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All organisms must secure essential trace nutrients, including

iron, zinc, manganese and copper for survival and proliferation.

However, these very nutrients are also highly toxic if present at

elevated levels. Mammalian immunity has harnessed both the

essentiality and toxicity of micronutrients to defend against

microbial invasion — processes known collectively as

‘nutritional immunity’. Therefore, pathogenic microbes must

possess highly effective micronutrient assimilation and

detoxification mechanisms to survive and proliferate within the

infected host. In this review we compare and contrast the

micronutrient homeostatic mechanisms of Cryptococcus and

Candida — yeasts which, despite ancient evolutionary

divergence, account for over a million life-threatening infections

per year. We focus on two emerging arenas within the host–

pathogen battle for essential trace metals: adaptive responses

to zinc limitation and copper availability.
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Introduction
The concept of nutritional immunity, in terms of host-

driven iron sequestration, has been appreciated for dec-

ades: our bodies maintain extremely low iron cation levels

via intracellular sequestration (ferritin, haemoglobin, the

hepcidin axis) and expression of extracellular high-affini-

ty iron-binding proteins (transferrin, lactoferrin). Success-

ful pathogens have in turn evolved effective assimilation

mechanisms (high-affinity transporters, siderophores and

specialised binding proteins) [1]. However, additional

layers of nutritional immunity have been revealed in

recent years: micronutrient restriction is not limited to
Current Opinion in Microbiology 2016, 32:128–134 
iron, with host zinc and manganese sequestration playing

key roles in controlling infection [2]. Moreover, in certain

host niches, pathogens can be exposed to potentially toxic

levels of iron, zinc and copper. Therefore, beyond high-

affinity iron uptake systems, microbial pathogens must

also possess highly effective homeostatic mechanisms

(both assimilation and detoxification) for other trace

metals within their hosts [2].

Host nutritional immunity during fungal infection and

the pathogen assimilation pathways employed in coun-

terattack have been extensively discussed in a number of

recent reviews [3–6]. In this mini-review we focus on two

emerging areas: the adaptive responses of Candida and

Cryptococcus species to changes in environmental zinc and

copper.

Divergent virulence factor intercalation of the
zinc regulon
Zinc is the second most abundant transition metal in the

human body but, like iron, its availability to microbial

pathogens is strictly limited. Zinc restriction is further

compounded during periods of inflammation due to the

action of calprotectin. Calprotectin constitutes approxi-

mately half the cytoplasmic protein content of neutrophils,

is a dominant component of NETs (neutrophil extracellu-

lar traps) and elicits antifungal activity via zinc chelation

[7]. Calprotectin is a heterodimer of S100A8 and S100A9,

members of the S100 family of low molecular weight

proteins. Antifungal activity of another S100 family mem-

ber, psoriasin (S100A7) has recently been reported to elicit

antifungal activity via zinc-sequestration [8�], suggesting

that multiple members of this protein family may have

similar functions. Furthermore, host cell internalisation

and subcellular compartmentalisation further limit acces-

sibility to extracellular and intracellular pathogens, respec-

tively. For example, activated, Histoplasma-infected

macrophages shuttle zinc to their Golgi, restricting fungal

proliferation and promoting clearance [9].

Interestingly, contemporary pathogenic fungal species

appear to simultaneously exhibit remarkably similar

and divergent responses to changes in zinc availability.

First described in the model yeast Saccharomyces cerevisiae,
Zap1 is a zinc finger transcription factor that regulates the

expression of zinc transporter-encoding genes and is

essential for maintaining zinc homeostasis. Under zinc

limitation, Zap1 exhibits positive auto-regulation, rapidly

amplifying its own transcription and subsequent protein

levels and positively regulating the expression of zinc
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transporter-encoding genes, including ZRT1, ZRT2 and

ZRT3. For a detailed discussion of S. cerevisiae Zap1

function, readers are directed to an excellent recent

review by Wilson and Bird [10].

It would appear that Zap1 orthologues function as con-

served master regulators of zinc homeostasis in fungi: in

the pathogenic fungal species Candida albicans, Candida
dubliniensis, Aspergillus fumigatus, and Cryptococcus deuter-
ogattii, Zap1 orthologues (also known as Csr1 in Candida,

ZafA in Aspergillus) have been directly demonstrated to

regulate the expression of zinc transporter-encoding

genes. Given the evolutionary divergence of these spe-

cies, it is plausible that orthologues of Zap1 regulate zinc

homeostasis in many (if not all) fungi [11–14]. Under-

scoring the importance of fungal zinc homeostasis during

infection, each fungal pathogen tested to date exhibits

virulence attenuation or decreased infectivity upon dele-

tion of their respective ZAP1 orthologue in relevant

animal models of infection (Figure 1).

Despite this apparent conservation of function as a

regulator of zinc homeostasis and virulence, there may

be differences in the Zap1-regulons of different contem-

porary fungal species. Cryptococcus neoformans and C.
deuterogattii  are closely related species that express three

major virulence factors for infectivity: capsule formation,

melanin production and growth capacity at 37 8C. Inter-

estingly, while C. deuterogattii ZAP1 is dispensable for

capsule and melanin production [14], C. neoformans cells

lacking the ZAP1 orthologue (ZAP104) are deficient in

capsule, melanin, and a/a cell fusion, suggesting rewiring

[15,16�]. While we cannot rule out that C. deuterogattii
Figure 1

C. neoformans Zap1
C. gattii Zap1

A. fumigatus Z

C. dubliniensis 
C. albicans Csr1
C. tropicalis Csr

S. cerevisiae Za

Phylogenetic and functional relationships of Zap1 orthologues in fungi. The 

downloaded from FungiDB, Aspergillus Genome Database, Saccharomyces

Phylogeny.fr. Note that in all reported cases, Zap1 regulates the expression

models of infection, but that confirmed pathogenicity factor expression is sp
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Zap1 and zinc homeostasis may influence melanin

and capsule formation under conditions not examined

by Schneider et al. [14], Liu et al. and Jung

et al. independently demonstrate ZAP104 involvement

in virulence factor expression (melanin and capsule

synthesis) in C. neoformans [14,15,16�]. These three

studies together suggest that Zap1-mediated zinc ho-

meostasis in C. neoformans, but not C. deuterogattii, may

impinge on virulence factor (capsule/melanin) expres-

sion, and raise questions about the reasons for pheno-

typic differences. An examination of Zap1 and Zap104

protein sequences immediately reveals structural differ-

ences: where the Zap1 N-terminus encodes a single zinc-

binding domain, Zap104 encodes two [14]. Whether

these structural differences lead to differing sensitivities

to zinc availability or differences in promoter binding

remain to be explored.

In the Candida genus, Zap1 function has been investigat-

ed in three relatively closely related species [17,18]:

C. albicans, C. dubliniensis and C. tropicalis. Despite di-

verging from basidiomycetes approximately 500 mya

[19], C. albicans, like C. neoformans, appears to regulate

major virulence attributes (hyphal morphogenesis, adhe-

sion and biofilm maturation) via Zap1 (note that Zap1 in

Candida is also known by the common name Csr1). Kim

et al. [20] first reported that ZAP1 deletion in C. albicans
precluded hyphal morphogenesis under a range of envi-

ronmental conditions. Moreover, overexpression of ZRT1
or ZRT2 (encoding the two predicted plasma membrane

zinc transporters of C. albicans) promoted filamentous

growth of the zap1D mutant on certain media, suggesting

that the morphogenic defect may be due to perturbed
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predicted amino acid sequences of Zap1 orthologues were
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cellular zinc homeostasis rather than direct Zap1-regula-

tion of hypha-formation.

A recent study of C. dubliniensis found that, in this close

relative of C. albicans, Zap1 also positively regulates

ZRT1, ZRT2 and PRA1 [12�], reinforcing the concept

that Zap1 is the universal regulator of zinc assimilation

in the fungal kingdom (Figure 1). However, unlike C.
albicans, the C. dubliniensis zap1D mutant was not defec-

tive for hypha formation. On the other hand, Zap1 does

regulate filamentation in C. tropicalis [21].

Using a powerful combination of large-scale mutant li-

brary screening, transcriptional profiling, chromatin

immunoprecipitation, regulatory network analysis and

infection modelling, the group of Aaron Mitchell found

that Zap1 regulates extracellular matrix production by C.
albicans biofilms and governs the expression of adhesin

molecules. The zap1D mutant efficiently formed bio-

films; however, these structures produced highly elevated

levels of b-glucan, indicating that Zap1 negatively reg-

ulates extracellular matrix production — a key attribute

in biofilm maturation [11]. Zap1 occupies ZRT1, ZRT2
and PRA1 promoters and positively regulates their tran-

scription, in agreement with Zap1 acting as the master

regulator of zinc homeostasis in C. albicans. However,

overexpression of these zinc assimilation factors in the

zap1D mutant had no effect on b-glucan production,

suggesting that cellular zinc homeostasis per se may not

directly regulate extracellular matrix synthesis, and that

Zap1 possesses additional regulatory function [11]. In-

deed, Zap1 was also found to be required for the regula-

tion of genes involved in adhesion — another key

element of biofilm formation [22]. Despite this regulatory

role, the zap1D mutant itself exhibited wild type levels of

adhesion. Therefore, to test whether Zap1 functions

redundantly in adherence regulation, these authors tested

the effect of ZAP1 overexpression in strains lacking other

transcription factors important for adhesion. This ap-

proach demonstrated that ZAP1 overexpression restored

the adhesive capacity of multiple adhesion-defective

transcription factor mutants. This was most likely due

to Zap1-dependent transcriptional induction of CSTAR

(cell surface targets of adherence regulators) genes, as

ZAP1 overexpression was found to increase the expres-

sion of these target genes in mutants lacking three direct

regulators of adhesion (zcf28D, try2D and try3D). There-

fore, in addition to zinc assimilation, C. albicans appears to

have intercalated key virulence attributes — adhesion

and biofilm maturation — into its Zap1 regulon. It should

be noted that, in these studies, zinc limited media was not

used, and Zap1 may regulate different subsets of genes,

depending on the environmental zinc status.

In summary, it would appear that beyond zinc homeosta-

sis, the Zap1 transcription factor plays different roles in

different fungal species and, at least in C. neoformans and
Current Opinion in Microbiology 2016, 32:128–134 
C. albicans, these are directly associated with the expres-

sion of ‘classical’ pathogenicity factors. So why might

fungal pathogens place control of key virulence attributes

within their Zap1 regulon? One likely possibility is the

relative zinc levels found in the natural reservoirs of these

yeasts, compared to the infected host. Both arboreal

environments and the mammalian digestive tract are

relatively high zinc environments, whilst nutritional im-

munity creates extreme zinc depletion within infected

tissues. Hardwiring virulence factor expression into their

zinc starvation-responses may contribute to the high

pathogenic potential of these species, similar to the

situation for iron [23].

Dynamic regulation of response to nutritional
copper immunity
In contrast to zinc nutritional immunity, which functions

primarily via micronutrient sequestration by the host,

copper nutritional immunity appears to represent a highly

dynamic system [3,23]. During C. albicans bloodstream

infection, serum copper levels rise early in infection [24].

Upon kidney colonisation, an early spike in copper levels

is followed by rapid copper sequestration. For C. neofor-
mans, while the lungs are a high copper environment,

alveolar macrophages induce host CTR1 but repress the

ATP7A transporter for phagosomal copper compartmen-

talization, resulting in copper starvation upon engulfment

[25]. Consistent with this, C. neoformans requires the

copper transporter CTR4 for survival within alveolar

macrophages but it is dispensable for growth in the lungs

[26��,27]. Although cerebral spinal fluid (CSF) copper

levels are estimated at 100 mM under certain conditions,

the CSF is generally copper poor and induces copper

transporter expression [27,28]. Likewise, upon crossing

the blood–brain-barrier, the low copper availability of the

brain necessitates CTR1 or CTR4 for C. neoformans viru-

lence [27]. Responding to this dynamic environment

requires a coordinated transcriptional response on the

part of the fungus.

Structurally, fungal copper responsive transcription factors

fall into three classes typified by S. cerevisiae Ace1

and Mac1 and S. pombe Cuf1 (Figure 2). All maintain an

N-terminal copper responsive (R/K)GRP motif and con-

served N-terminus [29�]. In ScAce1 and ScMac1 residues

1–40 encode a zinc-binding domain. ScAce1 residues

40–110 encode CXC and CX2C motifs necessary to coor-

dinate a tetra-copper cluster for binding MRE promoter

motifs. Mac1 is characterised instead by dual cysteine rich

C-terminal motifs, REP-I (CXCX4CXCX2CX2H) and

REP-II (CXCX4CXCX2CX2H), which sense copper and

stabilise DNA binding, respectively[30,31]. Specificity

is achieved through division of labour for high and low

copper responses: ScMac1 regulates the expression of the

CTR1 and CTR2 copper importers in response to copper

limitation, while copper toxicity triggers Mac1 degradation

and assembly of the ScAce1 tetra-copper cluster, activating
www.sciencedirect.com
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Figure 2
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Phylogenetic and structural relationships of copper responsive transcription factors in fungi. The predicted amino acid sequences of the indicated

orthologs were downloaded from FungiDB, Broad, NCBI, Saccharomyces Genome Database, Pombase, and Candida Genome Database and

aligned using Phylogeny.fr. Structural schematics were constructed based on sequence analysis and functional analysis is based on the reported

literature, discussed in the text.
DNA-binding and induction of CUP1 and CRS5 metal-

lothioneins and SOD1, which in turn further negatively

regulates Mac1 [32–34]. Likewise, the C. glabrata Ace1

orthologue Amt1 is required for high copper and metal-

lothionein expression and C. glabrata encodes a putative

Mac1 homolog with overall structural similarity to ScMac1

[35,36] (Figure 2).

SpCuf1 is representative of the third class, with a single,

structurally distinct REP motif: CXCX3CXCX2CX2H.

SpCuf1 is required for growth on limited copper through

binding CuSE motifs in the CTR4 promoter; in the

presence of high copper, Cu-REP interaction induces a

conformational change masking the N-terminal nuclear

localisation signal and inhibiting function [37]. S. pombe
lacks metallothineins, but detoxifies copper through a

dual function SOD chaperone, PCCS [38].

C. albicans responds to both low and high copper levels via

CaMac1, which induces either Cu-SOD1 in high copper or

Mn-SOD3 in low copper, along with the CTR1 copper

importer; both CaMAC1 and CTR1 are required for hyphal

growth, and SOD1 is required for virulence [24,39–41].
www.sciencedirect.com 
CaACE1/CUP2 is additionally required for growth on high

copper and regulates CUP1 and CRD2 metallothioneins

[42,43]. C. dubliniensis does encode MAC1 and AMT1
homologues that presumably act in a similar fashion,

however their targets remain uncharacterised (Figure 2).

Cryptococcus Cuf1 is required for growth on both low and

high copper and is structurally distinct from SpCuf1 and

ScMac1/Ace1: in addition to the Cuf1 REP motif, a second

cysteine-rich repeat (CCX3CX4CXCX3CCXCCXC) is

conserved in both C. neoformans and C. deneoformans,
estimated to have diverged 18–24 mya [44,45]. For the

outbreak strain C. deuterogattii, Cuf1 sequences in multiple

isolates (R265, LA55, RAM5) have undergone truncations

that specifically excise the copper responsive REP motifs

(Figure 2), although these motifs are maintained in

C. decagattii (IND107), C. gattii (EJB2, Ru294, WM276)

and C. bacillisporus (CA1873, Ca1280). The relationship

between copper and Cuf1 activity has not yet been

reported in these organisms.

For both C. neoformans and C. deneoformans, growth in low

copper requires CTR1/CTR2 (CNAG_07701) and CTR4
Current Opinion in Microbiology 2016, 32:128–134
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[25,26��,46,47]. While CTR1 is constitutively expressed,

CTR4 is specifically induced by low copper in a CUF1-

dependent manner. During growth on high copper, CUF1
mediates CMT1 and CMT2 metallothionein expression

[46]. Similarly, Lin et al. report that C. deneoformans Mac1/

Cuf1 is required for growth on both high and low copper

[48]. This dual activity represents a rewiring in compari-

son to Cuf1 activity in S. pombe, where high copper leads

to the sequestration of Cuf1 in the cytoplasm [37]. In

addition to growth, copper levels directly influence Cryp-
tococcus virulence through capsule and melanin via Cuf1-

independent and Cuf1-dependent mechanisms. In both

species, Cuf1 is required for melanin production in a low

copper environment, likely because melanin synthesis

requires the LAC1 copper-dependent oxidase and a cuf1D
mutant is unable to acquire sufficient copper from the

environment [46,48–50]. Lac1 copper loading is mediated

by the CCC2 P-type copper transporting ATPase, ATX1
copper chaperone, and the ClC-A chloride channel. How-

ever, in copper-replete conditions, Cncuf1D melanin

defects persist in the absence of growth defects

[16�,47], and the cuf1D null is more readily phagocytosed

[51]. Although a complete transcriptional analysis of Cuf1

and copper homeostasis during virulence factor induction

has not been performed, CTR1 and CTR4, but not CUF1,

are induced by the temperature shift sufficient to induce

capsule during growth in DMEM [51,52]. In C. deneofor-
mans, excess copper induces filamentation and is depen-

dent on Ccc2 activity [48]. Interestingly, a C. albicans
gpa2D/D mutant is deficient for CTR1 and FRE7 copper

importer expression and inappropriately expresses CRD2,

suggesting a role for cAMP/PKA in copper homeostasis

and hyphal growth. In C. neoformans, cAMP/PKA regu-

lates melanin and capsule via integration with the pH-

responsive transcription factor Rim101 and ESCRT

[53,54]. Cnrim101 and ESCRT mutants vps25 and

rim20 are sensitive to low copper, although capsule and

immune evasion defects in these mutants are likely due

to changes in the cell wall rather than defects in expres-

sion [51,55]. CnCCC2 and ATX1 are also required for

growth on low iron, likely due to the interaction between

copper and iron uptake [49].

In summary, Candida and Cryptococcus species experience

significant shifts in zinc and copper availability upon

transitions between commensal or environmental and

infective stages. It would appear that certain successful

fungal pathogens have hardwired virulence factor expres-

sion into their metal ion sensing machinery and may use

the metal ion environment of the host as a key signal. A

major challenge for the future will be to understand how

these signals are integrated, and whether we can thera-

peutically target these pathways to treat fungal infections.
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