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Temperament of healthy people and mental illnesses, particularly affective

disorders, have been conjectured to lie along a continuum of neurobeha-

vioural regulation. Understanding the nature of this continuum may better

inform the construction of taxonomies for both categories of behaviour.

Both temperament and mental illness refer to patterns of behaviour that

manifest over long time scales (weeks to years) and they appear to share

many underlying neuroregulatory systems. This continuum is discussed

from the perspectives of nonlinear dynamical systems theory, neurobiology

and psychiatry as applied to understanding such multiscale time-series be-

haviour. Particular emphasis is given to issues of generativity, fungibility,

metastability, non-stationarity and contextuality. Implications of these dyna-

mical properties for the development of taxonomies will be discussed.

Problems with the over-reliance of psychologists on statistical and math-

ematical methods in deriving their taxonomies (particularly those based

on factor analysis) will be discussed from a dynamical perspective. An

alternative approach to temperament based upon functionality, and its

discriminative capabilities in mental illness, is presented.

This article is part of the theme issue ‘Diverse perspectives on diversity:

multi-disciplinary approaches to taxonomies of individual differences’.
1. Introduction: the concept of continuum
The concept of temperament is frequently conflated by psychologists with the

concept of personality. Temperament refers to neuro-chemical and biological

properties of nervous systems. Personality, on the other hand, is a socio-cultural

construction acquired through experience and learning. Animals and infants

have temperament, but personality emerges through life experience. Tradition-

ally, starting from Kant, temperament traits have been broadly classified into

emotionality (related to emotional regulation) and ‘activity’ (related to the

energetic and orientational aspects of the regulation of activity).

It has been conjectured that temperament and mental illness, particularly

affective disorders, lie along a continuum of neurobehavioural regulation

[1–5]. If confirmed, this would provide an opportunity to gain an understand-

ing of both classes of behaviour through their coupling to these regulatory

systems. It would benefit researchers to have taxonomies for classifying

temperament and mental illness which couple to salient dynamical and func-

tional aspects of this continuum. These taxonomies should be both sensitive

and responsive to changes in the dynamics of the neurobehavioural regulatory

systems, emerging as changes in temperament and/or the appearance or remis-

sion of states of mental illness. Moreover, if the classifications of temperament

and mental illness reflect dynamical interrelationships between these regulatory

systems, then dispositions or alterations in these interrelationships should be
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reflected in correlations or systematic changes between tem-

perament patterns and the presence or absence of mental illness.

The most popular models of temperament currently in

use base their taxonomies on factor analytic analyses

of correlations among common language descriptors of be-

haviour. These descriptors arose within the native culture,

presumably in the service of ecological needs, but lack defini-

tional rigour and any deep connection to modern concepts of

dynamics [6]. There is no reason, a priori, to believe that such

descriptors or the derived factors should bear any relation-

ship to the dynamics of the regulatory systems (for

example, as happened with the Five Factor model [7]). Taxo-

nomies of mental illness have also faced criticism in recent

years for being too strongly based on poorly discriminating

symptom clusters organized primarily by expert consensus

[1,8]. The development of taxonomies arising from the

continuum concept offers the possibility of a better align-

ment between the taxonomic categories and the putative

underlying dynamics. This might better inform our under-

standing of predisposition, as well as individual differences

in illness presentation, course, therapeutics and treatment

response. Several lines of evidence support this continuum

concept. First, there are many symptoms of mental illness

that possess an enduring nature and which bear a strik-

ing resemblance to temperament traits. For example, the

Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition (DSM-5) criteria for major depression of fatigue,

concentration and worry are similar to the traits of endur-

ance, plasticity and self-confidence, as well as neuroticism.

Second, associations have been found between certain

forms of mental illness and particular temperament traits

[9]. More will be described later. Nery et al. [10] have

shown that some of these associations may be state-

dependent effects, appearing in the presence of an illness

state and reverting to baseline following remission of the

illness. Third, neurobehavioural research has demonstrated

significant overlap between the regulatory systems thought

to be involved in affective illness and those involved in

temperament. These include monoamine, acetylcholine and

neuropeptide systems [11].

The continuum should not be thought of a simple linear

continuum with temperament and mental illness at opposite

poles. Neurobehavioural regulatory systems are interdepen-

dent complex adaptive systems capable of expressing a

broad range of (emergent) dynamics. It is this space of poss-

ible dynamics that forms the continuum, and temperament

and mental illness occupy different regions of this space.

Two metaphors might help to illuminate this idea.

My background1 allows me to address these issues from

both a mathematical and a psychiatric perspective, to which

I now turn.
2. Mathematical perspective
To a mathematician, like me, it is rather surprising, if not

shocking, to observe that psychologists have a tendency to

rely upon statistical methodologies to create, confirm or

disconfirm their taxonomic theories. Other sciences, math-

ematics included, instead search for underlying principles

of their taxonomies which universally can be applied to a

broad range of their taxonomic objects, irrespective of any

particular instantiation. Statistics cannot substitute for critical
observation and thinking. Mathematicians themselves spend

a great deal of time categorizing, classifying and creating

taxonomies of these universals in taxonomies of mathemat-

ical functions, numbers, etc., without the use of statistics.

The presence of such universal features within the continuum

could provide the basis for the development of a taxonomy of

the continuum.

This, in turn, could inform the creation of taxonomies for

temperament and mental illness. Two metaphors may aid in

understanding this suggestion. The formal theory of compu-

tation provides the first metaphor [12]. One universal concept

is the distinction between hardware and software. Hardware

refers to the physically realized dynamical system that

performs the computation. Software is symbolic and informa-

tive. It possesses a dual nature—as data for computation and

as instructions directing the dynamics of the hardware to

compute. To be efficacious, software must be realized as

states of the hardware which serve as (internal) control

parameters guiding the dynamics of the hardware. For sim-

plicity and conceptual clarity, ignore the environment and

represent the hardware as an iterated function system, each

configuration having the functional form, TP(X, D), where

X is a vector representing autonomous states of the hardware,

D is a vector representing data states and P is a vector of

states representing instructions, considered as control par-

ameters. These control parameters alter the dynamics

expressed by TP according to the needs of the computation.

The action of TP (X, D) is to move to a new hardware

configuration, TP 0 (X0, D0). For fixed P, we can write TP (X,
D) ¼ (X0, D0), so properly TP (X, D) refers to a family

of functions.

Hardware constrains the types of software that can be

implemented and the availability of resources. In computers,

software is determined by the environment and the hardware

is protected, but in nervous systems, software (psychological

states) arises in an emergent manner from interactions with

the internal and external environments. Causal influences

appear to act both upward and downward [13]. Software

may alter hardware, through, for example, long-term poten-

tiation or gene expression. The transition may then take the

form TP (X, D)!MP 0 (X0, D0), resulting in a new hardware

function M. In the course of experience, the system will

undergo a succession of transitions T1
P, T2

P0 , T3
P00 , T4

P000 , . . . ,

resulting in a superfamily (i.e. coherent collection of families)

of dynamical systems.

It seems natural to associate temperament, defined as the

biological basis of individual differences, with the function

family TP since hardware corresponds to biology. TP disposes

the hardware to behave in response to (X, D) just as tempera-

ment disposes a person to behave in different contexts. Since

temperament refers to stable characteristics, the same tempera-

ment should be associated some superfamily T1
P, T2

P, T3
P, T4

P, . . .

of dynamical systems. The mathematician would then search

for characteristics, signatures and invariants of these superfa-

milies, whether in formal descriptors of the functions and/

or their dynamics, or symmetries connecting the functions

forming a superfamily or the geometrical objects (such as

fixed points, attractors, repellors, strange attractors, Cantor

dust, stochastic webs) associated with the dynamics. One

would also search for critical points, markers of stability or

instability and so on. In particular, one would search for signa-

tures in time series of behaviour that could be linked to these

structural characteristics.
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Temperament in humans is thought to be related to

monoamine, acetylcholine and neuropeptide systems, which

project to cortex, thus regulating behaviour. The cortex

appears to have few projections back to these systems, leav-

ing them relatively immune to experiential modification

over time [14]. Thus, the superfamily T1
P, T2

P, T3
P, T4

P, which

represents the entire nervous system, is expected to share

some common features (comprising a smaller family of

dynamical systems RP) which represent the contributions of

these neurobehavioural regulatory systems. It is then natural

to ask whether signatures of these regulatory systems can be

detected in the observed time series.

To make this idea concrete, consider the familiar logistic

map f(x) ¼ lx(1 2 x). Here, x is a datum, l is a control

parameter. Each such map corresponds to a single iterative

function system. Allowing l to smoothly change results in

a family of iterated maps. Different intervals for l correspond

to iterated maps having similar dynamics, for example period

1, period 2, period 4, period 6, to odd period, intermittent,

aperiodic and chaotic dynamics. These transitions form a

bifurcation sequence in which the transitions occur as one

stable region becomes unstable and transitions to a new

stable regime with different dynamics. There is experimental

evidence for the existence and prominent role of such

dynamics in nervous systems [15–17]. They may be essential

to psychological functions [16].

Mental illness could affect the dynamics by either altering

the function TP or by expanding or restricting the spaces

underlying X, D and P. The former changes would be

viewed as biological, the latter as psychological, even

though both must ultimately be expressed through states of

the nervous system. As temperament is thought to be a

long-term characteristic, this implies that it should be stable

from a mathematical perspective. The transition from norma-

lity to mental illness would be expected to occur when the

normal dynamic becomes unstable and a transition can

occur. Thus, it is also important to look for signatures of

stability and instability.

The continuum can therefore be understood as the global

space of dynamical systems. Temperament and mental illness

will correspond to certain superfamilies defined on this

continuum. These superfamilies will possess mathematical

characteristics and signatures that distinguish (and sometime

interrelate) them. Any effective taxonomies of temperament

and mental illness should find some correspondence with

the taxonomy of these superfamilies. Knowledge of the math-

ematical taxonomy could thus help to inform and shape the

taxonomies used for temperament and mental illness.

As an aside, efforts to extend the computational metaphor

further to assert that brain function is computation appear

rather misguided. It is not clear that the Turing limit

suggested by computation theory applies to the brain and

some models of neural networks explicitly state otherwise

[18].

It is suggested that signatures of these dynamical struc-

tures should be sought in time series of suitably selected

real behaviour. The choice of context must be informed by

non-mathematical considerations. The most promising

appears to be based on evolutionarily or ecologically salient

functionality (discussed later).

The second metaphor provides some insight into the

proper features to focus on in these time series. It is derived

from meteorology. Three distinct time scales form the basis
for studies in meteorology [19]. Short time scales from min-

utes to hours are characteristic of local weather patterns.

Mid-range time scales of hours to weeks are characteristic

of weather systems and seasonal patterns. Long-range time

scales, extending over years and longer, are characteristic

of climate. Individual behaviours are analogous to local

weather, while mood states are analogous to weather sys-

tems. Temperament is analogous to climate. It is long term,

constrains and disposes behaviour without determining the

specifics of individual behaviours, just as climate does for

local weather. Mental illness can manifest at all three time

scales. Illness is akin to local storms, system-based storms

or climate change [20].

Unfortunately, current taxonomies of adult temperament

have mostly been based on common language descriptors of

behaviour rather than direct observation. Some studies of

childhood temperament, particularly those of Kagan [21],

were based on direct observation of behavioural patterns in

structured environments. Other childhood temperament

researchers [22] used parental reports, but carried out direct

observations to confirm the consistency and validity of

those reports. The kind of data suggested above is thus

scarce in the psychological literature, but some case reports

have appeared in the psychiatric literature, particularly in

regard to mood, as will be discussed later.
3. Challenges for multiscale complex systems
analysis

It should be obvious that an analysis of the structure and

dynamics of the continuum will require the use of multiscale

analysis, both temporal and spatial [23]. If our taxonomies

must classify superfamilies of dynamical systems within the

continuum of neurobehavioural regulatory systems, then it

is necessary to understand some of the known dynamical

characteristics of these systems (and neural systems gener-

ally). There are several characteristics which are vitally

important for understanding the dynamics of nervous sys-

tems as a whole and many of them pose serious challenges

to multiscale mathematical modelling and statistical analysis.

Most of these are ignored by researchers. Some of these will

be discussed in the next section. Here, the focus is on the

consequences of emergence within the nervous system.

Psychological phenomena are thought to be emergent

from the chaotic nonlinear dynamics of the nervous system

[24]. Phenomena emerge from the complex interplay between

various levels within the nervous system and both the

internal (somatic) and external environments. The notion of

causation is perhaps better replaced with the idea of influ-

ence, because seldom does the behaviour of a single

subsystem ever wholly determine that of another. There are

also long-term processes of development and senescence at

play. Formally, this implies that the phase space upon

which the dynamical system acts is itself dynamic. This is

profoundly challenging to model. Moreover, these emer-

gent processes exhibit several key features: generativity,

fungibility, metastability and contextuality.

Decades ago, Anochin [25] and Bernstein [26] noted that

motor actions are constructed anew each time that they are

performed. There is no simple relationship between neurons

or neural systems and behavioural acts. The retrieval of mem-

ories [27] is also an act of construction, with each memory
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being formed from different associations among different

neurons each time it is retrieved. Emotions too appear to be

generated rather than being intrinsic features of the nervous

system [28]. The construction of a memory or of a specific

motor act is very much like the performance of a play, with

different neurons and different neural pathways entering

into each and every performance. Just as actors are fungible,

so are the neurons that enter into these acts.

Closely related to fungibility is the phenomenon of

metastability. A classic example involves the spatial maps

supported by hippocampal place cells in rats [29]. Originally,

it was thought that hippocampal place cells formed a

one–one correspondence with locations within the rat’s phys-

ical environment. More sophisticated real time recording

techniques later showed that these correspondences changed

as a result of the rat being moved to a new environment.

Nevertheless, the rat, when returned to the original environ-

ment, could carry out previously learned spatial tasks with

similar levels of success.

Context also plays a prominent role, manifesting in the

phenomenon of functional rewiring, most notable in the lob-

ster stomatogastric ganglion [30]. The connectivity among

these 50 cells effectively changes as a result of circulating neu-

rohumoral peptides and hormones secreted by the gut. This

enables this small collection of cells to control all of the differ-

ent functions needed for digestion, from ingestion to

excretion. Functional rewiring is ubiquitous throughout the

nervous system even in humans. This occurs because many

synapses are based upon g-protein-coupled receptors.

Unlike ligand receptors, which directly cause depolarization

of the neural membrane (and possibly action potentials),

g-protein-coupled receptors alter the responsiveness of the cel-

lular membrane, effectively altering the dynamics of the neuron

and the coupling between the participating neurons [31].

Contextuality does not only occur in relation to the

environment. A century ago, Pavlov showed that tempera-

ment traits in dogs were coupled and emerged in a manner

reminiscent of bifurcations in nonlinear dynamical systems

[32]. Pavlov noted that some temperament traits emerged

only when other temperament traits exceeded some

threshold. It is difficult to imagine how correlational tech-

niques such as factor analysis would discriminate between

such emergent factors. The dimensions of factor analysis

are supposed to exist a priori, not to emerge under selected

conditions.

Generativity, fungibility, metastability and contextuality

pose serious challenges for formal modelling of these

phenomena. One approach uses dispositional cellular auto-

mata, whose dynamics involve alterations in the automaton

rule associated with each individual cell in response to exter-

nal stimulation. This roughly models the dynamical effect of

g-protein-coupled receptors. Dispositional cellular automata

exhibit the phenomenon of transient-induced global response

synchronization (TIGoRS) [33]. This involves the appearance

of a stable correspondence between random samplings of cer-

tain spatio-temporal transients input into the automaton and

the subsequent responses of the automaton. This synchroni-

zation occurs at the global level between the automaton

and the transients, and not between the cells of the auto-

maton. When TIGoRS is present, there is a nonlinear

relationship between the input sampling rate and the

Hamming distance between the transient stimulus and the

transient response of the automaton. This synchronization
occurs in spite of the fact that the underlying rule space of

the automaton is constantly changing. The presence of

TIGoRS demonstrates that finite duration spatio-temporal

transients are the proper dynamical states to be studied. In

the presence of TIGoRS, the dynamical action on these tran-

sients causes the dispositional cellular automaton to act as a

primitive stimulus-response system [33].

In addition, the nervous system is riddled with intrinsic

randomness. The release of neurotransmitter by a neuron is

random [34]. The response of a neuron to repeated presenta-

tions of the same stimulus appears to be stochastic [35].

The response of a population of neurons to a stimulus also

appears to be stochastic [35]. There is evidence that this

apparent randomness is not due to noise, but instead

is an expression of deeper, possibly chaotic nonlinear

dynamics [16,24]. Treating this variability merely as noise

may eliminate the possibility of observing, analysing and

understanding the true dynamics of the nervous system.

Multiscale analysis of complex adaptive systems is chal-

lenging, complex and subtle. Feedback may go in any

direction: up, down, horizontally. Biopsychosocial systems

may exhibit what Cohen & Stewart [36] termed ‘complicity’

and Laughlin [37] termed ‘stable protection’. In this event,

emergent phenomena hide or mask underlying microscale

dynamics. The converse is also possible. Cohen and Stewart

called this ‘simplexity’, while Laughlin called it the ‘deceit-

ful turkey effect’. This is a situation in which emergent

phenomena create an impression of a stable microscale

dynamics where none actually exists. Observation and analy-

sis of a system at only a single scale will never detect these

possibilities. It is easy to be misled.

Situations may exist in which the dynamic at one level is

effectively decoupled from that at neighbouring levels and

so it can be observed and analysed as if it existed in isolation.

Some psychological states may indeed be like this. There may

be other situations in which what occurs at one level depends

intimately on what is happening at adjacent levels, up or

down. In such a case, it will be essential to have observations

at these additional levels in order to understand what is tran-

spiring at the level of interest. This is likely true of many illness

states. Only a careful and thoughtful multiscale analysis offers

any hope of detecting these situations and unravelling the

nuances of the dynamics of nervous systems, and in particular

the continuum and its relationship to emergent phenomena

such as temperament and mental illness.

Can researchers truly believe that subjects can capture the

nuances of this complex dynamics in their responses to a

series of questions that ask whether some behaviour occurs

‘all of the time’, ‘most of the time’, ‘some of the time’ or

‘not at all’? Gottschalk et al. [38] were among the first to

study time series of mood ratings. They showed that subjects’

intuitive or common conceptions, such as normal mood is

steady, bipolar mood cyclic, are really quite inaccurate.
4. Contextual probability
Contextuality, referred to in the previous section, has a pro-

found effect on the dynamics of complex adaptive systems,

such as nervous systems, one that goes to the very core of

the structure of probability itself. Virtually all of modern

probability and statistics is founded on the formal probability

theory of Kolmogorov. In recent years, much as occurred in
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geometry, there have arisen competing models of probability

theory, the most developed being contextual probability

theory [39,40]. Khrennikov [41] has pointed out that there

are conditions which must be met to ensure that a single

joint probability distribution may be constructed when

combining results across differing contexts (conditions).

This is a deep consequence of contextuality. Forming such a

distribution is a common construction when doing meta-

analyses or when experiments are carried out involving

multiple conditions as in the biomedical sciences. It is not

well known that it is not always possible to do so.

Dzhafarov has presented the heart of this issue in a

particularly cogent manner. Dzhafarov has described

‘Contextuality by Default’ [42]. Each random variable is

associated with the quantity q being measured and the con-

text a within which the measurement is made. He denotes

each such variable Ra
q. Consider two measurements, q,q0

and two contexts a,b. For a fixed context a, the pair Ra
q and

Ra
q0 is termed a bunch and represents the collection of

measurements associated with a specific context. It is reason-

able to believe that such a pair is jointly distributed. For a

fixed measurement q, the pair Ra
q and Ra0

q is termed a connec-
tion for q. A connection need not possess a joint distribution.

The most basic form of contextuality occurs when no joint

distribution can be found for a connection. In such a case,

they are said to be inconsistently connected. This is the situa-

tion of contextuality by default. It is quite common in the

biopsychosocial sciences [43].

The fundamental difference between Kolmogorov and

contextual probability lies in the way in which total probabil-

ities are calculated. In Kolmogorov theory, one calculates the

probability of an event A by summing over the conditions Bi

that give rise to A. Thus, P(a) ¼ Si P(Bi)P(AjBi). In developing

contextual probability theory, Khrennikov began by modify-

ing Kolmogorov’s rule for total probability. Khrennikov

explicitly accounts for context C, so that the total probability

rule takes the form P(A)C ¼ Si P(Bi)C P(AjBi) þ 2l(AjBi,C)

(Pi P(A)C P(AjBi)
1/2 where l may be a trigonometric or

a hyperbolic function (in Kolmogorov probability theory,

l ¼ 0). The probability structure of quantum mechanics

obeys this rule. The standard statistical tools used in

psychology do not.

The techniques used to define and model dynamical sys-

tems in the setting of classical physics do not permit

contextual probability. Quantum mechanics is a contextual

probability theory, but it has limited use in psychology and

psychiatry. New statistical tools need to be developed

which can take contextuality into account. It is quite possible

that much of our current knowledge which is derived from

multiply conditioned data is inaccurate because of the failure

to take contextuality into account when carrying out statisti-

cal analyses.

Statistical tools to address contextuality will only be effec-

tive if the data upon which they are applied has taken

contextuality into account. Clinical experience has shown that

the expression of temperament traits and of illness symptoma-

tology is context dependent. Jung observed this in the

expression of temperament more than a century ago. Insuffi-

cient attention has been paid to this in developing

assessment tools, in interpreting observational data, in develop-

ing questionnaires and diagnostic tests. More attention needs to

be paid to determining the impact that different contexts have

on the expression of phenomenology, and to determining
which contexts provide the most robust conditions for eliciting

particular traits or symptoms. Kagan [21] implicitly considered

this when basing his studies on observations under controlled

conditions rather than relying on questionnaires.

The mathematical methods currently in use for describing

biologically grounded dynamical systems do not easily cap-

ture features such as generativity, transience, fungibility,

metastability and contextuality. Moreover, they do not

describe dynamics obeying the rules of contextual probability.

State spaces are given. The object of study is usually the flow

of individual states. Components are assumed to be fixed. Pro-

cesses of development in which the state space changes and

the components that comprise the system change are from dif-

ficult to impossible to model in any but a cartoon fashion.

There are novel techniques such as set valued calculus

[44,45] that can describe some features of development, but

they are far from being mainstream. An exciting development

has been the creation of process-based models. These models

started appearing in computer science many years ago and

in quantum mechanics more recently. Two models that expli-

citly have generativity, transience and contextuality as

fundamental features have appeared in quantum physics

[39] and psychology [46]. The basic entities of both models

are dynamical transients from which the entities of interest

(fundamental particles, neural states, psychological states)

are emergent. State spaces are generated (like the basic entities)

and dynamic, so that they change over time. These models

admit contextual probability structures (as well as standard

Kolmogorov probability where the dynamics supports it).

The task for mathematicians is to characterize and classify

the dynamics of these models, to identify their invariants,

symmetries and signatures, and to see to what degree these

may be reflected in observed behaviour, whether in time

series, as advocated here, or in correlations obtained from

carefully selected experimental contexts.
5. Psychiatric perspectives
The literature on adult temperament reveals little use of direct

observation or time-series methodologies. When psycho-

logists do use time-series methodologies, they tend to use

linear techniques [47], although a small number of research-

ers use nonlinear methods [48], and virtually none use

detailed multiscale analysis. Mathematicians and physicists,

however, have identified a wide range of salient character-

istics and many different techniques for their detection and

measurement [49]. There are phase space plots, recurrence

plots, symbolic dynamics representations, correlation dimen-

sion, fractal dimension, Lyapunov exponents, Hurst

exponents, BDS statistics, Renyi entropies, fluctuation distri-

butions and spectra. Other measures include the number of

turns, dwell times, variation, extremal values, crossing num-

bers. Each of these measures captures different dynamical

characteristics of the time series. The goal is not to search

for single measures but rather for a spectrum of measures

which will serve to characterize different taxonomic

categories, whether of temperament or of mental illness.

Psychiatrists have applied several time-series methods

to the study of the temporal variation of mood, particularly

in major depression and bipolar disorder, although all

focus on a single scale level. The first such study appeared in

Europe in 1975 [50]. Cluster techniques were applied to mood
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time series in the 1980s [51,52]. The first North American

study was by Gottschalk, Bauer and Whybrow [38]

who applied techniques from nonlinear dynamical systems

theory. Since then, a wide variety of techniques have been

used including Approximate entropy [53,54], Lyapunov

exponents and correlation dimension [55], power laws [56],

surrogate data and nonlinear forecasting [57], autocorrelation

and cross-correlation [58] and others [55,57–62]. To date, the

available evidence appears to support the presence of non-

linear or chaotic dynamics, but the source of this dynamics,

whether due to intrinsic or extrinsic factors, has yet to be

determined.

Approximate entropy was found in one study to increase

in the 60 days prior to the onset of an episode of mania or

depression, with the greater increase preceding mania [54].

Power law scaling was found in fluctuation distributions in

time series from patients with depression and controls [56].

The exponent was higher (2.5) in controls compared with

depressed subjects (1.7–1.9), suggesting an alteration in

dynamics. Analysis of variation in time series was able to dis-

tinguish between stable and unstable groups of patients with

bipolar disorder [60]. Another study used variability to dis-

tinguish bipolar patients from those with borderline

personality disorder [61]. Several studies explored correlations

between dynamical features of mood time series and treat-

ment conditions using antidepressants or psychotherapy

[63–65]. For example, one study used time-series analysis to

distinguish between treatment responders and treatment

non-responders among depressed patients treated with anti-

depressants. Correlations between dynamical features of

mood time series and temperament traits have also been

examined [66–69]. In one study, the analysis of the Hurst

exponent of a worry time series appeared to correlate with

temperament factors [62]. In another, the presence of a

7-day cycle in Positive and Negative affect in healthy volun-

teers was found [66]. These results are preliminary and few,

but they do show the potential utility of using time-series

analysis to shed light on the aspects of temperament and

mental illness.

Psychiatry has been in the vanguard in attempting to

develop more formal approaches to the description of

psychiatric phenomena. Notable is the work of Mandell &

Selz [70], who applied the language, concepts and methods

of nonlinear dynamical systems theory to this task. They

went beyond theory and applied these methods to the analy-

sis of experimental data, thus demonstrating the usefulness

of this approach. Their work is quite sophisticated mathe-

matically, which may, in part, explain why it has not been

embraced by the psychiatric community generally. They

do not address temperament per se, nor do they consider

the role of different time scales and contextuality. There

have been a few subsequent attempts in psychology to

apply nonlinear dynamical systems ideas to the study of

personality [71,72].

There is a large literature exploring the connections

between current temperament taxonomies and mental illness,

with much of this research focused on temperament models

and traits related primarily to emotionality, such as Negative

Affect [1], Harm Avoidance [10], Neuroticism [73] and

Depressive Affective Temperament [74]. Positive/negative

affect models provide the basis for many categories of illness

in the DSM-5, yet these same models of temperament appear

to be very insensitive in differentiating between various types
of mental disorders, especially between depression and gen-

eralized anxiety. Indeed in Watson’s quadripartite model [9],

major depression (MD) and generalized anxiety disorder

(GAD) lie within a single factor of ‘distress disorders’.

Anxiety [2,3] and depression [75] are both associated with

higher scores on Neuroticism/Negative Affect scales. Neur-

oticism, however, appeared to be high not just in anxiety

disorders but in many types of mental illness and therefore

did not differentiate between mental disorders. These find-

ings show that the scales measuring Neuroticism/Negative

Affect in many current temperament models do not differen-

tiate well between depression, generalized anxiety and other

mental illnesses even in terms of the components of

emotionality.

More importantly, far fewer studies investigated the coup-

ling between non-emotionality temperament traits and mental

illness, in spite of the fact that the DSM-5 considers a broad

range of non-emotional symptoms: fatigue, poor attention

and memory, dysfunction in sleep, appetite, psychomotor

retardation, agitation, lethargy or restlessness. Most of these

studies used scales related to Extraversion, Sensation/risk

seeking or Self-directedness, but none related to dynamical

aspects of behaviour or physical functioning. Some studies

have found associations of low Extraversion/Positive Affect

with depression [4] and generalized anxiety [5]. Depression

has been linked to higher Behavioural Inhibition [5], so has

generalized anxiety [4,5]. A decrease in Self Directedness has

been noted in depression [7] and in generalized anxiety [76].

Thus, the inclusion of these non-emotionality scales still did

not enable these models to differentiate between depression

and generalized anxiety. Most of the models used in these

studies have shown little or no ability to discriminate between

MD and GAD.

A different paradigm is needed, one that provides a better

connection to underlying dynamics. As the dynamics that

produces behaviour must ultimately provide ecologically

salient functionality for the person, this led to a search for

models of temperament that capture concepts of functionality

while being rooted in psychophysics or neurophysiology of

the regulatory systems. One promising model is the neuro-

chemically inspired Functional Ensemble of Temperament

(FET) model [11]. This is an extension of Rusalov’s activity-

specific model of temperament [77,78]. The FET model

organizes temperament traits in a 3 � 4 matrix categorized

by functional aspects of human behaviour [11]. The 12 com-

ponents within the FET include: nine domains (traits)

regulating formal functional aspects of behaviour (endur-

ance, dynamic and orientational) each assessed in three

domains (intellectual, physical and social), together with

three systems related to emotionality (Neuroticism, Impulsiv-

ity and Self-confidence). Temperament is assessed using the

Structure of Temperament Questionnaire [78]. The FET

model posits ensemble relationships between monoamine,

acetylcholine, neuropeptide and opioid receptor systems as

providing the neurobiology underlying temperament. It

suggests that the continuum should be localized to the

dynamics of these regulatory systems, at least based upon

our current understanding. The model predicts that the pres-

ence of mental illness should result in differential effects on

levels of temperament traits, akin to a spectrogram.

As a psychiatrist, I was particularly taken by the corre-

spondence between almost all of the symptoms described

in the DSM/ICD classifications and FET components. This
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raises the possibility of structuring future classifications of

mental illness in line with the functional aspects of human

behaviour as proposed by the FET framework. Several

studies have been carried out to examine the coupling

between FET temperament traits and mental illnesses and

demonstrated the value of using this functional approach.

The FET framework appeared to differentiate between

several diagnostic categories [79–83] better than other tem-

perament frameworks that have been used in psychiatry.

For example, the main differences between MD and GAD

were in Motor Endurance and Motor Tempo (only the FET

model has such components), which were lowered in MD

and unchanged in GAD. A lesser difference was in Neuroti-

cism, which was elevated in both disorders, but more so in

GAD. The FET framework was able to differentiate between

comorbid depression and anxiety, MD and GAD, which

has proved difficult to do using any other models. Comorbid

depression and anxiety differed from the other two diagnoses

by a dramatic decrease in aspects of behaviour regulated

by the neocortex—Mental endurance (sustained attention),

Plasticity, Probabilistic thinking and Impulse control.

These selective differences could not have been detected

without the separation of traits according to physical, social

and intellectual domains, or without separation of traits related

to endurance, speed of integration of actions or type of behav-

ioural orientation. Conflation of these domains, as happens

with most other models, eliminates any possibility of detecting

these differences. This is clear evidence of the value that

the activity-specific approach brings to the study of adult

temperament and to attempts to explore the continuum.
6. Conclusion
It has been conjectured that temperament and mental illness

lie along a continuum of neurobehavioural regulation. This

continuum is not a simple linear grading of measurements

with temperament and mental illness along opposite poles.

Instead, the continuum is a complex representation of differ-

ent dynamical regimes of these neurobehavioural regulatory

systems. Temperament and mental illness are expressed in
different psychological domains and across a wide range of

temporal scales. An understanding of this continuum and

of its relationship to temperament and mental illness may

inform the study of both categories of phenomena and puta-

tive linkages between them. This may, in turn, lead to a better

understanding of mental illness and perhaps assist in the

planning of individualized treatment.

In order to better understand this continuum, it is

necessary to coordinate the development of temperament

taxonomies with taxonomies of mental illness. This would

reflect the structure of the continuum between these two

sets of individual differences. In order to develop these taxo-

nomies, greater attention needs to be paid to the conceptual

analysis of experimental data from multiple disciplines. Taxo-

nomies based on factor analysis and other statistically

derived groupings do not provide any obvious resonance

with the continuum underlying temperament and mental ill-

ness. They are not very useful in advancing our theoretical

understanding of temperament and mental illness [82].

Furthermore, it is essential that we use the correct statisti-

cal tools when analysing data obtained from such complex

phenomena as temperament and mental illness and for test-

ing out theories and taxonomies aimed at understanding

such behaviour. Otherwise, we risk perpetuating the same

errors that currently plague biomedical science, causing

significant harm personally and financially [84].

Taxonomies based on activity-specific and functional

approaches seem promising [85]. More attention needs to

be paid to carrying out direct observations of behaviour in

salient contexts and analysing these data in ways that connect

with the underlying dynamics.
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