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Abstract

Next-generation sequencing has made possible the detection of rare variant (RV) associations with quantitative traits (QT).
Due to high sequencing cost, many studies can only sequence a modest number of selected samples with extreme QT.
Therefore association testing in individual studies can be underpowered. Besides the primary trait, many clinically important
secondary traits are often measured. It is highly beneficial if multiple studies can be jointly analyzed for detecting
associations with commonly measured traits. However, analyzing secondary traits in selected samples can be biased if
sample ascertainment is not properly modeled. Some methods exist for analyzing secondary traits in selected samples,
where some burden tests can be implemented. However p-values can only be evaluated analytically via asymptotic
approximations, which may not be accurate. Additionally, potentially more powerful sequence kernel association tests,
variable selection-based methods, and burden tests that require permutations cannot be incorporated. To overcome these
limitations, we developed a unified method for analyzing secondary trait associations with RVs (STAR) in selected samples,
incorporating all RV tests. Statistical significance can be evaluated either through permutations or analytically. STAR makes it
possible to apply more powerful RV tests to analyze secondary trait associations. It also enables jointly analyzing multiple
cohorts ascertained under different study designs, which greatly boosts power. The performance of STAR and commonly
used RV association tests were comprehensively evaluated using simulation studies. STAR was also implemented to analyze
a dataset from the SardiNIA project where samples with extreme low-density lipoprotein levels were sequenced. A
significant association between LDLR and systolic blood pressure was identified, which is supported by pharmacogenetic
studies. In summary, for sequencing studies, STAR is an important tool for detecting secondary-trait RV associations.
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Introduction

Next-generation sequencing has already revolutionized the

study of complex traits, and made possible the detection of rare

variant associations. Many sequence based association studies are

currently being performed, some of which have already lead to the

discovery of associations with clinically important traits, such as

lipids levels [1], age related macular degeneration [2], inflamma-

tory bowel disease [3], blood pressure [4], body mass index [5],

etc. In particular, there is increasing interest to detect associations

with quantitative traits (QT). It has been suggested that complex

traits can be due to multiple variants with small effects, and are

quantitative in nature [6,7]. Mapping multiple quantitative traits

may help elucidate the etiology of complex traits, reducing sample

heterogeneity [8], dissecting gene pleiotropy and refine the

definition of complex diseases [7,9,10]. For example, recent

studies of type 2 diabetes have been focused on multiple related

QTs, such as fasting glucose levels [11], insulin resistance levels

[11], and c-reactive proteins [12]. Many quantitative traits are

usually measured in different studies as secondary outcomes. It is

of great interest to combine multiple studies for detecting

associations with commonly measured primary or secondary

traits. For example, the National Heart Lung and Blood Institute-

Exome Sequencing Project (NHLBI-ESP) is studying a variety of

different phenotypes and employed both extreme and random

sampling. In order to improve power, all samples with the

phenotype of interest measured are jointly analyzed. Specifically,

the association analysis of low density lipoprotein cholesterol

(LDL) levels is performed by combining several studies which

include a well-phenotyped random population cohort, selected

samples with extreme LDL levels as well as individuals with

extreme body mass index (BMI).

Many methods have been developed for detecting rare variant

associations [13–19]. These methods are all based upon aggregating

multiple rare variants across a genetic region, which is usually a gene.

Compared to analyzing each variant individually, these region based
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tests can be more powerful. However, rare variants that are involved

in complex trait etiologies usually only have moderate effect sizes, and

their aggregated frequencies across a genetic region can still be low. It

is therefore necessary to sequence and analyze a large number of

samples in order to have adequate power to detect associations.

Although next generation sequencing is much more cost effective

than Sanger sequencing, it is still expensive to generate high read

depth data for large numbers of samples. Given cost constraints, in

order to improve power, many studies sequence samples with

extreme QT rather than the entire cohort. The selective sampling

study design produces challenges for analyzing secondary traits.

Without properly accounting for the sample ascertainment mecha-

nisms, type I errors for detecting secondary trait associations may be

inflated [20,21]. This is because due to the correlations between the

primary and secondary traits, mean values for the secondary traits

will be different between individuals with primary trait from opposite

extreme tails. Additionally if the primary trait is associated with a

gene region, the cumulative variant frequencies will also be different.

Therefore spurious association can be created by ascertainment. The

bias for the naı̈ve analysis of secondary trait is demonstrated both

theoretically and empirically in this article.

Several methods exist for detecting secondary trait associations

in selected samples. For example, a retrospective likelihood

method was developed for mapping secondary phenotypes using

regression models (SPREG) in case control studies [20]. It was

subsequently extended in an empirical Bayesian framework [22],

which utilizes genotype information from cases for rare diseases

and can be more powerful than the retrospective likelihood

method. However, both methods are not directly applicable to the

studies where the primary trait is quantitative and extreme

sampling is implemented. We previously developed a method for

detecting multiple (secondary) trait associations (MTA) in selected

samples, which jointly models multiple phenotype associations and

sampling ascertainment status [21]. MTA can be used to analyze

data from studies with known sampling mechanisms, e.g. case

control, and extreme sampling designs. It incorporates several rare

variant association tests, whose statistical significance can be

evaluated analytically e.g. the combined multivariate and collaps-

ing (CMC) [16], and Gene- or Region-based Analysis of Variants

of Intermediate and Low frequency (GRANVIL) [18]. Weighted

sum statistics [14,23] can also be incorporated, if the weights that

are assigned to each variant site are not dependent on the trait.

One major advantage of using MTA is that cohorts ascertained

under different sampling schemes can be combined for detecting

associations with commonly measured traits. These studies can be

targeted at the same or different primary traits. By combining data

from different studies, much larger sample sizes can be analyzed

and the power to detect associations can be greatly improved [21].

However none of these methods for detecting secondary

associations incorporate sequence kernel association test (SKAT),

a powerful variance component score test based method. This

method can be more powerful when causal variants have

bidirectional effects and/or a large proportion of the variants

within gene region are non-causal.

Standard permutation algorithms cannot be applied to obtain

empirical p-value. This is because when the primary and secondary

traits are correlated and the genetic region is associated with the

primary trait, neither the secondary trait residuals nor the locus

genotypes are interchangeable under the null hypothesis. Therefore,

the statistical significance can only be evaluated via asymptotic

approximations, which has several notable limitations: 1.) Due to

the low frequency of rare variants, asymptotic approximation for

some tests may be violated, which can lead to either inflated type I

error or loss of power. 2.) For some rare variant association

methods, the analytical distribution for the test statistics is unknown

and therefore the statistical significance has to be evaluated

empirically. These rare variant tests that require evaluating p-

values via permutation are often more powerful than the methods

implemented in MTA, e.g. CMC or GRANVIL. It is therefore

desirable that these tests can be applied to analyze secondary traits.

To overcome the limitations of existing methods, a unified

model was developed to detect secondary trait associations using

selected samples. In the samples with extreme primary quantitative

traits, through re-parameterizing the likelihood functions, inter-

changeable residuals for the secondary traits can be obtained

under the null hypothesis. The residuals are approximately

independent, and normally distributed. We proved theoretically

that the analysis of secondary trait associations can be equivalently

implemented by analyzing the correlation between the secondary

trait residuals and the gene/genetic region. Therefore, any rare

variant association test that can analyze QT in random population

based studies can be incorporated in STAR. In addition, multiple

cohorts can be jointly analyzed through conventional mega-

analysis methods that use individual participant data or meta-

analysis methods that use summary level statistics.

A variety of popular rare variant tests have been implemented

in the STAR framework and the power to detect secondary trait

associations was evaluated. Specifically, we considered the

weighted sum statistic (WSS) [14,23], sequence kernel association

tests (SKAT) [17], and variable threshold test (VT) [24].

Additionally the kernel based adaptive cluster test (KBAC) [15],

which was originally developed for analyzing binary disorders, was

extended to analyze quantitative traits and incorporated in STAR

for detecting associations with secondary phenotypes (Text S1).

The performances for these methods were compared using

extensive simulation studies. Genetic data were simulated under a

realistic population genetic model as described by Kryukov et al

[25], which incorporates both demographic change and purifying

selections. Phenotypes were simulated based upon parameters

estimated from clinically important complex traits. It is demon-

strated that under a broad variety of phenotype models, the power

for detecting secondary trait associations can be greatly improved

Author Summary

Next-generation sequencing has greatly expanded our
ability to identify missing heritability due to rare variants.
In order to increase the power to detect associations, one
desirable study design is to combine samples from
multiple cohorts for mapping commonly measured traits.
However, many current studies sequence selected samples
(e.g. samples with extreme QT), which can bias the analysis
of secondary traits, unless the sampling ascertainment
mechanisms are properly adjusted. We developed a
unified method for detecting secondary trait associations
with rare variants (STAR) in selected and random samples,
which can flexibly incorporate all rare variant association
tests and allow joint analysis of multiple cohorts ascer-
tained under different study designs. We demonstrate via
simulations that STAR greatly boosts the power for
detecting secondary trait associations. As an application
of STAR, a dataset from the SardiNIA project was analyzed,
where DNA samples from well-phenotyped individuals
with extreme low-density lipoprotein levels were se-
quenced. LDLR was identified to be significantly associated
with systolic blood pressure, which is supported by a
previous pharmacogenetics study. In conclusion, STAR is
an important tool for sequence-based association studies.

Secondary Trait Association with Rare Variants
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through the use of more powerful rare variant tests that are

incorporated in STAR. There does not exist a method that is

consistently the most powerful, and the power difference between

top performing methods is generally small. When the effects of

causal variants are unidirectional, the VT test outperforms other

methods in most scenarios. When there are variants with effects in

opposite directions or only a small proportion of the variants are

causal, SKAT can be more powerful than alternative methods in

many settings.

The STAR method was also used to analyze a published

sequence dataset from the SardiNIA project [1], where nine genes

were sequenced in 256 individuals with extreme LDL levels

(individuals taking lipid-lowering therapies were not considered for

the analysis). In the original article by Sanna et al [1], the authors

focused on detecting associations with the primary trait LDL, and

did not consider analyzing other metabolic and lipids traits. In this

article, the analysis was extended to detect associations with other

clinically important traits, which include high density lipoprotein

cholesterol (HDL), total cholesterol level (TCL), triglyceride (TG),

insulin levels (INSULIN), BMI, systolic and diastolic blood

pressure (SysBP and DiasBP). One association was identified

between LDLR and SysBP, which is statistically significant after

applying a Bonferroni correction for testing multiple genes and

traits. This association has strong biological support from

pharmacogenetics studies [26]. These findings provide new insight

on the etiology for the LDLR gene, and established the importance

of our method in sequence based association studies.

An R-package, STARSEQ which implements the STAR

method is available through the Comprehensive R Archive

Network (CRAN) at http://cran.r-project.org/web/packages/

STARSEQ/. Additional companion softwares are deposited at

http://code.google.com/p/starseq/.

Materials and Methods

STAR model can be used with any rare variant test to detect

associations with secondary traits in studies that use extreme

sampling. The multi-site genotype for individual i is denoted by a

vector ~XXi~ X 1
i ,X 2

i , � � � ,X S
i

� �
, where S is the total number of

variant sites that are jointly analyzed. The set of variants can be

determined by variant frequency threshold (either fixed or

variable), or functional annotations (e.g. non-synonymous variants)

etc. Each entry in the vector ~XXi can be coded by the number of

minor alleles, e.g. X s
i ~2 if the genotype is homozygous for the

minor allele. The primary QT is denoted by Y1i, while the

secondary trait under consideration is denoted by Y2i. In vector (or

matrix) notations, the primary traits, secondary traits and

genotypes for the entire sample are respectively denoted by

~YY1~ Y11, � � � ,Y1Nð Þ, ~YY2~ Y21, � � � ,Y2Nð Þ and

X
<
~ ~XX T

1 , � � � ,~XX T
N

� �T

.

Ascertainment Corrected Likelihood Model under the
Null Hypothesis

Under the null hypothesis of no gene/secondary trait associa-

tions, following the MTA framework, a multivariate generalized

linear model can be implemented to estimate nuisance parameters

[21]. The link functions for the mean parameters of the two traits

satisfy

m Y1ið Þ~b10z
P

s b1sX
s
i z

P
j1

a1j1
Zij1

m Y2ið Þ~b20z
P

j2
a2j2

Zij2

(
ð1Þ

In the above model, Zij1
and Zij2

are covariates, such as age or

sex.

The residual terms for the secondary traits, i.e. Y2i{m Y2ið Þ are

correlated with the primary trait, and not interchangeable under

the null hypothesis, i.e.

cov Y2i{m Y2ið Þ,Y1ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Y1ið Þvar Y2ið Þ

p ~r ð2Þ

It was previously shown via simulations that naı̈ve inferences for

secondary trait associations, which ignore sample ascertainment

mechanisms, can be biased [20,21]. It can also be proved

theoretically that due to extreme sampling on the primary trait,

spurious associations can be created between the gene locus and

secondary trait (Text S2, Figures S1 and S2). Without adjusting for

the sample ascertainment mechanisms, the biases in the secondary

trait effects will increase linearly with respect to the trait residual

correlation r and approximately linearly with respect to the

primary trait effects when the magnitude of primary trait effects is

small. Using this theoretical framework, we also evaluated some

standard adjustment methods. e.g. 1.) Separately analyzing

individuals with high and low extreme primary traits, and then

combining the results via meta-analysis. or 2.) Incorporating an

indicator to denote whether an individual has a high or low

extreme primary trait as a covariate, and perform linear regression

analysis using the entire sample. We proved theoretically that these

methods will not eliminate the bias in the association analysis of

secondary traits, and type I error will still be inflated after the

adjustment.

In order to obtain unbiased results, sampling schemes have to

be properly modeled. Ascertainment corrected likelihood can be

used, which jointly models sample ascertainment status Ai and

genotype/phenotype association, i.e.

p Y1i,Y2i DAi,~XX i,~ZZi; m Y1ið Þ,m Y2ið Þ,s1,s2

� �
~

p Ai DY1i,Y2ið Þ|p Y1i,Y2i D~XX i,~ZZi; m Y1ið Þ,m Y2ið Þ,s1,s2

� �
Ð

p Ai Dy1i,~XX i,~ZZi

� �
|p y1i D~XX i,~ZZi; m Y1ið Þ,m Y2ið Þ,s1,s2

� �
dy1i

ð3Þ

The likelihood model can be used for both trait dependent

sampling and population based random sampling. We showed

analytically that the secondary trait effects can be consistently

inferred under the ascertainment corrected likelihood model.

Details for the likelihood specification can be found in (Text S3).

Re-Parameterization of the Likelihood Function
The likelihood function in equation (1) needs to be re-

parameterized in order to facilitate deriving the SKAT statistics

and performing permutations. It is clear that

p Y1i,Y2ij~XXi,~ZZi; m Y1ið Þ,m Y2ið Þ,s1,s2

� �
~p Y2ijY1i,~XXi,~ZZi; m Y1ið Þ,m Y2ið Þ,s1,s2

� �
|p Y1ij,~XXi,~ZZi; m Y1ið Þ,m Y2ið Þ,s1,s2

� � ð4Þ

The conditional probability

p Y2i DY1i,~XX i,~ZZi; m Y1ið Þ,m Y2ið Þ,s1,s2

� �
satisfies

Secondary Trait Association with Rare Variants
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p Y2ijY1i,~XXi ,~ZZi ; m Y1ið Þ,m Y2ið Þ,s1,s2

� �
*

N
X

j2
a2j2

Zij2
zs2r=s1 Y1i{b10{

X
s
b1sXs{

X
j1

a1j1
Zij1

� �
,

�

1{r2
� �

s2
2

�
ð5Þ

Instead of estimating the variance and correlation coefficients for

e1i,e2i, the following parameters are estimated, i.e.

t1~s1,t2~ 1{r2
� �

s2,b2r1
~s2r=s1. As is shown in (Text S3),

the Jacobian for the re-parameterization, i.e.

L t1,t2,b2r1

� �.
L s1,s2,rð Þ is non-degenerate and the re-parame-

terization is one to one and invertible. Therefore, an equivalent

mean model can be fitted under the null hypothesis, i.e.

m Y1ið Þ~b10z
P

s b1sXsz
P

j1
a1j1

Zj1

m Y2ið Þ~b20zb2r1
Y1i{m Y1ið Þð Þz

P
j2

a2j2
Zj2

(
ð6Þ

Practical issues for fitting the model are discussed in (Text S4).

In this model, the residual errors e1i~Y1i{m Y1ið Þ and

e2i~Y2i{m Y2ið Þ for the primary and secondary traits are

uncorrelated. In particular, the residual errors e2i after re-

parameterization are interchangeable under the null hypothesis.

Score Statistics for Burden Tests and Variance
Component Score Test

Burden tests, such as CMC and WSS, aggregate multiple rare

variants across a genetic region and analyze them jointly. The

following model can be used to obtain score statistics for a burden test:

Y1i~b10z
P

s b1sX
s
i z

P
j1

a1j1
Zij1

ze1i

Y2i~b20zb2K K ~XXi

� �
zb2r1

Y1i{b10{
P

s b1sXs{
P

j1
a1j1

Zij1

� �
z
P

j2
a2j2

Zj2
ze2i

8>><
>>: ð7Þ

In formula (7), K ~XX i

� �
is the genotype coding for the locus multi-site

genotypes. Examples include the weighted sum coding [14], i.e.

K ~XX i

� �
~
P

s wsX s
i , where each variant site is assigned a weight and

the weighted genotypes are aggregated. For some rare variant

association tests such as KBAC [15], the genotype coding can also

depend on the QT, i.e. K ~XX i,Yi

� �
. Formula 7 can be used for

detecting single variant associations as well, where K ~XX i

� �
is the

coding for single variant genotype.

Score tests can be formally constructed from the joint likelihood

for testing the null hypothesis of no gene/secondary trait

associations, i.e. H0 : b2K~0. If the samples are ascertained based

upon only the primary trait, score tests can be equivalently

constructed from the conditional likelihood, i.e.

p Y2i DY1i,~XX i; b2K ,t1,t2,,m Yi1ð Þ,m Yi2ð Þ
� �

. This is because the joint

likelihood can be factorized, i.e.

p Y1i,Y2ijAi,~XXi; b2K ,t1,t2,m Yi1ð Þ,m Yi2ð Þ
� �

~p Y2ijY1i,Ai,~XXi; b2K ,t1,t2,m Yi1ð Þ,m Yi2ð Þ
� �

|p Y1ijAi,~XXi; t1,t2,m Yi1ð Þ,m Yi2ð Þ
� � ð8Þ

When the samples are ascertained based upon the primary trait,

the distribution of Y2i conditional on Y1i is independent of the

ascertainment status Ai, i.e.

p Y2ijY1i,Ai,~XXi; b2K ,t1,t2,m Yi1ð Þ,m Yi2ð Þ
� �

~

p Y2ijY1i,~XXi; b2K ,t1,t2,m Yi1ð Þ,m Yi2ð Þ
� �

:

In addition, the term p Y1i DAi,~XX i; t,m Yi1ð Þ,m Yi2ð Þ
� �

does not

contain the parameter of interest b2K . The score function thus

takes the form

U b2Kð Þ~
L
P

i log p Y2i DY1i,~XX i; b2K ,t̂t1,t̂t2,m̂m Y1ið Þ,m̂m Y2ið Þ
� �� �

Lb2K

~

P
i K ~XX i

� �
Y2i{b2K K ~XX i

� �
{m̂m Y2ið Þ

� �
t̂t2ð Þ2

ð9Þ

where t̂t1, t̂t2, m̂m Yi1ð Þ and m̂m Yi2ð Þ are maximum likelihood estimates

under the null hypothesis.

It is clear from formula (9) that U b2Kð Þ is proportional to the

covariance between the secondary trait residuals and the locus

genotype coding. Given that t̂t1, t̂t2, m̂m Yi1ð Þ and m̂m Yi2ð Þ are

consistent estimators under the null hypothesis, by Slutsky’s

theorem, the residuals for the secondary trait i.e. Yi2{m̂m Yi2ð Þ are

approximately normally distributed and interchangeable under the

null hypothesis. Therefore, the analysis of rare variant secondary

trait associations can be implemented by analyzing the correlation

between the corrected residuals and the locus genotype coding.

Standard permutation algorithms can be implemented by shuffling

the residuals under the null hypothesis. In our STARSEQ

package, we also provide flexible tools for calculating the adjusted

secondary trait residuals, which can be analyzed by any user

specified rare variant association test.

Using similar ideas, we show in (Text S5), that the extended

SKAT statistic in STAR has the form

S~ ~YY 2{m̂m ~YY 2

� �� �T

Ker X
<

,X
<� �

~YY 2{m̂m ~YY 2

� �� �
, ð10Þ

where Ker ~XX i,~XX j

� �
is the kernel function used to compare two

multi-site genotypes ~XXi and ~XXj , and

m̂m ~YY 2

� �
~ m̂m Y21ð Þ, � � � ,m̂m Y2Nð Þð Þ is the estimated mean secondary

trait value under the null model. P-values for the extended SKAT

method can be obtained either analytically or via permutation.

Extensions of KBAC Test to Analyze Quantitative Trait
Associations

The KBAC test was previously developed for the analysis of

binary trait associations [15]. It is extended to analyze rare variant

QT associations in studies using randomly ascertained samples or

samples with extreme traits. The extended KBAC method has also

been incorporated in STAR for analyzing secondary trait

associations. The details for the extensions are given in (Text S1).

Evaluation of Type I Errors and Power
Type I error and power were evaluated for the following rare

variant association tests that were extended in STAR, i.e. CMC,

KBAC, WSS, SKAT and VT. Genetic data were generated

Secondary Trait Association with Rare Variants
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according to a four parameter demographic model for Europeans

[25,27]. In addition, purifying selection is also modeled, which

influences the variant site frequency spectrum. Among the variants

with selection coefficients .1024, 50% are randomly chosen to be

causal for the primary trait, and another 50% of the variants are

independently chosen to be causal for the secondary trait. The set

of causal variants for the primary trait are denoted by C1 and that

for the secondary trait are denoted by C2. Variants belonging to

the intersection of C1 and C2 modulate both the primary and

secondary phenotypes. QTs were simulated according to the

following bivariate normal distribution:

Y1i

Y2i

� �
*MVN

b10z
P

s[C1
~bb1sX

s
i

b20z
P

s[C2
~bb2sX

s
i

0
@

1
A,

s2
1 rs1s2

rs1s2 s2
2

" #0
@

1
A ð11Þ

The magnitudes of the causal variant effects are assumed to be

inversely correlated with the minor allele frequencies (MAF) ps, i.e.

~bb2s

		 		~~bb2, max{
~bb2, max{

~bb2, min

� �

max
s[C

psð Þ{ min
s[C

psð Þ
� �

| ps{ min psð Þð Þ,s[C2

For a special case when ~bb2, max~
~bb2, min, the magnitude for the

effects of all rare causal variants is constant, i.e.
~bb2, max~

~bb2, min~
~bb2s,s[C2. In the simulations, we considered

models where 1.) ~bb2, max~
~bb2, min~0:52.) ~bb2, max~

~bb2, min~0:25

and 3.) ~bb2, min~0:125 and ~bb2, max~0:75. For each set of parameter

values of ~bb2, max and ~bb2, min, we evaluated the power for different

rare variant association tests when 1.) all causal variants have

effects in the same direction or 2.) 80% of the variants increase the

mean secondary trait value while the remaining 20% decrease the

mean secondary trait value. In the simulations, the primary and

secondary traits are assumed to be positively (or negatively)

correlated with coefficients r~0:6 (or r~{0:6). For the

evaluation of type I errors, datasets were simulated with
~bb2, max~

~bb2, min~0.

Data for selective sampling studies are simulated, where for

each dataset, a total of 5,000 individuals with extreme primary

trait values are selected from a cohort of 100,000 individuals.

Two-sided alternative hypothesis was tested for each method.

Although p-values for CMC and SKAT can be obtained

analytically, they can either be conservative or anti-conservative

[23]. In order to calibrate the distribution of p-values, we

evaluated the statistical significance of all methods empirically

using 5,000 permutations. The power and type-I errors for each

method were obtained using 10,000 replicates for a significance

level of a~0:05. As a comparison to STAR, type I error for linear

regression analysis was also evaluated, where sample ascertain-

ment mechanisms were ignored.

Application of STAR to Meta-Analysis
In order to illustrate the application of STAR for combining

multiple cohorts, a meta-analysis of three studies was simulated.

The primary trait for each study is different and a common

secondary trait is measured for all studies. In the first study, the

gene region is associated with the primary trait, and causal

variants have an effect of 20.5. The correlation between the

primary and secondary traits is 0.6. In the second study, the

primary trait is associated with the gene region, and causal

variants have an effect of 0.25. The primary and secondary traits

are correlated with coefficient 0.4. In the third study, the gene

region is not associated with the primary trait, and the correlation

between the primary and secondary traits is 20.2. In each study, a

different pool of 50,000 samples was simulated and 2,500

individuals with extreme primary trait were selected and analyzed

for association. P-values for all rare variant tests in each study were

obtained based upon 5,000 permutations. Meta-analysis is

performed by combining Z-score statistics, which are transformed

from p-values and weighted by the square root of the sample sizes

in each study [28].

In order to evaluate type I errors, data were simulated under the

assumption that the secondary trait effects for all variants were 0.

The empirical distribution of p-values was obtained using 10,000

replicates. For evaluating power, two scenarios were considered,

i.e. (A) causal variants have an unidirectional effect of 0.5; (B)

causal variants have bidirectional effects, where 80% of the causal

variants have effect 0.5 and the other 20% of the causal variants

have effect 20.5.The power for analyzing each individual study

and meta-analysis was evaluated using 10,000 replicates under a

significance level of a= 0.05.

The Analysis of the SardiNIA Sequence Dataset
Association analyses were performed for the nine genes that

were sequenced from the SardiNIA project [1]. First, coding

regions of four genes, APOB, B3GA4, LDLR and PCSK9 were tested

for associations with the eight metabolic QTs. The genes APOC1,

APOC2, APOE, B4GA4 contain no variants with MAF,1%, and

SORT1 contains only 1 rare variant site. Gene-based association

analysis was not performed for these five genes. Among the 256

individuals, 33 were taking blood pressure (BP) lowering medica-

tions; and their BP levels were adjusted by adding 10 mm Hg to

their SysBP and 5 mm Hg to DiasBP levels [29]. Following the

same strategy as the initial LDL analysis [1], residuals for each

trait were obtained and quantile-normalized after adjusting for

age, age6age and sex in the entire SardiNIA cohort. The

normalized residuals of the 256 samples were analyzed for

associations with the four genes, i.e. APOB, B3GA4, LDLR and

PCSK9. The five rare variant association tests incorporated in

STAR were used to analyze the data. In addition to the secondary

traits, the associations with the primary trait (i.e. LDL levels) were

also analyzed. For the rare variant tests that use fixed MAF

thresholds (i.e. CMC, WSS, KBAC and SKAT), variants with

MAF,1% were analyzed. For VT test, variants with MAF,5%

were used in the analysis. The secondary traits were also analyzed

using standard linear regression that ignores the ascertainment

mechanism, as a comparison to the analysis using the STAR

method.

Results

Evaluation of Type I Error
Type I error for STAR was investigated when 1.) the gene

region is neither associated with the primary trait nor the

secondary trait. 2.) the gene region is associated only with the

primary trait but not the secondary trait. The quantile-quantile

plots of empirical p-values and their theoretical expectations are

displayed for different rare variant tests. It can be seen that all tests

incorporated in the STAR method have well controlled type I

error. The p-values for the five tests are slightly conservative even

when permutation is used to evaluate significance. This can occur

when either the aggregate variant frequencies are low or the

sample size is not sufficiently large. For example, when the

primary trait effect is ~bb11~0:5 and residual correlation is r~0:6,
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the type I errors for CMC, WSS, KBAC, VT and SKAT are

respectively 0.048, 0.046, 0.042, 0.045 and 0.047 (Figure 1).

As a comparison, we also evaluated type I errors of linear

regression analysis that ignores sample ascertainment mechanisms.

When the gene region is not associated with the primary trait, type

I errors for all rare variant tests are well controlled. However, if the

gene region is also associated with the primary trait, the

distribution of p-values under the null hypothesis is highly skewed

and the type I errors for all tests are seriously inflated (Figure S3),

which is concordant with our theoretical expectations.

Evaluation of Power
The power of detecting secondary trait associations was

compared for a variety of rare variant tests (Figure 2; Figure 3;

and Figures S4, S5, S6, S7). Compared to the CMC method, the

extended SKAT, WSS, KBAC and VT methods in STAR can be

more powerful under a broad variety of models. For example,

when the primary trait is associated with the gene region with

effect ~bb11~0:5 and trait residual correlation is r~{0:6, if causal

variants have fixed unidirectional secondary trait effect, i.e.

b2s~0:5,s[C2, the power for WSS, KBAC and VT tests are

respectively 73.5%, 74.1% and 78.1%, which all have greater

power than the CMC (71.5%) (Figure 2). If the secondary trait

effects are bidirectional, the power for the VT (50.6%) and SKAT

(54.3%) tests are much higher than that of the CMC (41.4%), and

the power for KBAC (44.1%) is also slightly greater than the

power for the CMC (Figure 3).

VT can be more powerful than methods that use fixed variant

frequency threshold, when the secondary trait effects are

unidirectional. This is because using a fixed variant frequency

threshold may result in the inclusion of higher frequency non-

causal variants or the exclusion of more frequent causal variants

from the analyses. For example, when the primary trait effect is
~bb11~0:5 and trait residual correlation is r~{0:6, if the

secondary trait effects are unidirectional and fixed with
~bb2s~0:5,s[C2, the power for VT is 78.1%, which is considerably

higher than the power for the CMC (71.5%) (Figure 2). However,

the difference in power between the best performing methods is

small. For instance, when the primary trait effect is ~bb11~0:5 and

trait residual correlation is r~0:6, if the secondary trait effects are

unidirectional and variable with ~bb2, max~0:75 and ~bb2, min~0:125,

the power for VT is 85.9%, which is only 0.3% and 2.6% higher

than the power for the WSS and KBAC.

The variance component score test SKAT is less powerful than

burden tests when causal variant effects are unidirectional. For

example, when ~bb11~0:5, r~0:6, and the causal variant effects are

unidirectional with D~bb2sD~0:5,s[C2, the power for SKAT is

53.1%, which is 24.3% lower than VT and 21.6% lower than

KBAC (Figure 2). However, when the causal variant secondary

trait effects are bidirectional, SKAT is among the most powerful

methods. For instance, if the magnitudes of the causal variant

effects are inversely correlated with MAFs, when ~bb11~0:5, and

r~{0:6, the power for SKAT is 63.2%, which is much greater

than the power for CMC (49.2%), WSS (51.0%), and KBAC

(54.4%) and slightly higher than the power for VT (60.3%) (Figure

S5).

When the gene region is associated with both the primary and

secondary traits, the power to detect secondary trait associations

can be greater than when the gene region is only associated with

the secondary trait. This is because variants with pleiotropic effects

can be more enriched through extreme sampling. For example,

when secondary trait effects are ~bb2s~0:5,s[C2, and residual

correlation is r~0:6, if the gene region is not associated with the

primary trait, the power for CMC, WSS, KBAC, VT and SKAT

are respectively 61.9%, 61.4%, 64.7%, 67.7% and 49.7%

(Figure 2). However, if the gene region is also associated with

primary trait with effect ~bb11~0:5, the power for the five tests

increases to 65.3%, 63.3%, 67.7%, 70.1% and 53.1% respectively

(Figure 2). Therefore, the power for detecting secondary trait

associations can also be increased through sequencing samples

with extreme primary trait values.

Application of STAR to Meta-Analysis
The power and type I errors for STAR were evaluated for a

simulated meta-analysis of three studies. As shown in (Figure S8),

the empirical p-values and their theoretical expectations are well

aligned on the quantile-quantile plot. Under a significance level of

a= 0.05, the type I errors for the five rare variant tests are CMC

(0.051), WSS (0.049), KBAC (0.049), VT (0.047), SKAT (0.051),

which are well controlled. Due to the small sample size that is

used, the type I errors for analyzing each individual study can still

be slightly conservative. For example, in study 1, where causal

variant effect for the primary trait is 20.5 and the correlation

between the primary and secondary traits is 0.6, the type I errors

for the five tests are respectively: CMC (0.046) WSS (0.044),

KBAC (0.046), VT (0.047) and SKAT( 0.045).

We also evaluated the power of the STAR method under the

alternative hypothesis (Figure S9). It can be seen that the power for

meta-analysis is always higher than the power for each individual

study, which highlights the benefit of combining multiple studies to

detect associations with commonly measured traits.

Analyses of SardiNIA Sequence Dataset
Sequence data from the SardiNIA project were analyzed to

detect associations with multiple lipids and metabolic traits. First,

association analyses were carried-out for the primary trait LDL

levels (Table 1). In the original article by Sanna et al [1], extreme

LDL values were dichotomized and association analyses were

performed by comparing variant carrier frequencies between

individuals sampled from opposite ends of the trait distribution.

Only APOB was found to be nominally significantly associated with

LDL (p-value 0.03). When QT values are analyzed instead of the

dichotomized trait and more powerful association methods are

used, the power to detect associations with the primary trait can be

increased. For the association with APOB, the p-values for the five

tests are pCMC~0:014, pWSS~0:029, pKBAC~0:026,

pWSS~0:045, pVT~0:045, pSKAT~0:317. Additionally a signif-

icant association with LDLR that was not previously detected was

also observed (pCMC~0:050, pWSS~0:025, pKBAC~0:035,

pVT~0:009, pSKAT~0:234). Among the tests that were used to

analyze the association between LDLR and LDL, VT gives the

smallest p-value. On the other hand, for the association with

APOB, the score statistics from VT are maximized at the same

MAF threshold as used by the other tests (i.e. 1%). In this case, the

CMC test gives the most significant p-value.

Next we analyzed secondary trait associations with the four

genes, i.e. APOB, B3GA4, LDLR and PCSK9 (Table 2). One

significant association, i.e. the association between LDLR and

SysBP, is identified by CMC, WSS and KBAC after applying a

Bonferroni correction for testing multiple genes and traits. The p-

values for VT and SKAT are also nominally significant

(pCMC~9:14|10{4, pWSS~3:08|10{4, pKBAC~1:20|10{3,

pVT~3:00|10{3, pSKAT~6:00|10{3). The score statistics in

VT are maximized at the MAF cutoff 1%. In this scenario, the p-

value of VT is not as significant as that of CMC, WSS and KBAC,
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because the burden test statistics are not increased at alternative

frequency thresholds and a penalty for multiple testing is paid.

It is interesting to note that LDLR is associated with both the

primary trait LDL and the secondary trait SysBP, which are

correlated with a coefficient of 0.145 (Table S1). It is possible that

a portion of the rare variants in LDLR have pleiotropic effects and

are enriched in the dataset via selective sampling on the primary

trait, which increase the power for detecting secondary trait

associations.

We also compared the analysis using STAR and standard linear

regressions (Table S2). Due to the small sample sizes that are used,

we did not observe an excess of false positive signals for the naı̈ve

linear regression analysis. However, we noted that for the

association between LDLR and SysBP, the p-values from STAR

are smaller. In addition, for the associations between LDLR,

PCSK9 and TCL that were previously implicated in genome-wide

association studies [30], the p-values from STAR are also more

significant.

Discussion

In this article, we present a likelihood model which can be used

to analyze secondary trait associations in selected samples. The

method corrects for the bias in the distribution of the secondary

Figure 1. Quantile-Quantile plot of p-values for rare variant tests in STAR under the null hypothesis of no gene/secondary trait
associations. Five tests were evaluated, i.e. CMC, WSS, KBAC, VT and SKAT. Empirical p-values for each test were plotted against their theoretical
expectations. A variety of scenarios with different primary trait effects and trait residual correlations were examined, which include (A)
~bb11~0:5,r~0:6; (B) ~bb11~0:5,r~{0:6; (C) ~bb11~0,r~0:6 and (D) ~bb11~0,r~{0:6. P-values were obtained with 5,000 permutations. Type I error was
evaluated using 10,000 replicates. For each replicate, 5,000 individuals with extreme quantitative traits were selected from a cohort of 100,000.
doi:10.1371/journal.pgen.1003075.g001
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traits induced by selective sampling. All rare variant association

analysis methods can be extended within the STAR framework.

STAR makes it possible to apply more powerful rare variant

association tests for the analysis of secondary trait and allows

jointly analyzing cohorts that were ascertained for different

primary traits. The power for detecting associations with

secondary traits can be greatly enhanced. In addition to

performing gene-based association analysis, the STAR method

and STARSEQ software can also be applied to detect single

variant associations (data not shown).

Currently, many sequence based genetic studies are being

performed to detect associations with complex traits. Due to the

Figure 2. The power for detecting associations with secondary traits in selected samples. Power is calculated for CMC, WSS, KBAC, VT, and
SKAT implemented in STAR framework. Secondary trait effects are assumed to be fixed and unidirectional with ~bb2s~0:5,s[C2 . A variety of scenarios

with different primary trait effects and trait residual correlations were examined, which include (A) ~bb11~0:5,~bb2, max~
~bb2, min~0:5,r~{0:6; (B)

~bb11~0:5,~bb2, max~
~bb2, min~0:5,r~0:6; ( C ) ~bb11~{0:5,~bb2, max~

~bb2, min~0:5,r~{0:6; ( D ) ~bb11~{0:5,~bb2, max~
~bb2, min~0:5,r~0:6; ( E )

~bb11~0,~bb2, max~
~bb2, min~0:5,r~{0:6 and (F) ~bb11~0,~bb2, max~

~bb2, min~0:5,r~0:6. P-values were obtained with 5,000 permutations. Power was
evaluated using 10,000 replicates for a significance level of a~0:05. For each replicate, 5,000 individuals with extreme quantitative traits were
selected from a cohort of 100,000 individuals.
doi:10.1371/journal.pgen.1003075.g002
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high cost of sequencing, the sample sizes for many of these studies

are small. It was previously shown that in order to have sufficient

power (e.g. .80%) to detect association with rare variants in an

exome-wide study, in some cases it is necessary to sequence at least

10,000 samples with extreme traits from a cohort of 100,000 [25].

However, both the cohort size and the cost of sequencing exceed

the capacity of most studies. Therefore to increase power it is

important that multiple studies can be jointly analyzed. The

STAR method is particularly useful, since cohorts that are

ascertained for diverse primary traits using different study designs

can be jointly analyzed.

Previously CMC and GRANVIL tests were extended for

analyzing secondary traits with p-value being evaluated analyti-

cally [21]. Many of the rare variant association methods

implemented in STAR can be more powerful than CMC and

GRANVIL. In fact, despite being computationally efficient, CMC

and GRANVIL can be underpowered when a large portion of the

variants in the gene region are non-causal or when the genetic

Figure 3. The power for detecting association with secondary traits in selected samples. Power is calculated for CMC, WSS, KBAC, VT, and
SKAT implemented in STAR framework. Secondary trait effects are assumed to be bidirectional with fixed magnitude (i.e.D~bb2sD~0:5,s[C2), where 80%
of the causal variants increase the mean secondary trait value and the other 20% decrease the mean secondary trait value. A variety of scenarios with

different primary trait effects and trait residual correlations were examined, which include (A) ~bb11~0:5,~bb2, max~
~bb2, min~0:5,r~{0:6; (B)

~bb11~0:5,~bb2, max~
~bb2, min~0:5,r~0:6; ( C ) ~bb11~{0:5,~bb2, max~

~bb2, min~0:5,r~{0:6; ( D ) ~bb11~{0:5,~bb2, max~
~bb2, min~0:5,r~0:6; ( E )

~bb11~0,~bb2, max~
~bb2, min~0:5,r~{0:6 and (F) ~bb11~0,~bb2, max~

~bb2, min~0:5,r~0:6. P-values were obtained with 5,000 permutations. Power was
evaluated using 10,000 replicates for a significance level of a~0:05. For each replicate, 5,000 individuals with extreme quantitative traits were
selected from a cohort of 100,000 individuals.
doi:10.1371/journal.pgen.1003075.g003
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effects of causal variants are bidirectional. Other methods such as

SKAT may perform better in these scenarios. In addition, through

assigning weights to different variant sites, variants that are

potentially causal can be assigned higher weights, which can help

to distinguish causal from non-causal variants. When variable

selection based methods are used, the set of variants where the Z-

score statistics are maximized can be selected and tested. These

methods can be more robust against the inclusion of non-causal

variant in the analysis, and also potentially be more powerful than

CMC and GRANVIL methods even after adjusting for multiple

comparisons.

Permutation algorithm is often a necessary ingredient for rare

variant association tests. Even if asymptotic approximations exist

for some rare variant association tests such as SKAT and CMC,

they may not be accurate and type I errors may be inflated or

deflated [23]. This is because the asymptotic distribution for the

test statistic can be affected by the number of rare variant sites and

variant site frequency spectrums [17,23]. In practice, there can be

considerable variation in the number of variant sites and

frequencies within a gene region [31]. It is possible that an

asymptotically valid test has inflated or deflated type I errors when

genetic regions with only a few variant alleles are analyzed.

Therefore, when a significant analytical p-value is obtained, it is

necessary to empirically confirm the result using permutation.

Under the STAR framework, we compared the power of several

rare variant tests for analyzing secondary traits in selected samples.

It is clear from our comparisons that when causal variants have

unidirectional effects, burden tests perform better than SKAT.

However, when variants with effects in opposite directions are

present, SKAT can be more powerful than burden test based

methods. Given that the goal of the article is to introduce a

method for analyzing secondary traits in selected samples, rather

than to compare different rare variant tests, our simulations are

not as comprehensive as some existing reviews, such as Basu and

Pan [32] and Ladouceur et al [33]. However, based upon the

simulation scenarios that we considered, it is clear that the power

for detecting associations can be greatly improved through the

STAR model. In addition, our conclusions for comparing multiple

rare variant tests are also compatible with the comprehensive

reviews, in that there is not a consistently most powerful rare

variant test and the difference in power between top performing

methods is usually small. In addition to the simulation experi-

ments, it is also important to examine and compare the

performance of different methods in large scale sequencing

studies, such as the NHLBI-ESP.

In the analysis of the SardiNIA dataset, we adjusted the blood

pressure for individuals undergoing antihypertensive therapy. The

rank of sample blood pressure traits was only slightly changed after

the adjustment. Given that we quantile-normalized the trait prior

to the association analysis, the impact of the adjustment on the

result is very minimal. In order to evaluate the robustness of the

results, we also analyzed the associations with blood pressure when

no adjustments were made, and the results are very similar (data

not shown). A significant association was identified between rare

variants in LDLR and secondary trait SysBP, where carriers of rare

variants in the LDLR gene tend to have lower SysBP levels. In fact,

the LDLR gene has also been shown to be strongly associated with

reductions of SysBP among the patients that receive atenolol, an

antihypertensive drug [26]. These discoveries imply that variants

in the LDLR gene may influence the etiology of SysBP. LDLR is

Table 1. Association Analysis of APOB, B3GA4, LDLR, and
PCSK9 genes with LDL levels.

CMCa,c WSSa,c KBACa,c VTb,c SKATa,c

APOB 0.014* 0.029* 0.026* 0.045* 0.317

B3GA4 0.820 0.946 0.942 0.964 0.971

LDLR 0.050* 0.025* 0.035* 0.009# 0.234

PCSK9 0.272 0.299 0.381 0.491 0.491

aFor CMC, WSS, KBAC, and SKAT, only variants with MAF#1% were analyzed.
bFor VT, variants with MAF#5% were analyzed.
cThe statistical significance of all tests was obtained empirically via 5,000
permutations. Nominally significant p-values are labeled with an asterisk. P-
values that are significant after Bonferroni corrections are labeled with a pound
sign.
doi:10.1371/journal.pgen.1003075.t001

Table 2. Association Analyses of APOB, B3GA4, LDLR, and
PCSK9 genes.

Gene Trait CMCa,c WSSa,c KBACa,c VTb,c SKATa,c

APOB TCL 3.07E-01 6.04E-01 6.75E-01 2.76E-01 8.88E-01

APOB HDL 7.00E-01 9.71E-01 5.35E-01 9.21E-01 6.30E-01

APOB BMI 5.98E-01 2.57E-01 7.05E-01 5.22E-01 2.29E-01

APOB DiasBP 9.10E-01 1.71E-01 1.52E-01 2.22E-01 3.79E-01

APOB SysBP 7.54E-01 6.74E-01 5.37E-01 9.22E-01 7.69E-01

APOB TG 8.76E-01 3.60E-01 2.46E-01 4.16E-01 7.06E-01

APOB INSULIN 8.30E-01 4.85E-01 4.07E-01 5.96E-01 1.68E-01

B3GA4 TCL 6.67E-01 8.18E-01 6.97E-01 3.93E-01 1.54E-01

B3GA4 HDL 8.71E-01 2.78E-01 2.21E-01 4.14E-01 6.90E-02

B3GA4 BMI 3.81E-01 7.72E-01 7.66E-01 9.50E-01 9.84E-01

B3GA4 DiasBP 5.63E-01 8.10E-01 8.58E-01 4.41E-01 5.29E-01

B3GA4 SysBP 5.39E-01 9.47E-01 9.22E-01 8.26E-01 8.62E-01

B3GA4 TG 5.60E-01 9.22E-01 9.14E-01 6.12E-01 4.98E-01

B3GA4 INSULIN 5.14E-01 9.74E-01 9.79E-01 9.73E-01 9.85E-01

LDLR TCL 2.31E-02* 3.60E-02* 2.90E-02* 4.90E-02* 8.93E-01

LDLR HDL 1.13E-01 1.59E-01 2.35E-01 4.19E-01 4.61E-01

LDLR BMI 1.01E-01 2.62E-01 1.94E-01 3.74E-01 7.41E-01

LDLR DiasBP 1.64E-02* 2.70E-02* 2.50E-02* 4.70E-02* 2.33E-01

LDLR SysBP 9.14E-04# 3.08E-04# 1.20E-03# 3.00E-03# 6.00E-03#

LDLR TG 4.73E-01 9.21E-01 9.64E-01 9.88E-01 9.97E-01

LDLR INSULIN 3.76E-01 7.91E-01 7.77E-01 4.88E-01 9.67E-01

PCSK9 TCL 1.98E-02* 4.80E-02* 2.30E-02* 1.52E-01 9.22E-01

PCSK9 HDL 4.98E-02* 6.70E-02 5.80E-02 1.44E-01 2.33E-01

PCSK9 BMI 3.85E-01 6.81E-01 7.27E-01 4.11E-01 8.73E-01

PCSK9 DiasBP 4.24E-01 8.03E-01 8.42E-01 1.18E-01 5.05E-01

PCSK9 SysBP 2.76E-01 5.67E-01 5.79E-01 1.28E-01 7.43E-01

PCSK9 TG 3.29E-01 5.25E-01 6.53E-01 6.56E-01 6.31E-01

PCSK9 INSULIN 7.53E-01 6.15E-01 4.83E-01 1.12E-01 5.46E-01

Secondary traits, total cholesterol levels (TCL), high density lipoprotein (HDL),
body mass index (BMI), diastolic blood pressure (DiasBP), systolic blood
pressure (SysBP), triglyceride (TG) and insulin levels (INSULIN) were studied.
aFor CMC, WSS, KBAC, and SKAT, variants with MAF#1% were analyzed.
bFor VT, variants with MAF#5% were analyzed.
cStatistical significance for all tests was obtained empirically via 5,000
permutations. Nominally significant p-values are labeled with an asterisk, while
the associations that are significant after Bonferroni corrections are labeled with
a pound sign.
doi:10.1371/journal.pgen.1003075.t002
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potentially an important gene target for blood pressure treatment.

In order to replicate signals [22] that were found in the SardiNIA

cohort, many current large scale sequencing studies can be

considered, such as the NHLBI-ESP etc. In addition to replicating

associations, there is also great scientific interest in exploring

whether rare causal variants identified in a founder population are

identical to those from out-bred populations [34].

With the large scale application of next generation sequencing

to study complex traits, samples from many existing cohorts will be

sequenced. There can be insufficient power for analyzing

associations in each individual study. It would be highly beneficial

if samples from multiple cohorts can be combined for analyzing

commonly measured traits. STAR is thus important and will

greatly accelerate the process of identifying genes involved in

complex trait etiology.

Supporting Information

Figure S1 Conditional distribution of the secondary trait for

individuals with extreme primary trait values in the upper and

lower 5% tails. The density function of the secondary traits is

plotted when the primary trait effect ~bb11 is 0.5 and the trait

residual correlation r is 0.6.

(TIF)

Figure S2 Biases of the secondary trait effects due to extreme sampling

under the null hypothesis. The bias in the secondary trait effects i.e.

E Y2i jY1i[ yH ,?ð Þ| {?,yLð Þ,Xi~1ð Þ{E Y2ijY1i[ yH ,?ð Þ| {?,yLð Þ,Xi~0ð Þ
is plotted against the primary trait effects and trait residual

correlations. In panel (A), the bias is plotted when the primary

trait effect ~bb11 is 0.5, and the trait residual correlation r varies

between 20.8 and 0.8. In panel (B), the bias is plotted when the

trait residual correlation r is 0.6, and the primary trait effect ~bb11

varies between 23 and 3.

(TIF)

Figure S3 Quantile-Quantile plot of p-values for rare variant

tests in linear regression models under the null hypothesis of no

gene/secondary trait associations. Sample ascertainment mecha-

nism was ignored in the linear regression analysis. Five tests were

evaluated, i.e. CMC, WSS, KBAC, VT and SKAT. Empirical p-

values for each test were plotted against their theoretical

expectations. A variety of scenarios with different primary trait

effects and trait residual correlations were examined, which

include (A) ~bb11~0:5,r~0:6; (B) ~bb11~0:5,r~{0:6; (C)
~bb11~0,r~0:6 and (D) ~bb11~0,r~{0:6. P-values were obtained

with 5,000 permutations. Type I error was evaluated using 10,000

replicates. For each replicate, 5,000 individuals with extreme

quantitative traits were selected from a cohort of 100,000.

(TIF)

Figure S4 The power for detecting association with secondary

traits in selected samples. The power is shown for CMC, WSS,

KBAC, VT, and SKAT implemented in the STAR framework. It

is assumed that the secondary trait effects for causal variants are

unidirectional, and their magnitudes are inversely proportional to

the minor allele frequencies with ~bb2, max~0:75 and ~bb2, min~0:125.

A variety of scenarios with different primary trait effects and trait

residual correlations were examined, which include

(A) ~bb11~0:5, ~bb2, max~0:75, ~bb2, min~0:125, r~{0:6;

(B) ~bb11~0:5, ~bb2, max~0:75, ~bb2, min~0:125, r~0:6;

(C) ~bb11~{0:5, ~bb2, max~0:75, ~bb2, min~0:125, r~{0:6;

(D) ~bb11~{0:5, ~bb2, max~0:75, ~bb2, min~0:125, r~0:6;

(E) ~bb11~0, ~bb2, max~0:75, ~bb2, min~0:125, r~{0:6 and

(F) ~bb11~0, ~bb2, max~0:75, ~bb2, min~0:125, r~0:6.

P-values were obtained empirically via 5,000 permutations. Power

was evaluated using 10,000 replications for a significance level of

a~0:05. For each replicate, 5,000 individuals with extreme

quantitative traits were selected from a cohort of 100,000

individuals.

(TIF)

Figure S5 The power for detecting association with secondary

traits in selected samples. The power is shown for CMC, WSS,

KBAC, VT, and SKAT implemented in STAR framework. It is

assumed that 80% of the causal variants increase the mean

secondary trait value, and the remaining variants decrease the

mean secondary trait value. The magnitudes of the secondary trait

effects are inversely proportional to the minor allele frequencies,

with ~bb2, max~0:75 and ~bb2, min~0:125. A variety of scenarios with

different primary trait effects and trait residual correlations were

examined, which include

(A) ~bb11~0:5, ~bb2, max~0:75, ~bb2, min~0:125, r~{0:6;

(B) ~bb11~0:5, ~bb2, max~0:75, ~bb2, min~0:125, r~0:6;

(C) ~bb11~{0:5, ~bb2, max~0:75, ~bb2, min~0:125, r~{0:6;

(D) ~bb11~{0:5, ~bb2, max~0:75, ~bb2, min~0:125, r~0:6;

(E) ~bb11~0, ~bb2, max~0:75, ~bb2, min~0:125, r~{0:6 and

(F) ~bb11~0, ~bb2, max~0:75, ~bb2, min~0:125, r~0:6.

P-values were obtained empirically via 5,000 permutations. Power

was evaluated using 10,000 replicates for a significance level of

a~0:05. For each replicate, 5,000 individuals with extreme

quantitative traits were selected from a cohort of 100,000

individuals.

(TIF)

Figure S6 The power for detecting associations with secondary

traits in selected samples. Power is shown for CMC, WSS, KBAC,

VT, and SKAT implemented in STAR framework. Secondary

trait effects are assumed to be fixed and unidirectional with
~bb2s~0:25,s[C2. A variety of scenarios with different primary trait

effects and trait residual correlations were examined, which

include

(A) ~bb11~0:5, ~bb2, max~
~bb2, min~0:25, r~{0:6;

(B) ~bb11~0:5, ~bb2, max~
~bb2, min~0:25, r~0:6;

(C) ~bb11~{0:5, ~bb2, max~
~bb2, min~0:25, r~{0:6;

(D) ~bb11~{0:5, ~bb2, max~
~bb2, min~0:25, r~0:6;

(E) b11~0, ~bb2, max~
~bb2, min~0:25, r~{0:6 and

(F) ~bb11~0, ~bb2, max~
~bb2, min~0:25, r~0:6.

P-values were obtained empirically via 5,000 permutations. Power

was evaluated using 10,000 replicates for a significance level of

a~0:05. For each replicate, 5,000 individuals with extreme

quantitative traits were selected from a cohort of 100,000

individuals.

(TIF)

Figure S7 The power for detecting association with secondary

traits in selected samples. Power is shown for CMC, WSS, KBAC,

VT, and SKAT implemented in STAR framework. It is assumed

that secondary trait effects are bidirectional with fixed magnitude
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(i.e.D~bb2sD~0:25,s[C2), where 80% of the causal variants increase

the mean secondary trait value and the other 20% decrease the

mean secondary trait value. A variety of scenarios with different

primary trait effects and trait residual correlations were examined,

which include

(A) ~bb11~0:5, ~bb2, max~
~bb2, min~0:25, r~{0:6;

(B) ~bb11~0:5, ~bb2, max~
~bb2, min~0:25, r~0:6;

(C) ~bb11~{0:5, ~bb2, max~
~bb2, min~0:25, r~{0:6;

(D) ~bb11~{0:5, ~bb2, max~
~bb2, min~0:25, r~0:6;

(E) ~bb11~0, ~bb2, max~
~bb2, min~0:25, r~{0:6 and

(F) ~bb11~0, ~bb2, max~
~bb2, min~0:25, r~0:6.

P-values were obtained empirically via 5,000 permutations. Power

was evaluated using 10,000 replicates for a significance level of

a~0:05. For each replicate, 5,000 individuals with extreme

quantitative traits were selected from a cohort of 100,000

individuals.

(TIF)

Figure S8 Quantile-Quantile plot for meta-analysis p-values

under the null hypothesis. Meta-analysis for three studies was

simulated. The primary trait in each study is assumed to be

different and a common secondary trait is measured in all studies.

The gene region is not associated with the secondary trait. In the

first study, the gene region is associated with the primary trait, and

causal variants have an effect of 20.5. The correlation between

the primary and secondary traits is 0.6. In the second study, the

primary trait is also associated with the gene region, and causal

variants have an effect of 0.25. The primary and secondary traits

are correlated with coefficient 0.4. In the third study, the gene

region is not associated with the primary trait, and the correlation

between the primary and secondary traits is 20.2. CMC, WSS,

KBAC, VT and SKAT were used to detect associations. In each

study, a pool of 50,000 samples was simulated and 2,500

individuals with extreme primary trait were selected and analyzed.

P-values for all rare variant tests were obtained based upon 5,000

permutations. The empirical distribution of p-values was obtained

using 10,000 replicates.

(TIF)

Figure S9 Power for meta-analysis using CMC, WSS, KBAC,

VT and SKAT. Meta-analysis for three studies was simulated. The

primary trait in each study is assumed to be different and a

common secondary trait is measured in all studies. Power for the

five tests was displayed when (A) causal variants have unidirec-

tional effect of 0.5, and (B) causal variants have bidirectional

effects, i.e. 80% of the causal variants have effect 0.5 and the other

20% have effect 20.5. In the first study, the gene region is

associated with the primary trait, and causal variants have an

effect of 20.5. The correlation between the primary and

secondary traits is 0.6. In the second study, the primary trait is

also associated with the gene region, and causal variants have an

effect of 0.25. The primary and secondary traits are correlated

with coefficient 0.4. In the third study, the gene region is not

associated with the primary trait, and the correlation between the

primary and secondary traits is 20.2. In each study, a different

pool of 50,000 samples was simulated and 2,500 individuals with

extreme primary trait were selected and analyzed. P-values for all

rare variant tests were obtained based upon 5,000 permutations.

The power for analyzing each individual study and meta-analysis

was evaluated using 10,000 replicates.

(TIF)

Table S1 Correlations of phenotypes from the SardiNIA cohort.

Eight traits that were analyzed for associations are included, i.e.

high density lipoprotein (HDL), low density lipoprotein (LDL),

triglyceride (TG), total cholesterol levels (TCL), diastolic blood

pressure (DiasBP), systolic blood pressure (SysBP), insulin levels

(INSULIN), and body mass index (BMI). Correlations were

estimated using 2044 unrelated individuals extracted from the

SandiNIA pedigrees.

(DOC)

Table S2 Analysis of secondary trait associations using standard

linear regression. Sample ascertainment mechanisms were ignored

in the analysis. Seven secondary traits were analyzed, including

total cholesterol levels (TCL), high density lipoprotein (HDL),

body mass index (BMI), diastolic blood pressure (DiasBP), systolic

blood pressure (SysBP), triglyceride (TG) and insulin levels

(INSULIN). Gene-based association analysis was performed using

CMC, WSS, KBAC, VT and SKAT.

(DOC)

Text S1 Extension of Kernel Based Adaptive Cluster to the

Analysis of Quantitative Traits.

(PDF)

Text S2 Biases of Naı̈ve Inferences of Secondary Trait

Associations in Selected Samples.

(PDF)

Text S3 Details for the Null Likelihood Model.

(PDF)

Text S4 Practical Issues for Inferences under the Ascertainment

Corrected Likelihood.

(PDF)

Text S5 Constructing Variance Component Score Tests from

Ascertainment Corrected Likelihood.

(PDF)
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