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Global consumption and international trade
in deforestation-associated commodities
could influence malaria risk
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Deforestation can increase the transmission of malaria. Here, we build upon the existing link

between malaria risk and deforestation by investigating how the global demand for com-

modities that increase deforestation can also increase malaria risk. We use a database of

trade relationships to link the consumption of deforestation-implicated commodities in

developed countries to estimates of country-level malaria risk in developing countries. We

estimate that about 20% of the malaria risk in deforestation hotspots is driven by the

international trade of deforestation-implicated export commodities, such as timber, wood

products, tobacco, cocoa, coffee and cotton. By linking malaria risk to final consumers of

commodities, we contribute information to support demand-side policy measures to com-

plement existing malaria control interventions, with co-benefits for reducing deforestation

and forest disturbance.
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Malaria is a tropical and subtropical disease caused by any
one of five species of the Apicomplexa parasite: P. fal-
ciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi.

Even though malaria incidence has decreased globally, there have
been worrying developments in recent years1. The persistence of
social vulnerability and poverty, as well as continuous changes in
natural landscapes for economic development and population
growth, provide favorable environments for malaria transmission,
ultimately translating into high incidence. In 2018, there were an
estimated 228 million cases of malaria worldwide, mostly in
developing countries, resulting in 405,000 deaths, 67% of which
were children under 5 years old, and 94% of child <5 years old
deaths were in Sub-Saharan Africa2. Despite recent advances in
the development of malaria vaccines as well as drug treatments
and rapid diagnostic tests for Plasmodium detection3, maintain-
ing the upper hand in the fight against malaria remains a difficult
and expensive task for endemic countries2. The World Health
Organization (WHO) has emphasized the need for a strategic
integrated global vector control program4, under the United
Nations Sustainable Development Agenda (UNSDA)5.

More than 90% of all human malaria occurs in the world’s
three largest tropical rainforest biomes, and adjacency: the
Amazon Basin, the Congo Basin and the Greater Mekong2.
Various studies have shown that the incidence of human malaria
and the abundance and distribution of its primary mosquito
vectors, Anopheles gambiae, Anopheles funestus, Anopheles dirus,
Anopheles minimus, and Nyssorhynchus darlingi, are associated
with deforestation (Fig. 1), exploitation of natural resources,
human migration, changes in land occupation and land use (see
Supplementary Note 1 for a detailed review of literature showing
evidence of the link between malaria and deforestation).

The inter-relationship between malaria parasites and human
hosts is associated with adaptive mutations in the human gen-
ome. A recent study that focused on the evolution of human
populations that were highly exposed to malaria provides an
additional argument in favour of the association between defor-
estation and malaria6.

In particular, for the case of Indonesia, Garg7 demonstrated
that one standard deviation decline in forest cover measured in
each pixel, as unit of analysis, increases the likelihood of malaria
outbreaks by 1.85 or 10 percentage points after controlling for
other cofactors, such as migration, land use and implementation

of anti-malarial control programs. In Nigeria, Berazneva and
Byker found a similar association between changes in forest cover
and malaria in children under 5 years old8. An interdisciplinary,
cross-national study employed structural equations models to
provide robust evidence of the interconnections and pathways
among rural population growth, agricultural specialization, forest
loss, and malaria prevalence in 67 countries where malaria is
endemic9. Recently, MacDonald and Mordecai10 tested the
hypothesis of a bidirectional socioecological feedback between
deforestation and malaria using a dataset encompassing 795
Amazonian municipalities across 13 years. Their results estimated
that a 10% increase in forest area cleared can lead to a 3.3%
increase in malaria incidence, and a 1% increase in malaria
incidence could decrease 1.4% of forest area cleared. A positive
correlation between the number of forest patches affected by
deforestation less than 5 km2 and the incidence of malaria was
found in areas across the Brazilian Amazon: each kilometer
square of deforestation resulted in 27 new malaria cases11. In the
westernmost municipality in the Brazilian Amazon, statistical
associations between malaria incidence and cumulative percen-
tage of land deforested were found using univariate and multi-
variate general additive negative binomial models adjusted for
spatial trends, access to treatment, and health district size, where
a 4.3% increase in deforestation was associated with a 48%
increase in the incidence of malaria12.

Various studies related to vector ecology have focused on
entomological aspects linked to deforestation and malaria in East
African13–16; Southeast Asia17,18; ecological frontiers in endemic
regions19; agricultural frontiers20, tropical America21–25; among
others (Supplementary Note 1). Forest cover loss allows more
sunlight to reach the soil, leading to an increase in temperature of
the larval habitats and the formation of puddles with neutral pH,
thus favoring larval development, as observed in Ny. darlingi26.
Deforestation has been shown to reduce the larva-to-adult
development time and increase adult survivorship14,26–29, which
in turn can further increase malaria risk. A recent study explained
how deforestation can directly shape local Anophelinae com-
munity composition and possible scenarios of malaria transmis-
sion. In the endemic region of Urabá, Antioquia, northwest
Colombia, Nyssorhynchus nuneztovari is the most abundant and
dominant malaria vector species in deforested landscapes with
grass, shrub, and bare soil land cover. In contrast, Ny. darlingi is
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Fig. 1 Malaria incidence by country in the world’s three largest rainforests, overlaid with deforestation frontier. Shaded countries: Populations at risk
(cases per 1000 population at risk from 2000–2015) (yellow <140, orange 140–200, light brown 200–270, dark brown >270). Hatched areas:
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favored in landscapes with small deforested patches25. In addi-
tion, deforestation decreases biodiversity, causing a reduction in
the abundance of species that prey on Anophelinae larvae and
adults, leading to an increase in the abundance of vectors30.
Therefore, irrespective of region and species, anthropogenic dis-
turbance in natural forest landscapes can lead to changes in
mosquito communities, causing an increase in the abundance of
vector species24,26,31, and subsequently the risk of human expo-
sure to vectors and thus to malaria, in areas where the landscape
is conducive to vector–human contact32,33. These findings can be
largely applied to other tropical and subtropical malaria endemic
countries because deforestation disrupts environmental condi-
tions, thus exacerbating ecological conditions, which favours
species that are vectors of malaria.

Natural resource exploitation linked to deforestation in the
Amazon, Congo Basin, and Greater Mekong is expedited by the
production of primary commodities such as timber, soybean,
beef, palm oil, tobacco, cocoa, coffee, and cotton34, which are
driven by demand in developed countries35. This exploitation can
have a positive impact on local economic growth but can also
dramatically degrade tropical forests34 and threaten animal spe-
cies36. The demand for consumer goods in developed countries
and subsequent primary commodity production are driving
changes in tropical forest landscapes that, in turn, increase
malaria risk. The communities likely to be at greatest risk are
those exposed to mosquito vectors and at the same time facing
landscape transformation, and ironically, those are the people
who benefit the least economically37. In this study, we pursue this
line of investigation, by linking malaria incidence in developing
countries directly to products demanded by distant consumers.
We achieve this by quantitatively relating malaria incidence first
with deforestation, then to primary commodity production,
which we then connect to the global supply-chain network and
ultimately to worldwide consumer demand. The final step is
accomplished by coupling a highly detailed and large interna-
tional trade database38 with an established and widely used
analytical technique—multi-regional input–output (MRIO)
analysis39.

The aims of this study are: (1) to gain an understanding of how
export-oriented production leads to exploitation of natural forest
environments in malaria endemic countries, (2) to reveal con-
nections facilitated by the international trade network between
consumers and forestry producers in malaria-prone countries;
and based on this understanding (3) to identify countries that face
significant malaria risk from global consumption and interna-
tional trade. This work goes beyond simple incidence mapping
and correlations, in that it unveils a global supply-chain network
that links malaria occurring in specific locations because of
deforestation with globally dispersed consumption.

Here we show that about 20% of the malaria risk in defor-
estation hotspots is driven by international trade. We further
show that in 2015, about 110 million people were at risk of
contracting malaria due to deforestation. We conclude by sug-
gesting the need for implementation of initiatives aimed at
reducing deforestation and forest disturbance.

We hope that our study provides information about potential
demand-side measures for mitigating malaria, focusing on the
role of international trade and export dependence for accelerated
deforestation and therefore malaria risk. Innovative demand-side
measures can complement existing malaria control interventions
such as insecticide-treated mosquito nets (ITN) and artemisinin-
based combination therapies (ACT), in that they can be effective
in regulating and curtailing demand for internationally traded
malaria-implicated commodities such as timber, soy, beef, and
palm oil. Some demand-side measures already exist for mitigating
biodiversity threats36, child labour40, and global inequality41.

Results
Overall modelling approach. In order to connect malaria risk
with global consumption we apply Leontief’s method39 (See
Methods for more detail) to analyze a global multi-region
input–output (MRIO) database, tracing commodities that were
initially obtained as a result of deforestation in tropical forests,
then transformed throughout a complex network of international
processing chains, and finally delivered to their ultimate destina-
tions in developed-country households. This method has been
applied previously to assess the effect of international trade on
biodiversity loss36, transboundary health impacts of global air
pollution42, and many other environmental and social indica-
tors43. Here, we compute a malaria footprint tensor Frst

ij ¼ qri L
rs
ij y

st
j ,

where qri is a measure of malaria risk during the production of
(deforestation-linked) commodity i in (usually tropical) country r;
Lrsij is the Leontief inverse of the global economy, describing the
transformation of malaria-implicated primary commodities into
consumer items j manufactured for sale in countries s; and ystj
describes the final consumption of these items by households in
countries t.

Malaria footprints cover entire global supply-chain networks.
For example, let qri ¼ Qr

i
xI
represent the number of malaria cases Qr

i

in r = Brazil as a consequence of deforestation to produce an
annual output of xi dollars of i = soybeans. Let Aru

il A
uv
lmA

vw
mnA

ws
nj 2

Lrsij represent an international supply chain, with Aru
il dollars of

Brazilian soybeans exported to u = Argentina for processing into
l = soybean meal, Auv

lm dollars of Argentinian soybean meal
exported to v = Vietnam for processing into m = animal feed
pellets, Avw

mn dollars of Vietnamese animal feed pellets exported to
w = Thailand for feeding n = chicken, and finally Aws

nj dollars of
Thai poultry meat exported to s = Japan’s j = restaurant sector.
Aru
il A

uv
lmA

vw
mnA

ws
nj is a 4-node international supply chain, and only

one out of a large number of supply chains connecting Brazilian
soybean production with Japanese restaurants. Finally, let ystj be
the consumption of a Japanese restaurant meal containing Thai
chicken by a tourist from t = Germany. Then, qri A

ru
il A

uv
lmA

vw
mnA

ws
nj y

st
j

represents the malaria risk transferred by this consumption
decision to people living in Brazil’s expanding soybean-growing
frontier areas. Finally, Frst

ij represents the malaria risk transferred
by the combination of all possible supply chain combinations that
link countries r and t via s, and involve primary and final
commodities i and j. The number of such combinations is very
high: for an MRIO system distinguishing 100 countries and 100
commodities there would be 10,000 1-node supply chains, 100
million 2-node chains, one trillion 3-node chains, and 104n n-
node chains in general. Therefore, evaluating the tensor Frst

ij

requires high-performance computation.
The malaria footprint tensor Frst

ij can be collapsed into a
number of simplified measures. For example,

P
sij F

rst
ij ¼: Fr�t

��
represents the bilateral malaria footprint in r caused by
consumption in t, no matter through which commodities or
supply chains. Net malaria risk trade of country r is defined as
malaria risk exports minus imports Fr��

�� � F��r
�� , with Fr��

�� < F��r
��

for net importers, and Fr��
�� > F��r

�� for net exporters.

Malaria footprint. Within the confines of the available data and
given qualifications of our approach, we find that about 20% of
the malaria risk in the world’s deforestation hotspots may be
associated with the international trade of deforestation-implicated
export cash crops such as timber, cocoa and coffee. These exports
are then further processed, and ultimately bound for consump-
tion of affluent consumers in developed countries. The remaining
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80% are due to domestic deforestation-linked consumption, for
example firewood collection, subsistence or smallholder agri-
culture for own use44. About 10% of malaria risk appears to be
linked to just ten countries (net importers in Fig. 2 and Supple-
mentary Table 1), where the demand for certain products could
be exacerbating malaria risk for 10.7 million people in low-
income, mostly African countries (net exporters in Fig. 2).

Nigeria suffers the highest risk (5.98 million cases in 2015),
with demonstrated links to deforestation8,45, which in turn is
partly caused by the export of timber to China46 worth $332 m in
201547, cocoa beans48 to the Netherlands ($334 m; all 2015 values
from here on), Germany ($72 m), as well as Belgium, France,
Spain and Italy ($35 m), and charcoal to Europe ($35 m, Fig. 3 red
arrows). Next, in Tanzania, exports of cash crops49 such as raw
tobacco50 to Europe and Asia ($344 m, $96 m to Belgium alone),
and raw cotton ($41 m; mainly to South and Southeast Asia), as
well as sawn wood to India ($20 m), are some of the contributors
to 5.66 million people at deforestation-linked malaria risk51 in
2015. Similarly, malaria (5.49 million risk cases) has been linked
to deforestation in Uganda52, which in turn is potentially driven
by exports of raw coffee53 to Italy ($88 m), Germany ($63 m),
Belgium ($40 m) and USA and Spain (both $21 m), and to a lesser
extent raw cotton (South and Southeast Asia; $15 m). Finally,
deforestation-linked malaria in Cameroon54–56 (5.49 million risk
cases) can be connected to cocoa exports57 to the Netherlands
($300 m), Spain, Belgium, France and Germany (together $79 m),
rough wood to China ($175 m), and sawn timber ($440 m,
Belgium, China, Italy, the USA, and many other destinations).
The remaining tropical areas can be similarly linked to distant
consumers58, mainly through exports of sawn and rough timber
from the DR Congo, Zambia, Myanmar, Central African Republic
and Angola. Their main trading partner is China, whose imports
of rough logs (>$500 m) and sawn timber (>$70 m) from the
region peaked in 2014. We do not find beef and palm oil in top-
ranking trade links, because these commodities are predomi-
nantly traded out of countries with a relatively low malaria
incidence, such as Brazil and Malaysia.

The trade connections described so far are relatively simple as
they consist of only one pair of trading countries and one

commodity. However, potential malaria-implicated supply chains
can be more complex. In an upstream direction, we find that in
the net exporters listed in Fig. 1, processing of tobacco, coffee,
cotton, and cocoa beans often consumes large amounts of
domestic fuelwood and polewood, which indirectly connects
these commodities with deforestation and malaria risk. In a
downstream direction (Fig. 3, blue arrows), we find multi-step
international trade routes tracing Ugandan and Tanzanian tea59

first to Kenya’s Mombasa Tea Auction, from which it then gets
shipped to the UK ($157 m). Similarly, Uganda exports tobacco
to Kenya ($45 m) for processing and re-export. These circum-
stances mean that despite Kenya being a country at malaria risk,
it is a net importer (−334.821 risk cases). Further down the
supply chain, malaria-implicated commodities become trans-
formed into consumer items, and dispersed to households across
the globe, often associated with a significant added value and
revenue. For example, in 2015, about $6b out of $12b of raw
tobacco was exported out of malaria-affected countries, but $20b
out of $29b of processed tobacco was finally sold out of Europe
and North America47. China sources African timber predomi-
nantly as rough logs, and adds significant value as it turns these
into a plethora of wood products such as furniture60, flooring61,
joinery, and plywood62 for export to Japan, Europe and the USA.
The Netherlands and Belgium turn annual imports of almost
exclusively African cocoa beans worth about $700 m into about
$4.6b of chocolates exports, mostly to other European countries.
Calculated on a per-consumer basis, Dutch and Belgians
potentially cause the world’s highest malaria footprints (often
facilitated by cocoa exports) at about 31.25 risk cases per 1000
inhabitants, followed by Swiss and Germans (22.3/1000 risk cases;
cocoa and tobacco), the UK (17.85; tea), French, Spaniards, and
Italians (13.39; cocoa and coffee), Japanese (8.92; wood products),
and US Americans (4.46; various products).

An interesting bird’s-eye view of the supply-chain structure of
malaria risk can be gained from a world map (Fig. 3). Primary
producers of malaria-implicated raw commodities such as cocoa,
tea, coffee, tobacco, and timber, mainly in tropical Africa, but also
in India and Myanmar (red circles), ship these for further
processing and value-adding to intermediate producers of
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Fig. 2 Net malaria risk trade, negative for net importers, and positive for net exporters. The grey bars and the red bold line represent the median and
mean, the red box the standard deviation, and the horizontal red thin lines the minimum and maximum of net malaria risk trade over the 2000–2015
period.
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numerous commodities such as chocolates, cigarettes, furniture,
flooring, joinery, and plywood, mainly in China, Japan, and
Western Europe (red triangles). From there (blue circles), these
commodities reach final consumers in the Americas, Europe,
Russia, China, Japan, South East Asia, Australia, and New
Zealand (blue triangles). In contrast to primary trade of raw
products, which proceeds along a limited number of concentrated
trade routes originating from mostly low-income malaria-affected
exporters (red), secondary trade disperses manufactured products
amongst numerous smaller trade links involving mostly high-
income producers and consumers (blue). Interestingly, a striking
feature in Fig. 3 is the prominence of primary trade routes
between European nations such as the UK, France, Belgium, and
Germany and their former African colonies.

Developed countries have been continuously outsourcing
forest-intensive production to developing countries whilst pre-
serving their own resources and nature. An analysis of annual
time series data between 2000 and 2015 reveals that trends of
international trade of deforestation-implicated products as well as
deforestation are increasing (Fig. 4). First, the trajectories of all
countries shown in Fig. 4 proceed from the origin outwards. This
is because export commodity crop markets are expanding,
intensifying deforestation in malaria-prone regions63. Trade
statistics show that especially the international trade of rough
logs, sawn wood, raw cocoa, coffee, tea, tobacco, and cotton has
markedly increased over the analysis period. These trends are
responsible for continuing deforestation (cumulative forest losses
exceeding 10,000 km² in Nigeria, Uganda, Cameroon and India,
and exceeding 100,000 km² in DR Congo and Indonesia). Whilst
increasing commodity trade drove deforestation in much of
tropical Africa and also South East Asia, many developed
countries that import deforestation-implicated products were
able to increase their own forest cover64.

Discussion
Although there has been a reduction in global deaths from
malaria since 20002, malaria incidences have increased in the past
few years, requiring a revision of the political, policy, operational,
and financial approaches65. The Global Health Group and the
Lancet Commission devised an initiative to achieve malaria era-
dication66, where the question “How will global megatrends
impede malaria eradication?” was raised. In this study, we con-
tribute a response by showing that the global demand, particu-
larly in high-income countries, for primary commodities linked
to deforestation could potentially escalate malaria risk in devel-
oping tropical countries.

The value chain underlying the international processing of
malaria-implicated commodities is highly unequal. On the one
hand, producers of low-value cash crops such as timber, cocoa, or
charcoal in malaria-endemic countries are dependent on export
revenues for poverty reduction and economic development, and
thus enter into an ecological race to the bottom. On the other
hand, the lion’s share of value added accrues to high-income
countries where such export commodities are manufactured into
consumer goods such as furniture and chocolate. In this unequal
value chain, ecosystem degradation and malaria risk are borne by
low-income producers, but the associated indirect and often long-
term cost are not included in their trade revenues67. Thus, these
low-income countries pay for their cash crop export incomes with
a burden from increased malaria risk. Such outsourcing is not
new, it also occurs globally for pollution-intensive production,
and predominantly from developed to developing countries68–70.

It is true that the main importers of malaria-implicated pro-
ducts, the USA, UK, France, Germany, and Japan, provide finan-
cial support for malaria control programs, especially in
Sub-Saharan Africa. In 2017, global investment for malaria con-
trol and prevention was approximately US$3.2 billion, with
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(Number of deforestation-malaria risk associated cases) (Number of deforestation-malaria risk associated cases)
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Processing stage Manufactured item Final consumer

Fig. 3 International trade routes of malaria risk associated with traded commodities. Countries with populations at risk are shaded as in Fig. 1. Trade
relationships are color-coded, with risk categories falling into three range brackets. A bracket [500-25,000] means that the respective shade of red is used
for lines representing the estimated number malaria risk cases. We distinguish (a) primary trade routes (red) that originate in countries where
deforestation causes malaria risk, and end in countries where commodities are manufactured and assembled for final sale, followed by (b) secondary trade
routes (blue) that end in countries where commodities are finally consumed by households. Software used: QGIS version 2.8 without any changes. QGIS is
licensed under Creative Commons Attribution-ShareAlike 3.0 licence (CC BY-SA) (https://creativecommons.org/licenses/by-sa/3.0/).
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high-income donors providing 72% of funding (USA 39%,
Development Assistance Committee 21%, UK 9%, Bill & Melinda
Gates Foundation 2%). However, malaria-endemic countries
shouldered 28% of the cost, and the overall funding level is less
than half of what is required2 to achieve a reduction in malaria
morbidity and mortality rates in line with goal 3.3 of the UNSDA5.

Rather than relying only on malaria control, the results from
this study show the possibility of additional opportunities arising
from international supply-chain relationships, addressing the
demand structures that lead to export-related deforestation in the
first place71,72. First, targeting the demand for malaria-implicated
products assists in reducing the constant need for malaria control.
Second, robust demand-side measures do not interfere with, but
complement existing malaria control measures. Third, and per-
haps most importantly, demand-side policies can align with other
initiatives that focus on forest-related commodities, such as the
Eliminating Deforestation from the Cocoa Supply Chain48, the
Soy Moratorium in Brazil73, the G4 Zero-Deforestation Agree-
ment, and the Terms of Adjustment of Conducts74, among oth-
ers75. These existing measures can readily be enhanced towards a
more comprehensive perspective, mirroring the UNSDA goals5,
by targeting malaria risk alongside deforestation.

Demand-side measures can be established at several points
within the international supply-chain network: (i) by engaging
consumers, (ii) by stimulating producer dialog within the inter-
mediate supply chains, (iii) by legislating certification and other
producer standards with the help of governments and NGOs, and
(iv) through fiscal instruments.

Demand-side measures can be motivated by corporate per-
ceptions of consumers’ attitudes, or in the absence of pro-active
engagement by companies, through consumer pressure. A well-
known example is consumers pushing companies using palm oil
toward ensuring that their products are deforestation-free76. As
with dolphin-safe tuna, fair-trade chocolate, organic produce or
sustainable seafood labelling, an effective way to ensure that
products are not malaria-implicated is through certification,
based on information about economic, ecological, social and
health attributes of the products’ supply chains. Product-specific
certification standards can be designed, benefitting especially
smallholders, by building a tangible set of criteria that associate
the product with sustainable production attributes that avoid
environmental degradation and malaria risk, as well as promote
the local community. Certification, in turn, can improve small-
holders’ organisation, political leverage and land tenure, their
access to funds, training and technology, and ultimately enhance
their production capacity77.

Further upstream in the supply chain, companies can more
pro-actively engage in supply-chain governance. Currently,
manufacturers, wholesalers and retailers in high-income coun-
tries are often far removed from smallholders’ economic situa-
tions, and the environmental degradation and malaria risk that
these entails. This results in them ignoring the adverse effects
caused by the production of the basic commodities they buy.
Companies can assume responsibility for their role in the global
supply chain, and incorporate into their advertising and sales
strategies, the ecological and health limits associated with their
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inputs. Companies can also use their supply-chain leverage by
mandating certain procurement standards and exercising their
procurement practices accordingly. Such pro-active engagement
will ultimately mitigate companies’ risk of supply shortages, for
example due to overexploitation of land, or malaria incidence
amongst workers, and improve their long-term productivity. To
this end, Ostrom et al.78 propose a multilevel-institutions
approach that builds on a supply-chain dialog that strongly
involves local and regional institutions. The Roundtable for
Sustainable Palm Oil (RSPO) shows the effort and commitment
of producer and importer countries and companies involved in
the trade and processing of oil to adopt sustainable practice for
production and commercialization at all levels, across groups of
companies79. Therefore, improving the dialog among local and
regional producers, governments, and sale companies can help to
increase productivity without deforestation, thus decreasing
malaria risk for local producers.

Governments and NGOs can play an important role in pro-
posing unique strategies and policies for production of basic
commodities in endemic countries. These include training cour-
ses for local producers about new technologies and cultivation
methods for malaria-implicated crops such as cocoa or coffee. In
addition, the joint collaboration between government, private
companies, NGOs, and society will improve monitoring and
commitment of those involved in the trade chain and con-
sumption. Such initiatives exist already for influencing initiatives
focusing on interventions for decreasing biodiversity loss in
response to overexploitation of commodities80, monitoring illegal
wildlife trade governed by the Convention on International Trade
in Endangered Species of Wild Fauna and Flora (CITES)81, and
voluntary corporate disclosure of carbon emissions (CDP)82.
These activities provide high-income, developed countries with
an additional opportunity for assisting smallholder producers in
malaria-endemic countries in ensuring the legality and certifica-
tion of their products. In this way, it will be possible to maintain
transparency throughout the production process to guarantee the
commercialization of origin-certified products51,76.

More stringent measures are fiscal instruments such as taxes
aimed at stemming overexploitation of natural resources83.
However, their imposition on international trade may conflict
with WTO rules. An alternative means is the distribution of
royalties for the ongoing use of natural resources to sustainable-
certified smallholder cooperatives, generating a virtuous cycle of
improving productivity whilst decreasing overexploitation,
deforestation, and malaria risk.

Having identified a number of demand-side measures to reduce
malaria risk that address the potential role of international trade, it
is important to point out that these must be designed with
potentially vulnerable smallholders in mind. The commercial trade
of basic commodities is a particularly important and reliable source
of cash income for smallholders, who exploit natural vegetation,
leading to deforestation and malaria11,84–86. For instance, charcoal
production is closely linked to deforestation in sub-Saharan Africa.
Recognising that the complex interplay between charcoal pro-
duction, deforestation, forest degradation, land use changes and
tenure systems is determined by the charcoal value chain,
approaches to reducing deforestation and malaria associated with
charcoal production must incorporate innovative technologies that
allow growing trees with high energetic content for charcoal pro-
duction, thus increasing the commercial value of the product and
decreasing land pressure87,88. Recent initiatives to ensure corporate
commitments aimed at reducing the sale of deforestation-
implicated commodities have not yielded robust results. Our
study therefore provides evidence for governments of malaria
endemic countries to undertake action for ensuring health policies
and malaria control programs are implemented in collaboration

with local communities and other stakeholders, in a global anti-
malaria strategy. In general, sharing responsibility, and obtaining
commitments and coordinated support from entire product value
chains, involving local governments, investors, traders, manu-
facturers and consumers, will be essential for establishing robust
tenure systems, and ensuring smallholders’ livelihood, whilst at the
same time reducing deforestation and malaria risk.

Methods
Definition and calculation of malaria risk. We define malaria risk by how many
cases there would be in the presence of deforestation but in the absence of any
public health intervention. There exists information on the evolution of actual
malaria cases over time (green curve in Fig. 5), and this information reflects many
factors influencing malaria trends, such as deforestation and interventions, but also
migration, temperature and climate change, amongst others. Our approach is
simply to take interventions out of this trend. We do this in a three-step procedure:
first, we regress actual malaria cases against interventions. Secondly, we take the
regression equation and set the intervention variables to zero. Thirdly, this yields
the estimated malaria cases in the absence of intervention, i.e. “malaria risk” as we
have defined it.

Multiple regression. To do this, we undertake in the first step a multiple
regression that fits the trends of actual malaria cases with a sufficiently high
goodness of fit (R2 = 0.91), and that explicitly includes deforestation and inter-
ventions as explanatory variables. We use individual data-tuples for each year in
the regression analysis. To this end, we subject current malaria incidence data Ir(t)
in countries r, over the 2000–2015 time period89 to a multiple regression against (a)
cumulative tree cover loss L since 200064,90, (b) the proportion n(t) of the popu-
lations using ITN91,92, and (c) the proportion a(t) of populations using ACT91,92,
as

P
r Ir tð Þ ¼ β0 þ βL

P
rLr tð Þ þ βnn tð Þ þ βaa tð Þ. Although we assume a linear

relationship in our regression, the relationship between malaria, tree cover loss and
interventions does not necessarily have to be linear. Our approach was to under-
take a multiple regression that fits the trends of actual malaria cases with a suffi-
cient R2, initially for the simplest functional relationship, which is linear. We found
R2 = 0.91. Of course, we could move to polynomial or other functional forms, but
the improvement on the overall R2 would be small, a maximum of 0.09. A different
functional form leading to a few 0.01 point of improvement to the R2 will neces-
sarily have to closely mimic the linear form that achieves R2 = 0.91. Therefore, we
do not expect that an increase of a few 0.01 in the R2 as a result of a different
functional form will change the results in the paper. This formulation implies that
factors other than deforestation and intervention—for example forest environment
(savannah and cultivation vs closed forest), migration, or temperature are con-
tained in the constant (β0 = 170.0).

The malaria incidences for the years 2001, 2005 and 2014 were badly represented
by an unweighted regression model. To this end, we attempted to fit the incidence
curve with a weighted function including interventions and tree cover loss (TCL).
This approach is justified because the goal of our regression is to model the
influence of deforestation on malaria incidence. Without weighting, a significant
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Fig. 5 Malaria incidence data over the 2000–2015 time period. Multiple
regression (black dotted curve) of malaria incidence data (green) over the
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and positive regression coefficient for TCL cannot be obtained. The regression
formula including weights ω(t) as is ωðtÞPr IrðtÞ ¼ β0 þ βL ωðtÞPrLr tð Þþ
βnωðtÞn tð Þ þ βaω tð ÞaðtÞ, with weights being 17.86 percent for 2001, 42.86 percent
for 2005 and 16.07 percent for 2014. The regression coefficients from this approach
are β0 = 164.1, βL = 0.43, βn =−243.3, and βa =−72.4. The choice of weights has
only a small influence on regression outcomes, and the land cover coefficient is
similar to that found by MacDonald and Mordecai (2019), who found a value of
3.3% increase in malaria incidence as a result of 10% increase in forest cover loss.

With the regression’s R2 = 0.91 (dotted black curve in Fig. 5), we find β0=
170.0 ± 1.8 × 106 cases (significant at the 99%-level of confidence), βL= 0.31 ±
0.05 × 106 cases per million hectares cumulative tree cover loss (99%), βn=−282 ±
38 × 106 cases per %ITN (99%), and βa= 143 ± 61 × 106 cases per %ACT (95%).

In the second step, we estimate overall malaria risk as incidence in the presence
of deforestation, but in the absence of ITN and ACT interventions by evaluating
the parametrized incidence regression formula for n(t)= a(t)= 0∀t, that isP

rRr tð Þ ¼ β0 þ βL
P

rLr tð Þ (β0= 170.0), the red solid curve in Fig. 5. This
measure of risk reflects that despite interventions, vector abundance increases, and
populations remain vulnerable because of continuing deforestation. In order to
isolate the portion of malaria risk that is attributable to deforestation (as opposed
to factors such as the forest environment), we subtract actual incidences from
overall malaria risk:

P
rRr;def tð Þ ¼ P

rRr tð Þ �P
r Ir tð Þ. Individual countries’

malaria risk values Rr,def(t) are derived then from the global total as Rr,def(t)= ∑r
Rr,def(t) * Ir(t)/∑rIr(t).

Basics of input–output analysis. The set of sectoral malaria risk values formed the
satellite block (Q block) for the MRIO model. A satellite block is a so-called
physical account matrix that holds information on physical data (e.g. related to
malaria risk), which is further coupled with an economic multi-regional
input–output table for quantifying the role of global consumption and interna-
tional trade in driving malaria risk.

Input–output (IO) analysis was conceived by Nobel Prize Laureate Wassily
Leontief in the 1930s and 1940s93,94. Today more than 100 statistical agencies
around the world regularly publish national IO databases in common formats
governed by UN standards95–97. At the heart of IO analysis lies a set of matrices
describing economic interdependence. The transactions matrix T holds elements
Tjk representing the supply of commodity j for use in industry k. Commodities and
industries spans the entire range of production, from agriculture, fishing forestry
and mining (primary) to manufacturing (secondary) and construction, utilities,
trade, hospitality, transport, communications, government administration and
other services (tertiary). The final demand matrix Y holds elements Ykl

representing the supply of commodity k for use by final demand agent l. Final
demand agents are households, the capital sector, the government and inventories.
The value-added matrix V holds elements Vij representing the supply of primary
input i for use by industry j. Primary inputs are wages and salaries, gross operating
surplus, taxes and subsidies.

Leontief’s basic accounting identity reads36 1VV’ + 1TT’ = T1T + Y1Y = x,
where the 1 = {1,…,1} vectors are suitable row or column summation operators, x

is total output, and the prime ‘ denotes transposition. Calling A ¼ Tbx�1, where the
hat ^ symbol denotes vector diagonalization, the accounting identity transforms
into AxþY1Y ¼ x , I� Að Þx ¼ Y1Y , x ¼ I� Að Þ�1Y1Y ¼ : LY1Y; where I is
an identity matrix with Iij = 1 if i = j and 0 otherwise, and where L :¼ I� Að Þ�1 in
the first mention only.

This inverse matrix links final demand Y1Y and total output x, and thus
incorporates the structure of the entire supply-chain network linking consuming
households with producing industries98. Because A ¼ Tbx�1, we find that

L :¼ ðI� T½ dT1Tþ Y1Y��1Þ�1, and thus, L can be computed from the transactions
and final demand matrices published by national statistical agencies. It is this
matrix that is interrogated in the extraction of malaria footprints from the global
supply-chain network. Table SI 1 shows the export–import malaria risk
associated with products-led deforestation, caused by just ten countries (net
importers in Fig. 2).

Construction of satellite account. Values of Rr,def(t) are then used to construct a
satellite account for the MRIO database. To this end, these values must be dis-
tributed across economic sectors. We used country-wise FAOSTAT data to estimate
the contribution of selected commodities to overall tree cover loss. We identify the
following commodities in FAOSTAT as being associated with deforestation: soy-
beans, oil palm fruit, cattle, sheep, buffalo, timber, wood products (such as furni-
ture), tobacco, cocoa, coffee and cotton. We use the FAOSTAT land-use (hectares)
dataset to calculate the year-to-year land-use change for each commodity crop. For
livestock commodities, where FAOSTAT data offers only animal head count
information, we calculate land-use area by multiplying head counts with estimated
stocking rates. The yearly change in land-use was then used to apportion malaria
risk between the selected commodities. For each country in the underlying MRIO,
these FAOSTAT commodities can be mapped to a unique sector in the corre-
sponding country classification. Hence, by using the FAOSTAT data as a proxy, we
were able to assign the tree cover loss data to each country in the Eora MRIO
without the need for further manual allocation. This mapping was then used to
allocate the country-wise malaria risks to the individual sectors within each country.

Data sources and statistical analysis. The global Leontief inverse Lrsij ;its com-
ponents Ars

ij , as well as data on global final consumption ystj and total output xi were
taken from the Eora MRIO database38. A malaria risk matrix Qr

i was determined in
a three-step procedure: First, we collected data on actual malaria incidence Ir(t) in
countries r, over the 2000–2015 time period2, and subjected these to a multiple
regression against (a) tree cover loss L64,90, (b) the proportion n(t) of populations
using ITN (insecticide-treated mosquito nets)89, and (c) the proportion a(t) of
populations using ACT (artemisinin-based combination therapies)89, asP

rIr tð Þ ¼ β0 þ βL
P

rLr tð Þ þ βnn tð Þ þ βaa tð Þ. Second, we estimate overall malaria
risk Rr(t) as incidence in the presence of deforestation, but in the absence of ITN
and ACT interventions by evaluating the parametrized incidence regression for-
mula for n(t)= a(t)= 0∀t, that is

P
rRr tð Þ ¼ β0 þ βLLr tð Þ (see Fig. 5). Finally, we

attribute the difference between overall malaria risk and actual cases to defor-
estation:

P
rRr;def tð Þ ¼ P

rRr tð Þ �P
r Ir tð Þ. Thus, we measure malaria risk using a

counterfactual: how many additional cases would there be in the presence of
deforestation but in the absence of any public health intervention within each
country. This is thus a synthetic unit, but a transparent and effective one for
signaling the magnitude of the public health threat exerted by export-induced
deforestation. This measure of risk reflects that despite interventions, vector
abundance increases, and populations remain vulnerable because of continuing
deforestation, insecticide resistance, treatment allergies, discontinuities in control
interventions, or inability to pay for imported intervention technology71. Third, we
used tree cover loss and commodity production99–101 data to allocate country totals
Rr,def(t) of malaria risk across deforestation-implicated commodities. This way, we
finally arrived at a malaria risk matrix Qr

i , satisfying
P

iQ
r
i ¼ Rr;def tð Þ, individually

for every year and country.

Modeling approach. Whilst in 2015, about 135 million cases of malaria were
recorded globally, we estimate that an additional 110 million people remain at risk
of contracting malaria due to continued deforestation (Fig. 5). Here, ‘at risk’ means
either actual cases requiring costly treatment (for example: purchase of medicines
such as artemisinin-based combination therapies) or vulnerability requiring costly
intervention (e.g. distribution of insecticide-treated mosquito nets). Correspond-
ingly, “malaria risk”means the number of potential malaria cases in the presence of
deforestation but in the absence of public health interventions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Codes and data for figures and tables are available on Zenodo repository (https://doi.org/
10.5281/zenodo.4536029). Data on global final consumption and total output were taken
from the Eora MRIO database that consists of a multi-region input–output table (MRIO)
model providing a time series of high-resolution IO tables with matching environmental
and social satellite accounts for 190 countries (https://worldmrio.com)102. Global tree
cover loss data were collected from Global Forest Change64. Data on malaria
commodities were obtained from MAP—Malaria Atlas Project89, (https://map.ox.ac.uk).
Commodity data were obtained from FAO—Food and Agriculture Organization103

(http://www.fao.org/faostat/en). All malaria cases data were collected from World Health
Organization (WHO - https://www.who.int/malaria/publications/world_malaria_report).

The underlying MRIO data are associated with measurement errors102, uncertainty
and reliability in the Eora MRIO tables (https://worldmrio.com/documentation/),
however due to their stochastic nature these tend to cancel out when performing the
Leontief analysis (Basics of input–output analysis). Aggregate MRIO-based measures
such as reported in this work are typically characterized by uncertainties of around 10%,
and existing assessments show that results obtained from different MRIO databases agree
well104.
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