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Abstract

Background: Confounders can produce spurious associations between exposure and outcome in observational
studies. For majority of epidemiologists, adjusting for confounders using logistic regression model is their habitual
method, though it has some problems in accuracy and precision. It is, therefore, important to highlight the problems
of logistic regression and search the alternative method.

Methods: Four causal diagram models were defined to summarize confounding equivalence. Both theoretical proofs
and simulation studies were performed to verify whether conditioning on different confounding equivalence sets had
the same bias-reducing potential and then to select the optimum adjusting strategy, in which logistic regression model
and inverse probability weighting based marginal structural model (IPW-based-MSM) were compared. The “do-calculus”
was used to calculate the true causal effect of exposure on outcome, then the bias and standard error were used to
evaluate the performances of different strategies.

Results: Adjusting for different sets of confounding equivalence, as judged by identical Markov boundaries, produced
different bias-reducing potential in the logistic regression model. For the sets satisfied G-admissibility, adjusting for the
set including all the confounders reduced the equivalent bias to the one containing the parent nodes of the outcome,
while the bias after adjusting for the parent nodes of exposure was not equivalent to them. In addition, all causal effect
estimations through logistic regression were biased, although the estimation after adjusting for the parent nodes of
exposure was nearest to the true causal effect. However, conditioning on different confounding equivalence sets had
the same bias-reducing potential under IPW-based-MSM. Compared with logistic regression, the IPW-based-MSM could
obtain unbiased causal effect estimation when the adjusted confounders satisfied G-admissibility and the optimal
strategy was to adjust for the parent nodes of outcome, which obtained the highest precision.

Conclusions: All adjustment strategies through logistic regression were biased for causal effect estimation, while
IPW-based-MSM could always obtain unbiased estimation when the adjusted set satisfied G-admissibility. Thus,
IPW-based-MSM was recommended to adjust for confounders set.
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Background
Causal inference is a key task in epidemiology which
discovers the causality between exposure and outcome.
Theoretically, causality is the difference in outcome
caused by a change in exposure, which can be gotten by
‘do-calculus’ in observational studies [1]. In practice,
however, as exposure is impossible to intervene in analytic
epidemiology, confounders inevitably distort the causal
effect of exposure on outcome [2–5]. For majority of
epidemiologists, adjusting for confounders using logistic
regression model for dichotomous outcomes is the routine
method [6–10]. Although some studies have verified
that different adjustment strategies in logistic regression
models might lead to different magnitudes of bias (the
difference of the estimation minus the true causal effect)
and precision [8, 11], it is still the most commonly used
strategy in analytic epidemiologic studies. This phenomenon
is mainly attributed to their vague knowledge about the
behaviour of logistic regression model. For causal inference
in observational study, the inverse probability weighting
based marginal structural model (IPW-based-MSM) has
been confirmed as an unbiased causal effect estimation
approach to adjust for measured confounders [12–14].
Unfortunately, the advantages of IPW-based-MSM are
not recognized by most epidemiologists. Furthermore,
for both logistic regression and IPW-based-MSM, the
selection of adjustment variables sets remains a big
challenge. Fortunately, the concept of confounding equiva-
lence (c-equivalence) proposed by Judea Pearl might help
us to select adjusting strategies [15].
The c-equivalence is presented to determine whether

two variables sets are equally valuable for adjustment,
namely, whether adjustment for one set is guaranteed to
have the same asymptotic bias as adjustment for the others
[15]. Tests for c-equivalence are fairly easy to perform
through a necessary and sufficient condition [15, 16], and
they can also be implemented by propensity score methods
[17]. This provides us a strategy for selecting adjusting
variables sets when using logistic regression models
and IPW-based-MSMs, which help to clarify whether
adjusting for different c-equivalent sets has same bias-
reducing potential.
In this paper, we focused on 4 typical causal diagrams

(Fig. 1), which summarized the generalization of c-equiva-
lence to detect the performances of logistic regression
models and IPW-based-MSMs under the framework of
c-equivalence. Both theoretical proofs and simulation
studies were performed to determine whether adjusting
for the sets of c-equivalence had the same bias-reducing
potential and observed their precision in logistic regression
models and IPW-based-MSMs respectively, and further
comparing the performances of c-equivalence between
these two models through assessing their accuracy (bias)
and precision (standard error). Our aim was to highlight

the problems of c-equivalence using logistic regression
model as well as the advantages of IPW-based-MSM.

Methods
C-equivalence and its test
Let X, Y and Z be three disjoint subsets of discrete
variables, and P(x, y, z) are their joint distribution. The

causal effect of X on Y can be defined as P yjdo xð Þð Þ ¼
X
z

P yjx; zð Þp zð Þ [5, 18, 19], where a sufficient set Z is chosen
to include variables judged as “confounders” [16, 20, 21].
In this framework, the two confounders sets T and Z are

c-equivalent if
X
t

P yjx; tð ÞP tð Þ ¼
X
z

P yjx; zð ÞP zð Þ ∀x, y.

This means that adjustment for set T or Z would produce
the same asymptotic bias relative to the target causal effect
quantity [15]. To meet the necessary and sufficient
condition of c-equivalence, it is first necessary to define
the G-admissibility of a variables set S, which satisfies
the back-door criterion [19]: 1) No element of S is a
descendant of X; 2) The elements of S block every path
between X and Y that contains an arrow into X.
Another condition of c-equivalence is the identical Markov
boundary [15], which is defined as: let Sm be the minimal
subset of S that satisfies the condition (X ⊥ S| Sm)G. This
means that measurement of Sm renders X independent of
all other members of S, and no proper subset of Sm has
this property. Therefore, the necessary and sufficient

a b

c d

Fig. 1 Four typical causal diagrams with various confounding paths
from simple to complex for the target causal path X→Y. a contains
only one confounding path (X←Z→T→Y). b contains two
confounding paths (X←Z→T→Y, X←W→Y). Two confounding paths
(X←Z→T→Y, X←W→V→Y) that have another node (V) are included
in (c). d has three confounding paths (X←W→Y, X←Z→W→Y and
X←W←T→Y). X and Y indicates exposure and outcome respectively. T, Z,
W and V are all confounders that can be observed. {c0, c1, c2, c3, c4, c5} are
the effect parameters. For example, the effect of Z on T is c0
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conditions for T and Z to be c-equivalent are that at
least one of the following conditions hold: 1) Tm = Zm;
and 2) T and Z are G-admissible [15].
As an example, Fig. 1 illustrates the four typical causal

diagrams with simple and complex confounding paths
for the target causal path X→Y [22]. For instance, Fig. 1d
contains three confounding paths X←W→Y, X←Z→W→Y
and X←W←T→Y, with three corresponding confounders
Z, W and T [22, 23]. Theoretically, conditioning on {Z, W},
{T, W} or {Z, T, W} can achieve the same bias-reducing
potential [23]. Thus, they are c-equivalent.

Statistical methods for adjusting for confounders
Expect for the well-known logistic regression model which
is the habitual method for most of epidemiologists, IPW-
based-MSM is an alternative approach that can obtain the
unbiased causal effect estimation [24, 25]. In IPW-based-
MSM, the unbiased causal effect is estimated by inverse
probability weighted which can correct for confounding
bias [26]. In this paper, the following stabilized weights,
which has been recommended to increase the statistical
efficiency and to achieve better coverage of the confidence
intervals, were used [13, 27],

swi ¼ P X ¼ xið Þ
P X ¼ xijZi ¼ zið Þ

where Z is a set of variables which are considered to be
confounders. By weighting the original observations
using the stabilized weights (swi), we can fit the following
marginal structural model to estimate the causal effect of
X on Y,

logitP Yx ¼ 1ð Þ ¼ βMSM
0 þ βMSM

1 x

where the causal effect estimation of X on Y is βMSM
1 .

Theoretical derivation for bias-reducing potential of
c-equivalence under logistic regression model
Taking Fig. 1a as an example, we deduced whether
adjusting for different c-equivalence sets had the same
bias-reducing potential under logistic regression by the
following procedure.
1) Based on the necessary and sufficient condition, A1 =

{Z}, A2 = {T} and A3 = {Z, T} satisfied G-admissibility, thus
they were equivalent, as denoted by A1 ≈A2 ≈A3.
2) Calculated the true causal effect (ACElog(OR)) of X

on Y through the average causal effect (ACE) on the scale
of the logarithm odds ratio (OR),

ACE log ORð Þ ¼ logit P Y ¼ 1jdo X ¼ 1ð Þð Þð Þ
−logit P Y ¼ 1jdo X ¼ 0ð Þð Þð Þ

3) Calculated the effect ( βsetX ) of X on Y by logistic
regression,

βA1
X ¼ logit P Y ¼ 1jX ¼ 1;A1ð Þð Þ−logit P Y ¼ 1jX ¼ 0;A1ð Þð Þ

βA2
X ¼ logit P Y ¼ 1jX ¼ 1;A2ð Þð Þ−logit P Y ¼ 1jX ¼ 0;A2ð Þð Þ

βA3
X ¼ logit P Y ¼ 1jX ¼ 1;A3ð Þð Þ−logit P Y ¼ 1jX ¼ 0;A3ð Þð Þ

4) Calculated the biasesβA1
X −ACE log ORð Þ , βA2

X −ACE log ORð Þ

and βA3
X −ACE log ORð Þ , and then deduced whether βA1

X −
ACE log ORð Þ ¼ βA2

X −ACE log ORð Þ ¼ βA3
X −ACE log ORð Þ.

Simulation
Taking the four typical causal diagrams, which covered
the generalization of c-equivalence (Fig. 1), as examples, a
series of simulation studies were performed to determine
whether adjusting for the sets of c-equivalence had the
same bias-reducing potential and observed their precision
in logistic regression models and IPW-based-MSMs
respectively, further compared the performances of
c-equivalence between these two models though assessing
their accuracy and precision.
Four simulation scenarios were considered, and assumed

that: 1) all variables were binary and followed a Bernoulli
distributions; and 2) the effects of parent nodes on their
child nodes were positive and log-linearly additive. Logistic
regression models were used to simulate child nodes from
their corresponding parent nodes.
For scenario 1 (Fig. 1a), the simulated data were

generated as follows. LetP(Z = 1) = π. Then, P(T = 1|Z) =
exp(c0Z + α1)/(1 + exp(c0Z + α1)) was used to derive the
probability of child node T from its parent node Z.
Similarly, P(X = 1|Z) = exp(c1Z + α2)/(1 + exp(c1Z + α2)) and
P(Y = 1|X,T) = exp(c3X + c2T + α0)/(1 + exp(c3X + c2T + α0))
were used to obtain the probability of X = 1 and Y = 1,
respectively, where the parameters α0, α1, α2 denoted the
intercepts of Y, T and X, respectively, and each effect
parameter (c0, c1, c2, c3) referred to the effect of the
parent node on its corresponding child node. Simulated
data was generated for 1000 subjects by above procedure.
In this scenario (Fig. 1a), variable sets A1 = {Z}, A2 =

{T} and A3 = {Z, T} satisfied the necessary and sufficient
conditions of c-equivalence; thus, A1 ≈A2 ≈A3. Therefore,
we compared three adjustment strategies with the following
six models,

model 1: logit p Y ¼ 1jX;A1ð Þð Þ ¼ β̂
A1

0 þ β̂
A1

X X þ β̂
A1

Z Z.

model 2: logit p Y ¼ 1jX;A2ð Þð Þ ¼ β̂
A2

0 þ β̂
A2

X X þ β̂
A2

T T .

model 3: logit p Y ¼ 1jX;A3ð Þð Þ ¼ β̂
A3

0 þ β̂
A3

X X þ β̂
A3

T T

þβ̂
A3

ZZ.

model 4: logitP YA1
x ¼ 1

� � ¼ β̂
MSMA1

0 þ β̂
MSMA1

x x swA1
i

¼ P X¼xið Þ
P X¼xijA1i¼A1ið Þ.

model 5: logitP YA2
x ¼ 1

� � ¼ β̂
MSMA2

0 þ β̂
MSMA2

x x swA2
i

¼ P X¼xið Þ
P X¼xijA2i¼A2ið Þ.

Yu et al. BMC Medical Research Methodology  (2017) 17:177 Page 3 of 11



model 6: logitP YA3
x ¼ 1

� � ¼ β̂
MSMA3

0 þ β̂
MSMA3

x x swA3
i

¼ PðX¼xiÞ
PðX¼xijA3i¼A3i

Þ.

where β̂
A1

X , β̂
A2

X , β̂
A3

X , β̂
MSMA1

X , β̂
MSMA2

X and β̂
MSMA3

X

denoted the causal effect estimations after conditioning on
A1, A2 and A3 by logistic regression and IPW-based-MSM,

respectively. Given the true causal effect AĈE log ORð Þ calcu-

lated by do-calculus, both the biases ( β̂
A1

X −AĈE log ORð Þ ,

β̂
XA2

−AĈE log ORð Þ, β̂
A3

X −AĈE log ORð Þ, β̂
MSM A1

x −AĈE log ORð Þ,

β̂
MSM A2

x −AĈE log ORð Þ , β̂
MSM A3

x −AĈE log ORð Þ ) and their

corresponding standard errors ( SE β̂
A1

X

� �
, SE β̂

A2

X

� �
, SE

β̂
A3

X

� �
, SE β̂

MSM A1

X

� �
, SE β̂

MSM A2

X

� �
and SE β̂

MSM A3

X

� �
)

were used to identify whether adjusting for different
c-equivalence sets A1, A2 or A3 still produced the
same bias-reducing under the logistic regression
model and IPW-based-MSM, further to evaluate their
accuracy and precision.
For scenario 2 (Fig. 1b), similar simulation data sets

were created as scenario 1. In this scenario, A1 = {Z, W },
A2 = {T, W } and A3 = {Z, T, W } satisfied G-admissibility;
thus, A1 ≈A2 ≈A3. Therefore, three corresponding logistic
regression models and three corresponding IPW-based-
MSMs conditional on A1, A2 or A3 were constructed to
identify whether the c-equivalence has identical biases
and to evaluate their precisions. In addition, B1 = {Z}
was c-equivalent to B2 = {Z,T}, namely, B1 ≈ B2, due to their
identical Markov boundary, written as B1m =B2m = {Z}.
Therefore, four corresponding models conditioning on B1
or B2 were used to calculate the biases and standard errors.
In scenario 3 (Fig. 1c), the simulated data was generated

in the same way as in scenario 1. In addition, the sets A1 =
{Z} ≈A2 = {Z,T} and B1 = {W} ≈B2 = {W,V } were separately
c-equivalent due to A1m =A2m = {Z} and B1m =B2m = {W}.
As A1 ≈A2 and B1 ≈B2 were identical in the c-equivalence
mechanism, it was sufficient to analyze one group to
explore the c-equivalence mechanism of the identical
Markov boundary. Thus, we constructed two logistic
regression models and two IPW-based-MSMs condi-
tioning on A1 or A2 to explore their c-equivalence and
to evaluate their precision. Furthermore, as variables
sets C1 = {Z,W }, C2 = {T,V } and C3 = {Z,W,T,V } blocked
all back-door paths from X to Y, they were admissible and
equivalent, C1 ≈C2 ≈C3. Therefore, the six corresponding
models conditional on C1, C2 or C3 were performed to
identify biases and precisions.
For scenario 4 (Fig. 1d), following the path directions,

simulation data sets were created same with scenario 1.
A1 = {Z, W}, A2 = {T, W} and A3 = {Z, T, W} satisfied G-
admissibility; thus, A1 ≈ A2 ≈A3. Their corresponding

three logistic regression models and three IPW-based-
MSMs conditional on A1, A2 or A3 were used to observe
the biases and precisions.
For each of the 4 simulation scenarios, we varied across

the effect of a specific edge given the others fixed with 1000
simulation repetitions. The R (http://cran.r-project.org/)
programming language was used to conduct the statistical
simulations.

Results
Theoretical results for bias-reducing potential of c-equivalence
under logistic regression model
Considered scenario 1 (Fig. 1a) as a typical diagram for
deducing whether adjusting for different c-equivalence
sets resulted in the same bias reduction under the logistic
regression models. In this causal diagram, A1 = {Z}, A2 = {T}
and A3 = {Z, T} composed the c-equivalence group, which
satisfied the G-admissibility .
For A1 ≈ A2 ≈ A3 of c-equivalence, the true causal effect

of X on Y was calculated as

ACE log ORð Þ ¼ logit PðY ¼ 1jdo X ¼ 1ð ÞÞ½ �
−logit PðY ¼ 1jdo X ¼ 0ð ÞÞ½ �

ACE log ORð Þ ¼ logit

�X
Z;T

P Y ¼ 1jX ¼ 1;Tð ÞPðT jZÞP Zð Þ

−logit
X
Z;T

P Y ¼ 1jX ¼ 0;Tð ÞPðT jZÞP Zð Þ
" #

By conditioning on A1 = {Z}, the effect of X on Y was
equal to

βA1
X ¼ logit P Y ¼ 1jX ¼ 1;Zð Þ½ �−logit P Y ¼ 1jX ¼ 0;Zð Þ½ �

¼ logit
X
T

P Y ¼ 1jX ¼ 1;Tð ÞP T jZð Þ
" #

−logit
X
T

P Y ¼ 1jX ¼ 0;Tð ÞP T jZð Þ
" #

Similarly, the effect of X on Y when conditioning on
A2= {T} was equal to

βA2
X ¼ logit P Y ¼ 1jX ¼ 1;Tð Þ½ �−logit P Y ¼ 1jX ¼ 0;Tð Þ½ �

¼ logit P Y ¼ 1jX ¼ 1;Tð Þ
X
T

P T jZð Þ
" #

−logit P Y ¼ 1jX ¼ 0;Tð Þ
X
T

P T jZð Þ
" #

Additionally, the effect of X on Y when conditioning
on A3 = {T, Z} was equal to

Yu et al. BMC Medical Research Methodology  (2017) 17:177 Page 4 of 11

http://cran.r-project.org


βA3
X ¼ logit P Y ¼ 1jX ¼ 1;T ;Zð Þ½ �−logit P Y ¼ 1jX ¼ 0;T ;Zð Þ½ �

¼ logit P Y ¼ 1jX ¼ 1;Tð Þ½ �−logit P Y ¼ 1jX ¼ 0;Tð Þ½ �

After a series of derivations (Additional file 1: Appendix),

we obtained βA2
X ¼ βA3

X under any condition, suggesting
that the bias-reducing after adjusting for c-equivalence sets
A2 ≈A3 was equivalent under the logistic regression model.

βA1
X ¼ βA2

X ¼ βA3
X only if c2 = 0 or c3 = 0, indicating that the

bias-reducing after adjusting for c-equivalence sets A1 ≈
A2 ≈A3, respectively, was equivalent in this situation.

However, βA1
X < βA2

X ¼ βA3
X if c2 ≠ 0 and c3 > 0, and βA1

X

> βA2
X ¼ βA3

X if c2 ≠ 0 and c3 < 0,which indicating an
unequal bias-reducing after adjusting for c-equivalence sets
A1 ≈A2 ≈A3 when both c2 and c3 were not equal to zero
(for more details, see Appendix).

Simulation results
Scenario 1
For Fig. 1a, various simulation strategies were performed.
From the panel a and panel b of Fig. 2 and Additional file 2:
Figure S1, as for the logistic regression models, we
observed that adjusting for the c-equivalent set A2 or A3

has resulted in approximate biases, but adjusting for set A1

was not equal to them. Moreover, the strategy of adjusting
for A1 achieved the minimum bias. When adjusting for
confounders by IPW-based-MSM, the estimations of all

the strategies were approximate and unbiased. Panel c and
d of Fig. 2 and Additional file 2: Figure S1 showed that
adjusting for A2 by IPW-based-MSM achieved the highest
precision in all situations. Thus, compared with logistic
regression models, the IPW-based-MSM produced an
unbiased causal effect estimation and the highest precision
in this scenario. The optimal adjustment strategy was con-
ditioning on A2. Although the estimations through logistic
regression model were biased, adjusting for A1 produced a
result nearest to the true causal effect.
When varying across the effect of Z on T with the other

parameters fixed, the simulation results indicated that the
biases of all six models (models 1–6) tended to be stable
(Fig. 2a). Similar performances were observed when
varying across the effect of Z on X (Additional file 2:
Figure S1a). However, when varying across the effect of
T on Y and keeping the other parameters constant, the
bias showed a linear increasing trend after adjusting for
set A2 or A3 under the logistic regression model, but
was approximately to zero after adjusting for set A1.
However, the biases remained stable under IPW-based-
MSM (Fig. 2b). We observed similar trends with the effect
of X on Y increasing (Additional file 2: Figure S1b).

Scenario 2
In Fig. 1b, for the first c-equivalent subsets A1 = {Z, W},
A2 = {T, W} and A3 = {Z, T, W}, we observed that the bias
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Fig. 2 Scenario 1 (Fig. 1a), simulation results of the bias (a and b) and standard error (c) and (d) of c-equivalence sets A1 ≈ A2 ≈ A3 when varied
across the log transformed odds ratio effect of Z on T and T on Y
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after adjusting for set A2 was similar to that of A3 but not
to that of A1, and the strategy of adjusting for A1 achieved
the minimum bias under the logistic regression models,
as shown in panels a and b of Fig. 3, Additional file 3:
Figure S2 and Additional file 4: Figure S3 under logistic
regression models. The adjustment of any confounding
sets of c-equivalent subsets through IPW-based-MSM
had the same bias-reducing potential and the estimations
were unbiased. Panel c and d of these figures showed that
adjusting for A2 under IPW-based-MSM achieved the
highest precision in all situations. Thus, conditioning on
any c-equivalent set that was satisfied G-admissibility
through IPW-based-MSM produced an unbiased causal
effect estimate and adjustment for A2 was the best
strategy. When using logistic regression models to adjust
for confounders, the optimal adjustment strategy was
adjusting for variable subset A1.
In the logistic regression models, when keeping the

other parameters constant, bias elevated with the effect of
T on Y increasing when adjusting for A2 or A3, whereas it
elevated in the opposite direction when adjusting for A1

(Fig. 3a). All three models revealed increased biases with
the effects of W on Y increasing (Fig. 3b). Similar perfor-
mances were observed when varying across the effect X
on Y (Additional file 3: Figure S2b). When varying across
the effect of Z on T with the other parameters fixed,
the simulation results indicated that the biases of all

three adjustment strategies tended to be stable (Additional
file 3: Figure S2b). We observed similar trends with the
increase of the effect of Z on X (Additional file 4:
Figure S3a) or the effect of W on X (Additional file 4:
Figure S3b). When adjusting for confounders through
IPW-based-MSM, the biases of all three adjustment
strategies tended to be stable in all situations.
For another c-equivalent subsets B1 = {Z} and B2 = {Z, T},

panels a and b of Fig. 4, Additional file 5: Figure S4 and
Additional file 6: Figure S5 showed that adjusting for c-
equivalence set B1 or B2 had different bias-reducing, and
the bias of adjusting for B1 was less than that of adjusting
for B2 under the logistic regression models. For IPW-
based-MSM, the biases were equivalent after adjusting
for B1 or B2. Panels c and d of these figures showed that
adjusting for B2 through IPW-based-MSM resulted in
higher precision.
Keeping the other parameters constant, the bias elevated

as the effect of T on Y increasing when adjusting for set B2,
whereas it was stable after adjusting for B1 under logistic
regression. A stable trend also appeared after adjusting for
any sets through IPW-based-MSM (Fig. 4a). Similar perfor-
mances were observed when varying across the effect of X
on Y (Additional file 5: Figure S4b). When varying across
the effect of W on Y with the other parameters fixed, the
simulation results indicated that biases of four models
revealed an increasing trend (Fig. 4b). Similar trends of the
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effect of W on X increasing were observed in Additional
file 6: Figure S5b. When varying across the effect of Z on T
with the other parameters fixed, the biases of the four
models were stable (Additional file 5: Figure S4a). Similar
performances were observed when varying across the effect
of Z on X (Additional file 6: Figure S5a).

Scenario 3
In Fig. 1c, for the first c-equivalent subsets, A1 = {Z}
and A2 = {Z, T}, Fig. 5, Additional file 7: Figure S6 and
Additional file 8: Figure S7 showed that adjusting for c-
equivalence set A1 or A2 resulted in different bias-
reducing, and the bias of adjusting for A1 was less than
that after adjusting for A2 under logistic regression
models. Then the biases were equal after conditioning
on A1 and A2 via IPW-based-MSM. In consideration of
the standard error, adjusting for A2 through IPW-based-
MSM resulted in higher precision.
For other c-equivalent subsets C1 = {Z,W}, C2 = {T,V}

and C3 = {Z,W,T,V}, the simulation result (Fig. 6,
Additional file 9: Figure S8 and Additional file 10: Figure S9)
showed that adjusting for the variable set C2 resulted in
similar bias to that of set C3 but not to C1, and the strategy
of adjusting for C1 resulted in the minimum bias under
the logistic regression models. However, the estimations
of all strategies conditioned by IPW-based-MSM were
approximately equivalent and unbiased. For the standard

error, conditioning on C2 by IPW-based-MSM resulted in
the minimum standard error in all situations. Thus, IPW-
based-MSM was a better method than logistic regression
for controlling for confounders. The optimal adjustment
strategy was conditioning on C2 by IPW-based-MSM in
this scenario. Besides, adjusting for A1 produced the result
that was nearest to the true causal effect under the logistic
regression model.

Scenario 4
For Fig. 1d, simulation results (Fig. 7, Additional file 11:
Figure S10 and Additional file 12: Figure S11) showed
that adjusting for c-equivalence set A2 or A3 had different
bias-reducing but adjusting for A1 was not equal to them
and the strategy of adjusting for A1 got the minimum bias
than others under logistic regression models. Conditioning
on any confounding set through MSM had the same
bias-reducing and produce unbiased estimations. In
consideration of the standard error, we observed that
adjusting for A2 by IPW-based-MSM resulted in higher
precision in all situations. Thus, IPW-based-MSM pro-
duced unbiased causal effect estimations after conditioning
on any c-equivalent set, and the strategy of adjusting for A2

achieved highest precision in this scenario. When using
logistic regression models to adjust for confounders, adjust-
ing for variables subset A1 produced the minimum bias.
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Discussion
In this paper, we focused on the 4 typical causal diagrams
shown in Fig. 1 to assess the performances of logistic
regression models and IPW-based-MSMs with respect to
c-equivalence. The necessary and sufficient conditions for
T and Z to be c-equivalent proposed by Pearl are that at
least one of the following conditions hold [15]: 1) Tm =
Zm; or 2) T and Z are G-admissible. Our results revealed
that c-equivalence sets satisfying the c-equivalence
condition 1) (e.g., A2 (T) and A3 (Z, T) in scenario 2)
had different bias-reducing under logistic regression.
For c-equivalence condition 2), adjusting for the set
including all confounders had approximately bias-reducing
as adjusting for the set containing the parent nodes of Y,
while adjusting for the set containing the parent nodes of
X was not equivalent to adjusting for the two above sets.
However, under the framework of IPW-based-MSM,
conditioning on any set of c-equivalence, as judged by
the necessary and sufficient conditions, still had same
bias-reducing. In summary, adjusting for different sets
of c-equivalence under logistic regression always produced
different bias-reducing; whereas when using IPW-based-
MSM, the estimations of all strategies were approximately
equivalent.
Adjusting more confounders would improve accuracy

and precision of estimation in classic linear regression
[28, 29]. Nevertheless, including more confounders in

logistic regression model usually leads to less bias and
lower precision [30]. Our studies showed that adjusting
for the set containing the parent nodes of X had the
minimum bias in logistic regression. With regard to the
standard error, adjusting for set with fewer confounders
would improve precision. Under the framework of IPW-
based-MSM, we observed that adjusting for any set
satisfying condition 2) had unbiased estimations; and
conditioning on the set containing all parent nodes of Y
achieved the highest precision in all situations. In
summary, compared with logistic regression, the IPW-
based-MSM produced unbiased causal effect estimates
when the adjusted variable sets satisfied condition 2)
and the optimal adjustment strategy was conditioning
on parent nodes of outcome Y, which achieved the
highest precision. Although the estimations obtained by
logistic regression was biased, the estimation of adjusting
for the parent nodes of the exposure X was nearest to true
causal effect.
The true causal effect of exposure on outcome calculated

by “do-calculus” is defined in terms of marginal probability
distributions. However, the conditional treatment effects
estimated from logistic regression model differ from the
true causal effect [31, 32]. Logistic regression estimates
do not behave like linear regression estimates. They are
affected by omitted variables, even when those variables
are unrelated to the independent variables in the model
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[11]. The use of IPW-based-MSM could lead to a more
precise estimation of causal effects.
The discrepancy between the marginal OR and the

conditional OR even in the absence of confounders is
acknowledged as the non-collapsibility of the OR [4, 33].
The non-collapsibility effect depends on a variety of param-
eters, e.g., the effect of the exposure, the prevalence and
effect of the covariate [4, 33]. According to our results, the
differences in estimates between the logistic regression
model and IPW-based-MSM were equal to the non-
collapsibility effect in number. However, the discrepancy
in estimates between these two model were different after
adjusting for different sets of c-equivalence maybe due to
these sets have different variables.

Conclusions
In conclusion, the bias-reducing differed after adjusting
for the sets of c-equivalence under the logistic regression
model, whereas it were approximately equivalent when
using IPW-based-MSM. All adjustment strategies through
logistic regression were biased, while IPW-based-MSM
could always obtain unbiased estimation when the
adjusted set satisfied G-admissibility. Thus, for adjusting
confounders set, we recommend IPW-based-MSM rather
than logistic regression model.
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