,
networks with bottlenecks that connect otherwise discon-
nected clusters, or a mixture of the two, which could be
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linked to the corresponding storylines upon a more detailed
reading. But other forms of visual arts have yet to receive
their link with physics and networks.

4, Musical arts

Research linking musical arts with science has the longest tra-
dition amongst the arts considered in this review. Accordingly,
we focus only on a selection of relatively recent research efforts
that build predominantly on physics and network science as
the bridges between the two disciplines.

We begin with Parket al. [81], who studied the topology and
evolution of the network of western classical music composers.
Based on the data from arkivmusic.com and allmusic.com, a
bipartite network consisting of CDs and composers as the
two node classes was created. Specifically, an edge between
two nodes was drawn when a composer’s pieces was recorded
on the CD. A single-mode projection of just composers was also

made, where two composers were connected if they have been
co-featured on a CD. Based on this, Park et al. [81] reported a
wealth of results, including that the networks exhibit character-
istics common to many real-world networks, such as the
small-world property, the existence of a giant component,
high clustering and heavy-tailed degree distributions. They
have also explored the global association patterns of composers
via centrality, assortative mixing and community structure,
which suggest an intriguing interplay between the networks
of musicians and our musicological understanding of the wes-
tern musical tradition. Moreover, the study of the growth of the
CD-composer bipartite network over time revealed superlinear
preferential attachment as a strong candidate for explaining the
increasing concentration of edges around top-degree nodes and
the power-law degree distributions.

From this, we review results concerning the community
structure, as shown in figure 6. Six sizable communities are
depicted, which account for 99% of the 878 nodes with
known periods. Fascinatingly, the communities roughly
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Non Jazz and Broadway)

Community 5 (186 nodes)
(Modern: non-US)

Figure 6. The community structure of the composer—composer network. Depicted are the five largest composer communities, which cover 6.2% of the composers
who account for 60.1% of degrees. The communities correspond well to the established period definitions in classical music history. On the right is the colour code
for the periods that are represented in each community, and the scale for their size. For details, we refer to the main text and the original work. Reproduced

from [81].

correspond to the different musical periods, such as Renais-
sance and early Baroque (1A), late Baroque and Classical
(1B), Romantic (2) and Modern (remaining three communities).
The original work also lists notable composers in each of these
communities, thus showcasing beautifully the power of
network science to explore art in insightful ways.

A relatively recent classic in terms of a more physics-
inspired approach, although still based on networks, is

the paper by Corréa et al. [82], where authors explore the pro-
blem of automatic music genre classification by exploring
rhythm-based features from a complex network represen-
tation. Specifically, a Markov model is proposed to analyse
the temporal sequence of rhythmic notation events, and a fea-
ture analysis is performed by using the principal components
analysis and the linear discriminant analysis. The former is
an unsupervised multivariate statistical approach, while the
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Figure 7. Digraph examples of four music samples as studied in [82].
Depicted are How Blue Can You Get by B. B. King (a), Fotografia by Tom
Jobim (b), Is This Love by Bob Marley (c) and From Me to You by The Beatles
(d). Reproduced from [82].

later is a supervised one. Two classifiers are also applied
to identify the category of rhythms, namely the parametric
Bayesian classifier under the Gaussian hypothesis and agglom-
erative hierarchical clustering. Figure 7 shows how the
digraphs used for the analysis were created. It can be observed
that only the durations of the notes, respecting the sequence in
which they occur in the sample, were used to create the
digraphs. Each vertex of the digraph represents one possible
rhythm notation, such as a quarter note, a half note, an
eighth note, and so on. The edges reflect the subsequent
pairs of notes. For example, if there is an edge from vertex i, rep-
resented by a quarter note, to a vertexj, represented by an
eighth note, this means that a quarter note was followed by
an eighth note at least once. Moreover, the thicker the edges,
the stronger the link between these two nodes.

Based on this approach, Corréa et al. [82] have shown
that the musical rhythms are surprisingly complex and
contain many redundancies, and that many features are
required to separate them, in fact too many to review here
(please see original work). Research also revealed that by
allowing multi-genre classification a generalization of the
genre taxonomy can be achieved since new sub-genres
emerge spontaneously from the original genres. Although
the study focused only on the rhythmic analysis, authors
noted that a deeper analysis of the rhythms can be performed
to enhance the effectiveness of the methodology.

More recently, partly the same group of authors studied
whether ten compositions by the Baroque composer Johann
Sebastian Bach arose from a Markov chain [83], by using
the recurrence quantification analysis. Perhaps not surpris-
ingly, research found that the fairly implausible hypothesis
that Bach’s brain was a Markov chain can be consistently
rejected with sufficiently elaborate surrogates.

Apart from the above-reviewed examples that showcase
how different aspects of musical arts can be studied by
means of networks and physics, research along similar lines

includes the application of complexity-entropy causality
planes to distinguish songs [84], the identification of universal
patterns in sound amplitudes of songs and music genres [85],
the extraction of musical rhythmic patterns by means of com-
munity relevance in networks [86], and the quantification of
soundscape dynamics of human agglomeration [87]. Paired
with fundamental work on musical theory, for example con-
cerning the geometry of musical chords [88], the hope is that
such interdisciplinary research can contribute relevantly to
the better understanding of music and its popularity across
genres, geographical regions and time [89].

5. Literary arts

The digitalization of art had perhaps the biggest impact on
literary arts. What previously existed only on paper became
available as bits and bytes. Sites like the Google n-gram
viewer at books.google.com/ngrams [28] and the Project
Gutenberg at gutenberg.org, as well as social networking
sites such as Twitter and Facebook, strongly facilitated quan-
titative research inquiries into written text on massive scales
[90-101]. However, the bulk of this research was concerned
primarily with statistical properties, or with finding memes
or with similarities or differences in the texts, rather than
with the content in terms of art.

One fascinating research effort that did focus on content is
due to Reagan et al. [102], who studied the emotional arcs for a
filtered subset of 1327 stories from Project Gutenberg’s fiction
collection. As the main three independent methods of analysis,
the authors used singular value decomposition—a standard
linear algebra technique, Ward’s method to generate a hier-
archical clustering of stories, which proceeds by minimizing
the variance between clusters of books [103], and the self-
organizing map [104]—an unsupervised machine learning
method to cluster emotional arcs. Emotional arcs were con-
structed by analysing the sentiment of sliding 10000 word
windows using hedonometer.org and the labMT dataset
[105,106]. The outcome for the J. K. Rowling’s Harry Potter
and the Deathly Hallows is shown in figure 8, where the major
highs and lows of the story are clearly inferable. As the authors
note in their paper, the entire seven-book series can be
classified as a ‘Kill the monster’ plot [107], while the many sub-
plots and connections between them complicate the emotional
arc of each individual book. The method, however, does not
pick up emotional moments that are only discussed briefly,
such as in a single paragraph or in a sentence. Whether the
result shown in figure 8 corresponds with a reader’s experience
depends on many factors, but being proud owners of all the
books and DVDs of the Harry Potter series in our family, it
does seem to fit rather well. My teenage daughter Ela and
her friends agree that the happiest should be the ‘happy ever
after’ rather than the ‘Harry at the Weasleys’, but that
is coming from a single group of people. Others may feel
differently and agree fully with what is shown in figure 8.

In the grander picture, the main finding of the Reagan
et al. [102] paper is that the emotional arcs of all the stories
included in their research are dominated by no more than
six basic shapes. These are ‘Rags to riches’ (rise), “Tragedy’
or ‘Riches to rags’ (fall), ‘Man in a hole’ (fall-rise), ‘Icarus’
(rise-fall), ‘Cinderella’ (rise-fall-rise) and ‘Oedipus’ (fall-rise-
fall). Importantly, the same six emotional arcs are obtained
from all possible arcs by observing them as the result of
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Figure 8. The emotional arc of Harry Potter and the Deathly Hallows, as determined by Reagan et al. [102], capturing the major highs and lows of the story. To
generate such emotional arcs, authors analyse the sentiment of 10 000 word windows, which were slid through the text. The emotional content of each window was
then evaluated using hedonometer.org with the labMT dataset [105,106]. The hedonometer.org webpage also provides interactive visualizations of emotional arc for
many other books, stories, movie scripts, as well as for Twitter. Reproduced from [102].

three independent methods mentioned earlier, each with its
own strength. Namely, the singular value decomposition
finds the underlying basis of all of the emotional arcs, the
clustering classifies the emotional arcs into distinct groups,
and the self-organizing map generates arcs from noise
which are similar to those in the corpus using a stochastic
process. The result is thus truly robust and thoroughly
supported by the presented evidence.

On a much smaller scale, Markovi¢ et al. [108] recently
studied the structure and complexity of texts in Slovene
belles-lettres, with an emphasis on evaluating the differences
in the texts for different age groups. Research revealed that
the syntactic connectivity of words forms complex and hetero-
geneous networks that are characterized by an efficient transfer
of information. It was also shown that with the increasing rec-
ommended age of readers, the length of texts, the average
length of words, different combinations of phrases, and the
complexity of social interactions between literary characters
all increase. Conversely, the fraction of unique words was
shown to decrease.

In terms of the language networks, as shown in figure 9,
Markovic et al. [108] found that despite noticeable differences
in network sizes, the degree distribution is a power law for all
four age groups, and this with similar exponents. Apparently,
some properties of syntactic patterns do not differ much for
different age groups, although the relatively small sizes of
the investigated networks did not allow a more precise com-
parison. Noteworthy, the observed scale-free property of
language networks has been previously reported in several
other works [110]. Further in terms of network properties,
research revealed that the average degree and the average
clustering coefficient increase with the recommended age
of readers. This result goes in parallel with the decreasing
tendency of unique word density. Namely, for higher age
groups proportionally less unique words are used for
longer texts and hence more word combinations are possible
and indeed present, which in turn leads to more connections
between individual words as well as to higher levels of

cliquishness. For the same reason, the networks also become
less modular with the recommended age of readers. On
account of the increasing number of connections, the average
shortest path length progressively decreases with increasing
recommended age, despite the huge increase in network size.
This, in turn, gives rise to the small-world topological features
of the extracted syntactic networks. Interestingly, despite
changes in the average connectivity, the average shortest path
length and network size, the diameter of the network remains
largely unchanged across age groups. Taken together, network
science enabled an in-depth theoretical exploration of Slovene
belles-lettres, with clear distinctions in statistical properties
between different age groups, thus bridging art and exact
sciences in a mutually rewarding way.

In moving the subject further ahead, Ferraz de Arruda
et al. [111] recently noted that, while well-established word-
adjacency or co-occurrence networks successfully grasp
syntactical features of written texts, they are unable to capture
topical structure. To remedy this, they have proposed a
network model wherein adjacent paragraphs act as nodes,
which are then connected whenever they share a minimal
semantic content. As an example, Lewis Carroll's Alice’s
Adventures in Wonderland has been studied, and research
showed that such an approach can reveal many semantic
traits of a text that would remain hidden otherwise. Moving
away from ‘just words’ and phrases to different degrees of
mesoscopic structure, such as sentences, paragraphs, or chap-
ters, could be the next step in bringing literary art closer still
to methods of network science and physics.

6. Discussion

We have reviewed recent research that aims to bridge the gap
between different artistic expressions and network science
and physics. Although most of the works that we have covered
are not about beauty as such, in retrospect, they do allow us to
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Figure 9. Language networks of selected Slovene belles-lettres for different age groups. Network A is for children age 1-5, network B is for children age 6-8,
network C is for children age 9-11 and network D is for children age 12—14. Despite clearly visible differences in terms of the size and complexity of the networks,
it is quite remarkable that the degree distribution is in all cases a power law. The average degree and the average clustering coefficient, however, increase with the
recommended age of readers, while the modularity decreases. The average shortest path length decreases with increasing age, despite the increase in network size,
which in turn gives rise to small-world properties [109]. Despite the changes in the average connectivity, the average shortest path length, and in the network size,
the diameter of the networks is virtually identical in all age groups. For detailed data concerning these network properties, we refer to the original work.

Reproduced from [108].

quantify and to understand what it is we find appealing or
beautiful when we are subjected to a particular art form.

When it is food that we like, we can now appreciate which
are the food pairings that make us take that extra bite, and
which are the bridges between ingredients that make us revisit
arestaurant. In broad terms, East Asian cuisine is our jam when
neither food-pairing nor food-bridging should be on the menu,
while Southeastern Asian cuisine appeals to those who do not
like food-pairing but do like food-bridging. Western cuisine is
all about food-pairing with almost no food-bridging, while
Latin American cuisine should work well for those that like
both food-pairing and food-bridging.

When we see a painting that we find beautiful, we can link
this beauty to entropy and complexity. If we like ordered and
repeating patterns, it is low entropy and high complexity,
while everything ‘malerisch’ is high entropy and low complex-
ity. The two physics quantities can be linked nicely to
traditional concept in art history. Images formed by distinct
and outlined parts yield many repetitions of a few ordinal pat-
terns, and consequently, linear/haptic artworks are described
by small values of entropy and large values of complexity.
On the other hand, images composed of interrelated parts
delimited by smudged edges produce more random patterns,
and accordingly, painterly/optic artworks are expected to
yield larger values of entropy and smaller values of complex-
ity. It is possible to go even further and argue that Wolfflin’s
dual concept of linear versus painterly and Riegl’s dichotomy
of haptic versus optic are actually limiting forms of represen-
tation that demarcate the scale of all possibilities, and that in
this regard the continuum of entropy and complexity values
may help art historians to grade this scale more finely.

When we hear a song we then put on repeat, research at the
interface of physics and network science can help us make out
some of its properties that go beyond, or are outside the realm
of, classic musical theory. Rhythm-based features from a net-
work perspective, communities of different composers and
genres, as well as complexity—entropy causality planes can
all help us pinpoint what it is that we find beautiful in a particu-
lar song, improve personalized music recommendations, and
improve also our understanding of what others around us
find appealing in a particular piece of music. These approaches
can also be used to try and forecast the future of several promi-
nent artists and to decipher the growth dynamics of the music

network. Not to take anything away from classic musical
theory and the geometry of musical chords and similar con-
cepts, the point we are trying to make is simply that network
science and physics can play a very useful role too.

Lastly, when we read a story that really moves us, we
can look up whether its emotional arc is something like a
‘Cinderella’ rise-fall-rise, or perhaps just an ‘Icarus’ rise-fall.
We can also appreciate whether we prefer many entangled
characters that are almost hard to keep track of, or just two
or three main characters that drive the story. A network
science perspective will also give us insights about modular-
ity of the story, that is whether some parts of it are
particularly removed from other parts, and whether they
come together at some point or not. Here, the concept of
mesoscopic text structures, such as sentences, paragraphs or
chapters, could be the new frontier in quantitative linguistics,
not just in terms of statistics but also in terms of content and
storytelling and emotional arcs.

The underlying movement of people, knowledge, crafts-
manship and techniques that enabled the evolution of the arts
reviewed above has, in a grander perspective, to do with our cul-
tural history. In this regard, too methods of network science and
physics have played an important role in recent years to advance
the subject [26-28]. The culturomics paper by Michel et al. [28],
the bravely titled Quantitative analysis of culture using millions
of digitized books, was perhaps even too optimistic in what pre-
cisely we might be able to learn from such a ‘big data’
exploration of our culture. Later online comments and research
were quite quick to point out the limits to inferences of socio-cul-
tural and linguistic evolution based on such data [112], which
consequently also meant that quite a few research efforts, such
as [113,114] for example, might have been too quick to jump
on the culturomics bandwagon [115]. But this is often the
nature of a fast moving and growing field. The initial over-
enthusiasm and positivity are dampened by more measured
and careful approaches latter on, until eventually a maturity
phase sets in, to be followed by the inevitable decline.

Nonetheless, the popularity of this line of research, together
with connections to artificial intelligence via computational
aesthetics [22], has been growing steadily in recent years,
touching also upon science production [116-118]—see matjaz-
perc.com/aps—and peer review [119] to complement research
on many other aspects of our societies that we have mentioned
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already in the introduction, including art as reviewed here.
We hope this review will be informative and useful to research-
ers that are working at the fascinating interfaces of inherently
different but also complementary research fields, and in
particular to researchers that are seeking a way forward
in mutually rewarding synergies between the arts and

quantitative sciences.
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