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Pancreatic ductal adenocarcinomas (PDAs) are notoriously aggressive and resistant to treatment. They distinguish themselves
further by their robust fibroinflammatory, or desmoplastic, stromal reaction and degree of hypovascularity. Recent findings have
revealed multiple mechanisms of stromal complicity in disease pathogenesis and resistance. In this review, we focus on altered
physicomechanics as one mechanism of what we term as ‘stromal resistance’ in PDA. Extremely high interstitial fluid pressures and
a dense extracellular matrix combine to limit the delivery and distribution of therapeutic agents. We discuss the genesis and
consequences of altered fluid dynamics in PDA and strategies to restore them.

Pancreatic ductal adenocarcinoma (PDA) is an aggressive disease
of the exocrine pancreas, marked by a 5-year survival rate of o5%
and a median survival of B6 months, making it the fourth leading
cause of cancer-related deaths in the United States (Hidalgo, 2010;
Siegel et al, 2012). The anatomy and biology of PDA conspire to
elude detection and resist eradication. An absence of localising
symptoms, together with a lack of biomarkers and screening
methods for early detection, irreparably delay diagnosis. Indeed,
80–90% of patients are diagnosed too late to permit surgical
intervention, which itself can prolong life but is seldom curative,
due to almost inevitable disease recurrence and/or metastasis
(Allison et al, 1998; Oettle et al, 2007). For these patients,
treatment is confined to chemical and/or radiotherapies, which
historically have provided limited benefit at best.

The deoxycytidine analogue, gemcitabine, has represented the
standard-of-care for disseminated PDA, although this may be
slowly changing. Gemcitabine monotherapy can improve quality of
life in a subset of patients and extend survival modestly (Burris
et al, 1997). The poor response of PDA to chemotherapy was long
thought to result principally from cellular mechanisms of intrinsic
resistance in the tumour epithelium; it is now understood,
however, to be due at least in part to an inability of even small
molecule therapeutics to enter and perfuse the tumour bed (Olive
et al, 2009). Intriguingly, sustained exposure of PDA to
chemotherapies with long circulating half-lives can increase

intratumoral drug levels and improve response. For example,
nab-paclitaxel, an albumin-coated nanoparticle formulation of
taxol with a 410 h half-life, in combination with gemcitabine
improved median survival (mOS) substantially compared with
historical controls (mOS¼ 12.2 months; Von Hoff et al, 2011). In a
large phase III trial of patients with metastatic disease, the multi-
drug regimen FOLFIRINOX – which combines bolus doses of
oxaliplatin, irinotecan, leucovorin, and 5-fluorouracil, followed by
a prolonged 46 h continuous infusion of fluorouracil – improved
survival compared with gemcitabine alone (mOS¼ 11.1 versus
6.8 months, respectively; Conroy et al, 2011). An admittedly
substantial side-effect profile may limit widespread use of
FOLFIRINOX and, despite representing potentially significant
advances over the prior collective experience, neither regimen is
curative.

Our expanding knowledge of the genetic repertoire of pancreas
cancers promises to guide development of new, more selective
strategies (Iacobuzio-Donahue, 2012). The basic molecular profile
of PDA is known (Hruban et al, 2000). Activating mutations in the
KRAS proto-oncogene occur early in disease progression and
are found in 490% of invasive PDAs. Subsequent mutations in the
CDKN2A, TP53, and/or DPC4 (SMAD4) tumour suppressor genes
are also common (490%, B75%, and B50% respectively;
reviewed in Maitra and Hruban, 2008). Genetic engineering in
mice has demonstrated that these mutations, and the order in
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which they arise, drive, and shape disease progression (Aguirre
et al, 2003; Hingorani et al, 2003, 2005; Izeradjene et al, 2007),
although efforts to target them directly to treat pancreas cancer
have yet to achieve fruition. A number of signalling pathways are
also aberrantly regulated in PDA including EGFR, ERBB2, COX-2,
SHH, MMPs, and NOTCH, and which suggest additional potential
targets. To date, only inhibition of the epidermal growth factor
receptor (EGFR) has been clinically approved, and even then
provides only incremental improvement in survival (Moore et al,
2007).

In this review, we discuss the concept of ‘stromal resistance’ in
PDA, namely the barriers to effective treatment imposed by the
complex and dynamic tumour microenvironment (TME). In
particular, we highlight physical mechanisms of drug resistance
in PDA and recent efforts to target stromal elements in order to
improve delivery of small molecule therapeutics. We discuss
further how studies in genetically engineered mouse (GEM)
models of PDA have yielded unexpected insights compared with
more traditional xenograft and allograft models and may help to
explain the previous divide between preclinical promise and
clinical reality.

DETERMINANTS OF STROMAL RESISTANCE IN PDA

A dynamic fibroinflammatory, or desmoplastic, response is a
hallmark of PDA and essentially pathognomonic for the disease.
This desmoplasia evolves during disease progression and includes
stromal fibroblasts, immune cells, and excessive deposition of a
complex extracellular matrix (ECM) (Figure 1; Mahadevan and
Von Hoff, 2007). Activated stromal fibroblasts, or myofibroblasts,
produce matrix constituents that alter the physical structure of the
developing cancer ‘organ’ and also modulate tumour cell behaviour
through direct binding interactions with surface receptors
(Vonlaufen et al, 2008). The immune reaction in PDA consists
largely of immunosuppressive and pro-tumourigenic elements that
infiltrate at the earliest stages of preinvasive disease, with scant
evidence of effector immunity (Clark et al, 2007). The ECM of this
desmoplastic response contains significant levels of fibrous
collagen together with a complex mixture of proteoglycans and
glycosaminoglycans. In addition to roles in maintaining tissue
integrity and providing signalling scaffolds, dense collagen and

microfibrillary matrices and fluid-trapping mucopolysaccharides
have been shown to impede diffusion (exchange driven by
concentration gradients) and convection (pressure-driven fluid
flow that drags molecules) through porous materials such as the
stromal compartment in carcinomas (De Smedt et al, 1994;
Brekken et al, 2000; Ramanujan et al, 2002). An elevated IFP that
limits convection and a fibrotic ECM that compromises diffusion
combine to impede solute flux across a perfused vessel and through
a tumour bed (Fukumura and Jain, 2007; Tredan et al, 2007).
Despite the presence of such substantial barriers to treatment, the
altered fluid mechanics of the desmoplastic stroma in PDA
represents an underappreciated and relatively unexplored mechan-
ism of disease resistance.

HYPOVASCULARITY AND VASCULAR COLLAPSE IN PDA

The delivery and distribution of small molecules across a tissue are
governed by well-defined principles of solute transport involving
passive diffusive and convective fluxes (reviewed in Ogston and
Michel, 1978). In general, the distribution of small molecules is
primarily diffusion limited, while larger molecules rely also, or even
preferentially, on convective flow. Diffusion is driven by concen-
tration gradients between the intravascular and interstitial
compartments, and convection by pressure gradients composed
of hydrostatic and oncotic components. The balance between
hydrostatic and oncotic pressures in tissues and vessels determines
the net flow of fluid.

In contradistinction to most solid tumours, PDAs are
hypoperfused; indeed, in standard clinical imaging modalities,
they are identified as regions that take up less injected contrast
material than the normal surrounding tissues (Park et al, 2009).
Neuroendocrine tumours of the pancreas, on the other hand,
appear bright on contrast-enhanced CT or MRI, reflecting their
hypervascular nature. These radiographic signatures of blood flow
provide tell-tale clues distinguishing these dramatically different
tumour types. Perhaps not surprisingly, therefore, and despite a
profound hypoxia (Koong et al, 2000) and elevated levels of pro-
angiogenic factors (Buchler et al, 2003), PDAs have a paucity of
blood vessels. Even worse, the vast majority of existing vessels in
PDA are not functional (Olive et al, 2009; Provenzano et al, 2012).
As a result, relatively few vessels are effectively perfused with
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Figure 1. The desmoplastic stroma in PDA. Both mouse (top) and human (bottom) PDA display robust deposition of ECM and activated pancreatic
stellate cells. Masson’s trichrome reveals robust collagen content in PDA (blue) while a more complex Movat’s pentachrome staining highlights the
presence of GAGs and mucins (blue) co-localised with collagen (turquoise/green). Histochemistry with hyaluronic acid binding protein (HABP)
confirms the abundance of HA in PDA and immunohistochemistry for a-SMA identifies activated PSC, or myofibroblasts. Scale bars¼50 mm.
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chemotherapy, and those that are then face further barriers to
transvascular distribution of drug into the stroma imposed by the
ECM. Inhibition of paracrine sonic hedgehog signalling (Shh) in
a GEM model of PDA depleted stromal fibroblasts, stimulated
angiogenesis, and produced a salutary increase in cytotoxic drug
delivery (Olive et al, 2009). Although these changes in tumour
perfusion were short-lived, they provide proof-of-principle of a
primary mechanism of drug resistance in PDA. However, the lack
of significant functional perfusion in PDA results not only from a
sparse vasculature but also from a profound degree of vascular
collapse. In fact, B75% of the vessels in PDA appear to be
collapsed (Provenzano et al, 2012). The observations raise
immediate questions regarding the metabolic regulation in PDA
cells and also the mechanisms underlying this vascular collapse.

IFP IS EXTREMELY ELEVATED IN PDA

A collapsed vasculature suggests the presence of interstitial
pressures exceeding the combined intravascular hydrostatic and
oncotic pressures and elastic forces of the vascular wall. As noted, a
large body of work in a number of experimental model systems has
suggested that altered fluid mechanics can limit the efficacy of
systemic therapies (reviewed in Tredan et al, 2007). Fewer studies
have been performed in autochthonous tumours and none before
and after systemic interventions. To perform interstitial fluid
pressure measurements in normal tissues and autochthonous PDA,
we used a Millar Mikro-Tip pressure catheter transducer connected
to a control unit and data acquisition system (Ozerdem and
Hargens, 2005; Provenzano et al, 2012). In normal tissues, IFP
ranged from B8 mm Hg for the head of the pancreas, to
0.1 mm Hg for the liver, to � 2.0 mm Hg in muscle, consistent
with values measured in numerous other studies using a variety of
methodologies (for examples, see Less et al, 1992 and Milosevic
et al, 1998; reviewed in Aukland and Reed, 1993). These tissue IFPs
are significantly below the typical intravascular pressures of the
arterioles (40–80 mm Hg) and capillaries (15–40 mm Hg) that feed
them, as originally hypothesised by Starling (1896). In contrast,
IFPs in autochthonous PDAs were dramatically elevated, ranging
from 75 to as high as 130 mm Hg, rivalling mean arterial pressures
(Provenzano et al, 2012).

STROMAL HYALURONAN IN HEALTH AND DISEASE

HA is a large linear, negatively charged, and soluble macro-
molecule comprising N-acetyl glucosamine and glucuronic acid in
alternating b-1,3 and b-1,4 linkages that figures prominently in the
architecture, integrity, and malleability of tissues, particularly in
dynamic processes such as embryogenesis and oncogenesis (Toole,
2004). HA also binds to the surface receptors, CD44 and RHAMM,
activating signalling pathways that can promote cell survival,
proliferation, adhesion, migration, and invasion. Its ability to
imbibe and retain water contributes to the gel-like interstitia of
many tissues and these same viscoelastic properties underlie the
use of HA in a variety of cosmetic and clinical applications (Balazs
and Denlinger, 1989). These properties together with the
extraordinary abundance of HA beginning from the earliest stages
of disease suggested a potentially critical role in establishing and
defining the unique TME of PDA.

Homeostatic HA levels in mammalian tissues are maintained by
the selective expression and activity of three different synthases,
HAS1–3, and six different hyaluronidases (Toole, 2004). Originally
identified as the ‘spreading factor’ from bovine testes (Chain and
Duthie, 1939), purified hyaluronidase was later shown to represent
a fragment of PH20, a GPI-anchored enzyme found on the

acrosomal membrane of mammalian sperm that assists in
fertilisation (Meyer et al, 1997). The purified testicular extract
has been used historically to promote resorption of fluid and
solutes administered subcutaneously. The unexpected palliation of
disease in a multiple myeloma patient who received the extract for
such an indication spurred investigations into the ability of the
enzyme to enhance the efficacy of chemotherapies (Bruera et al,
1999). A number of cell autonomous and non-cell autonomous
mechanisms have been proposed and continue to be studied
(reviewed in Toole and Slomiany (2008) and Tredan et al (2007)).

PRECLINICAL TRIALS: DEPLETING HA REVERSES
VASCULAR COLLAPSE IN PRIMARY AND METASTATIC
PDA AND IMPROVES SURVIVAL

The purified and recombinant forms of native hyaluronidase
possess extremely short circulatory half-lives (t1/2o3 min) which,
together with the development of hypersensitivity reactions, have
precluded their use as systemic agents. Chemical conjugation of
recombinant human PH20 with polyethylene glycol preserves
enzymatic activity and extends the half-life to 410 h. Systemic
administration of this agent can deplete HA from implanted
tumour xenografts in immunocompromised mice and decrease IFP
(Thompson et al, 2010). To directly address whether systemic
administration of this enzyme could deplete HA from an
autochthonous tumour and whether this would ameliorate the
elevated IFP, we treated genetically engineered KrasLSL-G12D/þ ;
Trp53LSL-R172H/þ ;Cre (KPC) mice with established invasive PDA
with intravenous injections of PEGPH20. Significant intratumoral
depletion of HA and reduction of IFP occurred within 2 h and
peaked at 24 h (Provenzano et al, 2012). The reduction in IFP
correspondingly resulted in a dramatic increase in patent tumour
vessels without affecting overall vessel number, and ready
penetration of chemotherapies across the tumour bed. Interest-
ingly, although stromal HA is similarly depleted from a number of
normal tissues in the animals, including heart, lungs, intestine, and
liver, no overt untoward effects on organ function and overall
health were observed.

When combined with the conventional cytotoxic, gemcitabine,
in a randomised, placebo-controlled preclinical trial in KPC mice,
PEGPH20 significantly increased objective response rate, decreased
metastatic tumour burden, and prolonged median survival
(Provenzano et al, 2012). Increased apoptosis was observed in
both the pancreatic stellate cell and tumour epithelial cell
compartments. After only a few weeks of combination therapy,
the effects on HA levels and vascular perfusion persisted even if
treatment ceased. Thus, the PDA stroma can be permanently
remodelled in this manner, in principle permitting subsequent
treatment with a wide variety of sequential and combination
regimens. That metastatic tumour burden was decreased and not
increased in the setting of increasing vascular access of cancer cells
is also reassuring. A similar survival benefit with this combination
therapy was independently observed (Jacobetz et al, 2013).

METHODS, MODELS, AND MEASUREMENTS OF IFP

The fluid pressures we observed in autochthonous PDAs are
significantly larger than those reported in a variety of in vitro,
xenograft and allograft tumour model systems (reviewed in Heldin
et al, 2004). Of course, an invasive carcinoma developing in situ in
the native organ from spontaneously evolving precursor lesions is
very different from the aforementioned model systems in several
critical ways (see below). The apparatus used to measure fluid
pressure has also varied. A number of systems have been used to
measure fluid and tissue pressures over the last 50 years, including
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the needle (Scholander et al, 1968), modified wick-in-needle
(Fadnes et al, 1977), micropipette (Wiederhielm, 1968), and
implanted perforated capsule procedures (Floyer, 1966; Anas et al,
1968). Each of these systems has virtues and limitations, not the
least of which is the need for sufficient skill to reproducibly fashion
the custom glass needles used for the measurements (reviewed in
Guyton et al, 1971). Indeed, the micropuncture glass capillary
method is known to yield more reliable estimates of fluid pressures
than the wick-in-needle because it produces less trauma and
requires smaller volumes to record IFP (Heldin et al, 2004). The
polyurethane ultraminiature pressure transducer used in our
experiments was developed, in part, to overcome some of the
limitations encountered in previous methodologies, and also to
both simplify and increase the accuracy of the method (Zimmer
and Millar, 1998). We also took a number of measures to ensure
the fidelity of the measurements and that solid stresses (SSs)
were not being measured in addition to fluid pressure. First, the
instrument was calibrated to 0, 25 and 100 mm Hg before every
experiment and confirmed at its conclusion. The catheter is also
designed so that the sensor is situated in a side port a few mm from
the end of the probe, and not at its very tip, to minimise any
potential trauma or artifact during placement. In addition, we did
not use the pressure catheter transducer directly to enter the
tumour, but rather placed it in the track left behind after insertion
and withdrawal of a 25-gauge needle. Third, for every measure-
ment made, we ensured that the catheter could be freely and
repeatedly inserted into and withdrawn from the preformed needle
track several times without resistance and without any shearing of
tissue (i.e., there was no adherence of tissue to the side-port
sensor). Finally, we confirmed that IFP in the normal head of the
pancreas dropped from a mean of 8 mm Hg to zero or even slightly
negative pressure (� 2.7 to 0.8 mm Hg) within minutes of the
cessation of cardiac function and tissue blood flow, as expected. In
normal pancreas tissue, the interstitial fluid space is in equilibrium
with and directly chronicles mean vascular pressures (MVP). For
all of these reasons, we concluded that the piezoelectric catheter
transducer was not measuring SS. In fact, the theoretical possibility
of solid pressure artifacts with this apparatus was specifically
examined by Ozerdem and Hargens (2005) who found no evidence
for such. Ozerdem (2009) went on later to describe the Millar
SPC320 catheter as a ‘gold standard reference’.

Our observations and conclusions differ from that derived from
an extensive body of work employing novel and highly creative
in vitro and tumour explant systems including ‘tissue-isolated
tumours’ comprising an externalised ovarian fat pad injected with
a rat mammary adenocarcinoma ‘tumour slurry’ (Sevick and Jain,
1989); ‘tumour spheroids’ comprising cell lines seeded into agarose
gels (Helmlinger et al, 1997); and a variety of subcutaneous tumour
cell line transplant systems (reviewed in Baxter and Jain, 1989).
Shared properties among these experimental systems have allowed
a sophisticated working model of tumour physiology to be
proposed (Figure 2), characterised by: (1) hypervascularity; (2)
markedly increased vascular permeability and hydraulic conduc-
tivity (i.e., ‘leaky’ vessels); and (3) ‘open’ systems in which the
interstitial fluid space is in equilibrium with the intravascular space
and fluid can ‘ooze out of the periphery’ (Boucher and Jain, 1992).
As Jain and colleagues have elegantly demonstrated, elevated IFP
in these contexts is due primarily to leaky vessels and dysfunctional
lymphatics and can rise as high as microvascular pressure (MVP)
(Jain, 1990). Moreover, because the intra- and extravascular fluid
spaces are in equilibrium, changes in MVP are rapidly reflected in
changes in IFP, which both plunge towards zero when the heart is
stopped (Netti et al, 1995). The investigators concluded that IFP
cannot collapse vessels and that, instead, vascular collapse is caused
by SS from proliferating cancer cells (Boucher and Jain, 1992;
Padera et al, 2004). From these observations, it seems reasonable to
suggest that ‘collapsed lymphatic and blood vessels are known to

contribute to elevated IFP and not the other way around’
(Stylianopoulos et al, 2012).

Unexpected challenges to this framework arise when confront-
ing autochthonous PDAs. Properties of these tumours subvert the
working assumptions derived from the aforementioned studies in
many important ways (Figure 2). First, both human (Park et al,
2009) and murine PDAs (Olive et al, 2009; Provenzano et al, 2013)
are profoundly hypovascular, in contradistinction to the systems
described above. Second, the vasculature is characterised by
widespread collapse. Third, the tumour vessels in PDA appear to
be functionally and ultrastructurally intact (Jacobetz et al, 2013),
have preserved interendothelial junctions, and are notably lacking
in the fenestrae that characterise ‘leaky’ systems (Dvorak et al,
1988; Roberts and Palade, 1997). Further, despite the extremely
elevated interstitial pressures, fluid is not ‘squeezed’ out from the
tumour as would be expected if the system was in open
communication with its environment, and small molecules are
unable to effectively penetrate the tumour when administered
either intravenously (Provenzano et al, 2012) or intraperitoneally
(i.e., directly bathing the tumour) (Olive et al, 2009). Applying
perhaps the most stringent criterion, intratumoral IFP does not
drop after cessation of cardiac function in an animal with
autochthonous PDA, even up to 40 min later, confirming that
the intravascular and interstitial fluid spaces are largely discon-
nected (Provenzano et al, 2012). How PDA cells survive such a
profoundly hostile microenvironment is worthy of study in its own
right but likely includes a reliance on alternate metabolic pathways
(Roberts and Borges, 1955; Warburg, 1956), transient microregio-
nal variations in pressures and blood flow (Heldin et al, 2004), and
autophagy (Yang et al, 2011), among other possibilities. Never-
theless, to a first approximation, PDA would appear to behave as a
‘closed’ rather than open system, a reality that has profound
implications for the generation and maintenance of elevated fluid
pressures, as well as the relationship between IFP and SS. These
considerations become especially germane when considering
therapeutic strategies. Xenografts from both human (Hertel et al,
1990) and mouse respond readily to gemcitabine, in stark contrast
to their respective autochthonous counterparts (Olive et al, 2009).
Agents that inhibit or normalise angiogenesis are not effective in
treating PDA in either humans (Kindler et al, 2010, 2011) or mice
(Olson et al, 2011), despite their proven utility in typically
hypervascular pancreatic neuroendocrine tumours (Raymond et al,
2011) and other malignancies (Jain, 2005). It is important to note
that SS is, by definition, exerted only at points of direct contact,
whereas a fluid pressure transmits force in all vectorial directions
(Guyton et al, 1971). Thus, it is unlikely that a sufficiently large
vascular surface area is in direct contact with solid tissue elements
(primarily proliferating cells) and exerting a high enough pressure
to collapse the majority of vessels in the tumour bed. Indeed, PDAs
are paucicellular, particularly with regard to their epithelial cell
content (Hruban, 2007), and the mean distances between tumour
cell and vessel are relatively high (Olive et al, 2009). Thus, SS may
contribute to vascular collapse in PDA, but IFP appears to
predominate. In the end, it is likely that more than one working
model of tumour physiology will be required to address and inform
interventions across the spectrum of human solid malignancies.

Finally, how then to explain the profoundly elevated fluid
pressures and vascular collapse in PDA? Do fluid pressures
collapse vessels or do collapsed vessels lead to increased fluid
pressures? The specific features of the stromal compartment and
the intact ultrastructure of the vessels in autochthonous PDA
provide the requisite properties to understand the phenomenon.
The large extended HA polymers can imbibe significant amounts
of water and organise it into a hydrogel, creating an immobilised
fluid phase in equilibrium with freely mobile water (Aukland and
Reed, 1993). The gel, nevertheless, also possesses an elastic
modulus, a property of solids (Katchalsky, 1954). Thus, hydrated
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HA is viscoelastic and several types of pressure are associated with
the HA hydrogel including: fluid pressure; a surface pressure; and a
colloid osmotic pressure, contributed to by the Donnan equili-
brium effect, and which itself can rise significantly and non-
linearly in proportion to increasing HA concentration to become
quite substantial (Tanford, 1961; Ogston, 1966; Guyton et al,
1971). Tethered collagen fibrillary and non-collagenous mirofi-
brillary structures with varying degrees of cross-linkage compound
this complexity, given their ability to create microcompartments
within the overall tumour architecture, while providing a scaffold
for active cell contractility to constrain an expanding HA hydrogel
(Figure 2). In open systems, SS and IFP can be considered additive
to estimate a total tissue pressure (TTP). However, in the relatively
closed system that more closely approximates an autochthonous

PDA, the TTP is the IFP, which is transmitted through the solid
matrix structure as well. Indeed, this is not unlike how hydraulic
systems operate and generate force. Acute angle-closure glaucoma
provides another apt example of the physiologic consequences of
elevating fluid pressures in a confined space with free fluid and a
hydrogel. Accumulation of aqueous humour (free fluid) in the
posterior chamber of the eye acts in concert with the vitreous body
– a hydrogel comprising HA, collagen, proteoglycans and both free
and bound water – to impinge upon ocular blood flow and the
optic nerve, threatening the eye.

The precise mechanics and interrelationships among the free
fluid, solid, and viscoelastic phases in PDA aside, it is important
not to lose sight of the most relevant finding from these studies:
enzymatic degradation of HA through systemic administration of a

Normal
pancreas

ac
v

d

is

Engrafted tumour
cell lines

Autochthonous
PDA

ac

is

v

d

• Euvascular

• Patent vessels

• Functionally/structurally
  intact vessels

• IFP low

• Hypervascular • Hypovascular

• Collapsed vessels

• Structurally
  intact vessels

• Patent vessels

• ‘Leaky’/structurally
  abnormal vessels

• IFP moderate • IFP high

Figure 2. Fluid and solid mechanics in distinct physiological states. (A–C) Masson’s trichrome staining of normal pancreas, engrafted pancreas
cancer cells, and autochthonous PDA. (A) Normal pancreata are composed largely of three epithelial compartments, namely ductal (d), acinar (ac),
and islet cells (is), as well as ample functional vasculature and a scarce ECM. In tumours engrafted from purified carcinoma cells (B), the ECM is
modest and numerous patent vessels are present. In contrast, autochthonous PDA (C) is dominated by a robust desmoplasia and a largely
collapsed vasculature resulting in extremely limited perfusion. (D–F) Schema for distinct states (for illustrative purposes only and not drawn to
scale). (D) In normal tissue, the interstitial fluid pressure is low and dependent upon the vascular pressure and the oncotic gradient. (E) Tumour
implants of isolated cancer cells or lines possess a moderate IFP that is also related to vascular pressure. (F) In autochthonous PDA, the IFP is very
high and the vasculature already collapsed. While the exact mechanisms of the elevated IFP remain to be elucidated, our results allow us to
formulate a number of testable hypotheses for the genesis and maintenance of these pressures and mechanics. After vascular collapse, free and
HA-bound fluid is trapped in the interstitial space (initially at pressures that result from communication with the vascular space before collapse,
e.g., B20 to 50 mm Hg plus additional swelling pressures transmitted though the fluid during and shortly after collapse). Following vascular
collapse, we further hypothesise that the pressure in this now compartmentalised fluid continues to increase, contributed to by a combination of
events in the solid components of the tumour. First, solid stress continues to increase and acts on adjacent fluid through ongoing ECM production,
tumour cell and fibroblast proliferation, and immune cell infiltration; as these components increase the density of the tumour, fluid pressure will
correspondingly rise. Second, we propose that cells, activated by tumour-expanding pressures, resist this deformation by increasing cellular
contractile force to actively compact the tumour, further elevating fluid pressure. As a consequence of these events, fluid pressure in PDA is
extremely high. We suggest that digestion of HA by treatment with PEGPH20 liberates bound water and also relaxes the hydrogel being actively
counterposed by mechanical forces. As pressures begin to drop, expanding vessels permit mobilisation of excess fluid into the circulation. The
rush of free fluid and relaxation of physical constraints may also now permit some direct leaking of fluid out of the tumour. For (D–F), ductal
epithelial/PDA cells are shown in aqua, stellate cells in brown, macrophages in green, and T cells in orange. Collagen is illustrated in green and HA
in yellow. Arrows indicate fluid pressures and small blue circles indicate water molecules. Scale bars, 25mm for (A–C).
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clinical-grade reagent renders PDA more uniformly permeable to
chemotherapeutics, revealing an unexpected and profound sensi-
tivity to agents that have previously been shown to be ineffective.
This finding permits the rational investigation of an entire array of
small molecule, antibody, and cell-based therapies for PDA, in
association with HA degradation. It has the potential, currently
under active clinical investigation (NCT01453153), to influence the
fundamental strategy in treating patients with this dreaded disease.

CONCLUSIONS

The complex cellular, molecular, and mechanical features of the
desmoplastic response in PDA presents challenges to effective
treatment, as well potential vulnerabilities to exploit. In creating a
drug-free sanctuary, the tumour also presumably remains sensitive,
at least initially, to the chemotherapies it has been shielded from
rather than selected to resist. Although intrinsic mechanisms of
disease resistance will no doubt emerge, breaching the sanctuary
with a systemically deliverable enzyme offers the prospect of
unprecedented, sustained vascular access to the PDA primary
tumour bed and metastases. This will enable not only rigorous
evaluation of new treatment strategies, but also exploration of
distinct sequencing and schedules of various treatment modalities
in the attempt to remain one step ahead of the tumour. Indeed, re-
examining the long list of clinically approved agents previously
thought to be ineffective in PDA would be an excellent place to
start. Additional mechanisms to reduce IFP should also be
explored including targeting other ECM components (such as
collagen, versican, or decorin) or inhibiting contractile forces
generated by fibroblasts. Restoring physiologic blood flow, oxygen,
and nutrients to a pancreas cancer will undoubtedly alter its
metabolism, and these changes may present additional therapeutic
targets and also new mechanisms of resistance. However, the idea
that the complex and impervious pancreas cancer ‘organ’ can be
perturbed dramatically is itself encouraging. It cannot be long before
this literal and figurative entry into pancreas cancer pathophysiology
results in a more effective therapeutic armamentarium.
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