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Abstract
Illegal selective logging of tropical timber is of increasing concern worldwide. Madagascar is

a biodiversity hotspot and home to some of the world’s most sought after tropical timber

species. Malagasy rosewoods belong to the genus Dalbergia (Fabaceae), which is highly

diverse and has a pantropical distribution, but these timber species are among the most

threatened as a consequence of intensive illegal selective logging and deforestation. Reli-

able identification of Dalbergia species from Madagascar is important for law enforcement

but is almost impossible without fertile plant material, which is often unavailable during for-

est inventories or when attempting to identify logged trees of cut wood. DNA barcoding has

been promoted as a promising tool for species identification in such cases. In this study we

tested whether DNA barcoding with partial sequences of three plastid markers (matK, rbcL
and trnL (UAA)) can distinguish between Dalbergia from Madagascar and from other areas

of its distributional range, and whether Malagasy species can be distinguished from one

another. Phylogenetic analyses revealed that the Malagasy Dalbergia species studied form

two monophyletic groups, each containing two subgroups, only one of which corresponds

to a single species. We characterized diagnostic polymorphisms in the three DNA barcod-

ing markers that allow rapid discrimination between Dalbergia from Madagascar and from

other areas of its distribution range. Species identification success based on individual bar-

coding markers or combinations was poor, whereas subgroup identification success was

much higher (up to 98%), revealing both the value and limitations of a DNA barcoding

approach for the identification of closely related Malagasy rosewoods.

Introduction
In recent years human-caused pressure on wildlife has increased dramatically, most notably in
the tropics, as a consequence of increasing demand for animal and plant products and the
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resulting high prices they command on the international market. A wide diversity of species
are affected, but only a few are widely known, such as elephants and rhinos, which are heavily
poached for their valuable ivory tusks and horns, respectively [1,2]. Plant species are also
severely impacted by international trade, including many tropical hardwood trees such as
mahogany and ebony, which are in high demand for their valuable timber [3,4].

Madagascar is renowned as one of the world’s most important tropical biodiversity hotspots
[5] but its remarkable fauna and flora are under growing pressure as a consequence of slash
and burn agriculture, charcoal production, and selective illegal logging [6–10]. This situation
was aggravated by the political coup that took place in Madagascar in 2009 and the following
suspension of most international financial assistance to the Malagasy government [11]. The
ensuing increased political instability was accompanied by growing governmental corruption
and a worsening of Madagascar’s already widespread poverty [12,13]. This created a favorable
environment for the massive increase in illegal logging that has plagued the country over the
last several years [14,15]. Randriamalala & Liu [13] estimated that almost all illegally logged
timber in Madagascar is exported to China, primarily through ports in eastern Africa. The
genus Dalbergia provides a prime example of Malagasy timber species that are being heavily
impacted by excessive illegal logging to feed a highly profitable, demand-driven hardwood
market [14,16].

Dalbergia, a pantropical member of the species-rich family Fabaceae with representatives
also occurring in Central and South America, continental Africa, and Asia, has approximately
140 species worldwide, 47 of which are endemic to Madagascar, where they grow in a wide
range of habitats, from humid evergreen rainforest to seasonal deciduous and dry forests [17].
Several of these endemic species are among the world’s most valuable timbers, with sales reach-
ing hundreds of millions of dollars on the international market [16,18]. The heartwood of
exploited Malagasy Dalbergia species is highly distinctive: it is exceptionally dense, non-porous,
and durable, exhibits remarkable variation in color, and is highly suitable for carving and for
intricate woodwork, all of which make it in high demand, especially for the production of furni-
ture and musical instruments [13,16]. Wood obtained frommembers of the genus in Madagas-
car is placed in two categories, rosewood and palissandre, which can be recognized based on
coloration, ranging from dark red and black patterned hardwood to brown or purple scales.

While exploited species can easily be assigned to rosewood and palissandre based on wood
quality and coloration, species identification is more difficult. The taxonomy of Malagasy Dal-
bergia has been the subject of two important studies [17,19], and species can be distinguished
from one another by characters of their flowers and fruits. These studies, however, contain lim-
ited information on other important features of species such as details of the shape of leaves
and leaflets, which could aid species identification, or information on age at reproduction or
mating system, which are relevant to assess species vulnerability to illegal logging. As a conse-
quence, while the Dalbergia species occurring in Madagascar can be distinguished from one
another by characters of their flowers and fruits [17,19], they are practically impossible to tell
apart without reproductive structures (i.e., when only leaves are available) or based on their
wood alone. Also, while one can readily distinguish between rosewood and palissandre, it is not
clear to which botanical species they belong. This is problematic for both the management and
conservation of Dalbergia species in Madagascar because species represent the fundamental
unit in conservation [16,17]. Moreover, because species growing in other parts of the world
also produce wood with red colored heartwood that is so characteristic of rosewood [20,21],
identification and determination of the origin of material is exceedingly difficult.

In an effort to reduce and ultimately halt illegal logging and trade in Malagasy rosewoods, a
proposal from the Malagasy government led to the listing in 2013 of all Malagasy species of Dal-
bergia on CITES Appendix II [22]. In addition, a ban on exportation of rosewood established by
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the Malagasy government currently prohibits any international trade of these species (decree
no. 2010–141). Despite these efforts, however, illegal trade ofDalbergia fromMadagascar has
continued unabated as permits are frequently falsified to indicate that the wood being shipped
has a different origin (such as continental Africa) or to identify the wood using a broad name
that cannot be associated with any particular genus or species in order to avoid difficulties at
checkpoints in transfer ports. The effective enforcement of CITES and of local laws and regula-
tions requires that the identity of wood being traded can be accurately validated, that the
declared origin can be verified, and that this can be done quickly and efficiently using expert
knowledge and appropriate, reliable techniques. To date timber identification by customs offi-
cials is mainly done using wood anatomical characters and in rare instances stable isotopes.
Both techniques are, however, inadequate to identify individual timber species, although they
may in some cases be sufficient to assess the genus and geographical origin of the wood [23].

Molecular identification techniques such as DNA barcoding could serve as another tool to
help identify and trace rosewoods and other valuable hardwoods. Over the last several years a
number of studies have demonstrated the power of DNA barcoding for species identification
and forensic analyses of protected plant species [e.g., Aubriot et al. [24], Finkeldey et al. [25],
Lahaye et al. [26], Lowe & Cross [23] and Muellner et al. [27]]. Chloroplast (cp) DNAmarkers,
includingmatK, rbcL and trnL (UAA), have been proposed as standard DNA barcoding mark-
ers [28] and have been used successfully in some plant groups to address questions of species
identification, phylogenetic relationships and to infer sample origin [29,30,31,32]. Recent stud-
ies using Asian and Indian Dalbergia species showed the potential of these markers for species
identification [33–35]. In this study, we explore the potential use of cp DNA markers for bar-
coding of Dalbergia species from eastern Madagascar. More specifically, we address the follow-
ing questions: 1) can we use standard DNA barcoding markers to distinguish Malagasy from
non-Malagasy Dalbergia species?; 2) do Dalbergia species from Madagascar differ from one
another in their DNA barcoding sequences? and; 3) with what accuracy can we identify Dalber-
gia species fromMadagascar using DNA barcoding?

Materials and Methods

Species sampling
We collected 121 fully vouchered Dalbergia leaf samples from 15 study areas in Madagascar
between 2010 and 2014 (Fig 1, Table 1 and S1 Table). Our collection efforts focused on North-
eastern Madagascar and especially the Masoala peninsula, where Dalbergia species diversity is
high [16,17] and where the most extensive illegal logging activities occurred in protected areas
in 2011 and preceding years [11]. We subsequently expanded the study area southwards to
provide better coverage of species distribution ranges and to assess intraspecific variation in
barcoding markers.

Leaf samples were stored in silica gel and herbarium vouchers were pressed in the field and
stored in alcohol (70%) to prevent decomposition prior to being dried. In addition we included
samples from four taxa occurring mainly in western Madagascar that were collected in April
2014. Madagascar’s Ministry of Environment, Ecology, Sea and Forests issued permits for sam-
pling at all locations under permits N°180/11/MEF/SG/DGF/DCB.SAP/SCBSE and N°222/13/
MEF/SG/DGF/DCB.SAP/SCBSE. The same authority also issued export permits for all col-
lected samples (034C_EV01/MG12, 307C_EV06/MG12, and 201N_EV11/MG13).

For reliable identification of Dalbergia species in the field it is preferable to collect material
with flowers and fruits, as leaf morphology alone is rarely if ever adequate when using available
identification tools. Sterile vouchers were identified based on results from a detailed leaf-mor-
phometric analysis (Hassold et al. unpublished results) and comparisons with type specimens
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Fig 1. Map of Madagascar illustrating the geographic positions of sampling sites. The inset in the bottom right corner shows the Bay of Antongil.
Gray scale values denote elevation, with lighter color indicating higher elevations. More detailed information about sampling locations is given in
Table 1.

doi:10.1371/journal.pone.0157881.g001
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and herbarium vouchers identified on the basis of flowers and fruits at the HerbariumMusei
Parisiensis (P) in Paris, France. Our 121 fully vouchered Malagasy samples (S1 Table), of
which only four were fertile, represent 15 Dalbergia taxa (including infraspecific entities, but
hereafter referred to as species) fromMadagascar. To date, 16 Dalbergia species have been
reported from Eastern Madagascar of which we were able to collect 10 (63%). The six species
that we did not encounter during our fieldwork are extremely rare and only known from a
small number of locations [17, 19]. Details on sample origin and identity are provided in
Table 1 and S1 Table. To test whether the sampled Dalbergia species fromMadagascar form a
monophyletic group compared to non-Malagasy species and to evaluate whether DNA barcod-
ing can be used to discriminate between Malagasy Dalbergia and non-Malagasy members of
the genus, we included 41 samples of other Dalbergia from across the distribution range of the
genus: Bhutan, Bolivia, Brazil, China, India, Mexico, Mozambique, South Africa, Tanzania,
Thailand and Vietnam (S1 Table). As outgroup for phylogenetic analyses we used published
DNA sequences of Pterocarpus indicusWilld. retrieved from GenBank. This species is a mem-
ber of the Pterocarpus clade, which is sister to the Dalbergia clade in the newly circumscribed
tribe Dalbergieae [30]. The full dataset used in this study contained 162 samples representing
38 Dalbergia species plus Pterocarpus as outgroup.

Molecular methods
Genomic DNA was extracted from 15 mg of silica dried leaf material using either a modified
CTAB protocol [36] or the DNeasy Plant Mini Kit (QIAGEN, Venlo, The Netherlands). Total
DNA was quantified using the dsDNA BR assay (life Technologies) for Qubit™ 2.0 fluorometer
(Invitrogen) and DNA integrity was checked on 1.5% agarose gels.

We first tested multiple primer pairs for 12 chloroplast regions on a subset of the samples
(S2 Table). Based on universality, sequencing quality, and discriminatory power inferred from
these tests, we selected the two core barcode markers,matK and rbcL [28], as well as the trnL
region (UAA) [37], for further study. The trnH–psbA region proposed by Hollingsworth et al.
[29] was not suitable for studying Dalbergia species because of poor sequencing quality associ-
ated with long mono-nucleotide repeats.

Table 1. Geographic positions of sampling sites in Madagascar. Site numbers are as in Fig 1. The coordinates are averaged over all samples collected
at a given site.

Number Province Location Latitude Longitude

1 Tamatave Anjiahely -15.3961 49.5247

2 Tamatave Mangabe, Ambinanitelo -15.3063 49.5004

3 Tamatave Andaparaty -15.2028 49.6198

4 Tamatave Tampolo -15.7277 49.9665

5 Antsiranana Magniria, Vinanivao -15.8036 50.1979

6 Antsiranana Sahabe, Ampanavoana -15.5734 50.2850

7 Antsiranana Anjia/Sahafary, Ambohitralanana -15.2836 50.3505

8 Antsiranana Ratsinarana -15.4650 50.4280

9 Finarantsoa Ranomafana -21.2636 47.4292

10 Finarantsoa Andringitra -22.1885 47.0318

11 Finarantsoa Farafangana -23.1667 47.6833

12 Tamatave Betampona Reserve, Foulpointe -17.7500 49.3778

13 Antsiranana Makirovana, Sambava -14.1000 49.9833

14 Antsiranana Ankarana Reserve/Sahafary -12.7869 49.2885

15 Mahajanga Ankarafantsika Reserve -16.3183 46.8106

doi:10.1371/journal.pone.0157881.t001
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PCR amplifications were carried out in 15 μl total reaction volumes containing 5x PCR
buffer (Colorless GoTaq Flexi Buffer; Promega), 25 mMMgCl2, 2.5 mM dNTPs, 10 μM of each
primer, 0.5 U of Go-Taq Flexi DNA Polymerase (Promega), and 20 ng of template DNA. PCR
amplification was performed using the following cycling conditions for all markers: initial
denaturation at 95°C (2 min), 32 cycles of 95°C (30 s), annealing at 58°C (30 s) and extension
at 72°C (30 s), followed by a final extension at 72°C (5 min). PCR products were EXOSAP puri-
fied with 5U exonuclease I (Fermentas) and 0.5 U thermosensitive alkaline phosphatase
(Thermo Scientific) at 37°C for 15 min and then at 80°C for another 15 min. We sequenced
PCR products in 10 μl reaction volumes with 0.8 μl of BigDye Terminator v3.1 (AB, Life Tech-
nologies), 1.6 μl 5x sequencing buffer, 1.6 μl primer (1 μM), 5 μl of ddH2O and 1 μl of PCR
product. Sequencing reactions were performed using the following conditions: initial denatur-
ation at 94°C (2 min), 45 cycles of 94°C (10 s), annealing at 50°C (5 s) and extension at 60°C (3
min) followed by a final hold at 4°C. We cleaned sequencing products through a Durapore fil-
ter plate (Millipore MSHVN4510) loaded with Sephadex™ G-50 (GE, Healthcare) and ran the
samples at the ETH Zurich Genetic Diversity Centre (GDC) on a 16 capillary sequencer (3130
DNA Analyser, ABI, Life Technologies). All sequences are deposited on the Barcode of Life
Data systems (BOLD) (MADA001 to MADA218).

Data analysis
Sequences. Sequence alignment, including trimming, visual inspection and manual adjust-

ments, was performed in Geneious version 7.1.7 [38]. For the trimming parameters we used an
error probability of 0.1 per base and a quality threshold of 20. Poor quality base calls at the 5’
and 3’ ends of the sequenced PCR products were removed. Multiple sequence alignment was
performed for each gene separately in Geneious using MUSCLE [39] version 3.8.425. Individ-
ual alignments were then concatenated to produce a three-gene alignment for all 163 samples
(Dalbergia and Pterocarpus), which can be found on TreeBASE (http://purl.org/phylo/
treebase/phylows/study/TB2:S19301). Identical sequences were then pruned from the align-
ment and only distinct haplotypes were kept for the phylogenetic analysis. The final haplotype
data matrix is available at TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:
S19301). The total length of the concatenated haplotype alignment is 1530 positions (matK:
565 bp, rbcL: 510 bp, trnL (UAA): 455 bp), including 182 potentially informative positions
(matK: 69, rbcL: 30, trnL (UAA): 83) and 1.4% missing data. Microsatellite repeats were
excluded and gaps were treated as missing data for phylogenetic analysis.

Phylogenetic analysis. For phylogenetic reconstruction we used Maximum Likelihood
(ML) and Bayesian Inference (BI) methods implemented in RAxML [40] version 7.2.8 and
MrBayes [41] version 3.2.2, respectively. For the ML analysis, robustness was assessed by run-
ning 1,000 fast bootstrap replicates using the GTR + GAMMA nucleotide model. Model selec-
tion was based on the Akaike information criterion using the program jModelTest v.2.1.7 [42].
For the BI analysis we partitioned the concatenated alignment and ran a separate GAMMA
model for each of the three chloroplast regions. Furthermore, a separate rate multiplier was set
for each partition. For the analysis we used 100 million generations, sampled every 100 genera-
tions, and we performed four simultaneously independent runs with four cold chains. Twenty-
five percent (= 800,000) of the trees were discarded as burn in and posterior probabilities were
compiled from the remaining trees. The average standard deviation of split frequencies was
below 0.0006. The best-scoring tree was visualized using FigTree v1.4.2 (A. Rambaut; http://
tree.bio.ed.ac.uk/software/figtree/) and Dendroscope v3.2.10 [43].

Diagnostic polymorphisms. To identify diagnostic polymorphisms that distinguish Mala-
gasy from non-Malagasy Dalbergia and that discriminate among taxa from Madagascar we
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used the CAOS (Characteristic Attribute Organisation System) workbench [44,45]. CAOS not
only considers nucleotide substitutions but also takes insertions and deletions into account.
We therefore ran the CAOS workbench with our haplotype alignment but did not exclude well
aligned indels and gaps. We reduced the total number of 203 diagnostic character states identi-
fied by CAOS to the 17 diagnostic character states most relevant to distinguish between Mala-
gasy and non-Malagasy Dalbergia, as well as between subgroups of Malagasy taxa (Table 2),
following the recommendations of Jörger & Schrödl [46]. The positions of these diagnostic
characters along the phylogenetic tree are shown in Fig 2 as black bars.

Sequence divergence and identification success
We calculated the frequencies of intraspecific and interspecific pairwise p-distances (Kimura
2-parameter distance model) using the program TAXONDNA [47] for each marker (matK,
rbcL, trnL (UAA)) individually and for selected combinations at the species, subgroup and
group levels of the full dataset (163 sequences). We used the program SpeciesIdentifier v.1.7.8
of TAXONDNA to evaluate the accuracy of species identification (hereafter referred to as “suc-
cess rate”) based on barcode sequences from our dataset for each single marker and for selected
marker combinations. Because of the occurrence of intraspecific nucleotide variation within
several species and of haplotype sharing among some of the species, we also assessed the accu-
racy of assigning a sample to a certain group or subgroup encompassing multiple species. The
proportions of successful identifications were calculated using the ‘Best match’ and ‘Best close
match’ criteria according to Meier et al. [47].

Results

Phylogenetic analysis
Our phylogenetic analyses revealed that the Malagasy Dalbergia species included in this study
are not monophyletic but rather form two monophyletic groups (groups I and II, Fig 2). None
of the endemic Dalbergia species fromMadagascar group with non-Malagasy members of the
genus. Given the limited number of samples representing non-Malagasy Dalbergia species, a
detailed discussion of their phylogenetic relationships is not warranted and we combined them

Table 2. Diagnostic polymorphisms for the identification of MalagasyDalbergia based on DNA sequence variation in the plastid genesmatK, rbcL
and trnL (UAA). In bold are diagnostic polymorphisms that distinguish Malagasy from non-Malagasy Dalbergia.

Groups Sub-
groups

178 205 937 1008 1063 1087 1175 Indel 1 1231 1256 1265 1268 1299 Indel 2 1359 1365 1439

I SG1 T G A C C A A 1 G G T A T 1 G T 0

SG2 C C A A A G G 1 G C T G T 1 G T T

C C A A A G G 1 G C G G T 1 G T T

II SG3 C C A C C G G 0 T C T A C 0 C C 0

SG4 C C G C C G G 0 T C T A C 0 C C 0

III C C A C C G G 0 G C T A T 1 G C 0

IV C C A C C G G 0 G° C T A T 1 G C 0

Out-
group

C C A C A G G 0 G C T A T 1 G C 0

Bar* 2 2 6 3 3 2 2 1 5 2 4 3 5 5 5 1 3

matK rbcL trnL

Indel 1: TGAAT (Pos. 1178–1182); Indel 2: TYTHTHDAAT (Pos. 1338–1348);

°position missing in D. arbutifolia;
* Support for vertical bars in Fig 2.

doi:10.1371/journal.pone.0157881.t002
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Fig 2. Phylogenetic tree of studiedDalbergia species.Malagasy Dalbergia species are divided into two main groups, I and II, encompassing three
well-supported subgroups (SG1, SG2 and SG4). Only subgroup 1 (SG1) encompasses all samples from a single species, D. chapelieri, All other
subgroups encompass accessions frommore than one species. Vertical black bars indicate positions of diagnostic polymorphisms (Table 2) along
the phylogenetic tree. Numbers above branches are bootstrap support values / posterior probabilities derived frommaximum likelihood (ML) and
Bayesian analyses, and are shown only when values are above 50 and 94, respectively. Shown is the tree topology derived from the ML analysis. For
non-Malagasy Dalbergia, the geographic origin (continent) of each species is indicated.* D.madagascariensis subsp. antongilensis; ° D.maritima
var. pubescens.

doi:10.1371/journal.pone.0157881.g002
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here into two paraphyletic groups (III and IV, Fig 2). Group III includes six species from Asia
that form a clade, D. granadillo from South America, and a third clade encompassing D. boeh-
mii and D.melanoxylon from continental Africa along with two Asian species, D. cochinchinen-
sis and D. ovata. Group IV contains four well-supported clades that collectively comprise
species from continental Africa, America or Asia. The branches leading to D. armata, D. brac-
teolata, D. ecastophyllum and D. spruceana are weakly supported and their phylogenetic posi-
tions currently remain unresolved.

Within the two Malagasy groups I and II, our phylogenetic analyses consistently resolved
three well-supported monophyletic subgroups (SG1, SG2 and SG4, Fig 2) while SG3 remains
poorly supported. Overall, the inferred monophyletic groups poorly correspond to identified
species. Dalbergia chapelieri is the only Malagasy species for which all collected accessions fell
into a single monophyletic subgroup (SG1) encompassing samples from two geographic
regions (North versus South). All other subgroups of Malagasy Dalbergia (SG2 to SG4) encom-
pass more than one species. In SG2, the single available accession of D. occulta is sister to a
clade encompassing three taxa, D. louvelii, D.madagascariensis subsp. antongilensis and D.
maritima var. pubescens. Subgroup SG3 combines single accessions of D. purpurascens and D.
urschii that are distinct from samples of D.monticola (from Ranomafana (site 9, Fig 1) and
Andringitra (site 12, Fig 1)) and D. trichocarpa. Accessions of D.monticola fromMakira (sites
1–3, Fig 1) are placed in SG4 with material of six other species: D. baronii, D. greveana, D.mol-
lis, D. normandii, D. orientalis and D. pseudobaronii. Thus, Dalbergia monticola, a species with
a wide distribution range, shows genetic differences between geographic regions. Samples col-
lected in the North can be distinguished from samples made in the South.

Diagnostic polymorphisms
We identified 203 potentially informative polymorphisms for diagnostic purposes distributed
across the three barcoding markers used in this study. From these we extracted in total 17 poly-
morphisms that are diagnostic for Malagasy Dalbergia groups I (two polymorphisms) and II
(four polymorphisms), as well as subgroups SG1, SG2 and SG4 (five, four and one polymor-
phisms, respectively). Within SG2 we found one diagnostic polymorphism that allows further
differentiation. All diagnostic polymorphisms are indicated in Table 2. The gene region trnL
(UAA) alone contained 12 informative positions for Malagasy Dalbergia. Polymorphisms
Indel1 and 1365 are diagnostic for group I of Malagasy Dalbergia. Within this group, nine diag-
nostic positions from all three markers allow the identification of subgroups SG1 and SG2.
Polymorphisms Indel2, 1231, 1299 and 1359 are diagnostic for Malagasy Dalbergia group II,
and within this group, one diagnostic polymorphism (position 937) identifies SG4. Positions of
diagnostic polymorphisms are indicated on the phylogenetic tree as numbered vertical bars
(Fig 2).

We were not able to use the analysis tool for diagnostic characters from BOLD systems as
proposed by Robinson et al. [48] and Collins & Cruickshank et al. [49] because of the limited
species level resolution among the Malagasy samples and the comparatively small number of
sequences available for non-Malagasy species.

Sequence divergence and identification success
Interspecific genetic distances estimated using all three barcoding markers, calculated both
individually for each marker and in combination, widely overlapped with intraspecific dis-
tances at the species level (Table 3). Genetic distances also widely overlapped among groups
and subgroups at levels 1 (Malagasy samples split into groups I and II and non-Malagasy sam-
ples divided into monophyletic groups shown in Fig 2) and 2 (Malagasy samples split into
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SG1-SG4, non-Malagasy samples as in level 1; Table 3). On average 10% of all interspecific dis-
tances or genetic distances among groups and subgroups were zero or close to zero (< 0.002).

Identification success was lowest (10–33%) at the species level, irrespective of marker com-
bination, and was higher (30–98%) when tested at the level of subgroups and groups, especially
when markers were combined (Table 3). The best identification success (95–98%) was obtained
when usingmatK alone and in combination with rbcL or trnL (UAA) at level 1. Identification
success was on average lower (30–96%) when tested at level 2.

Discussion
This study provides the first chloroplast DNA reference dataset to support the identification of
Dalbergia species originating fromMadagascar. These include traded rosewood species that
are of high economic interest and have been severely impacted over recent years by unsustain-
able, illegal selective logging and the degradation and destruction of their natural habitats.
Once removed from the forest, rosewood logs and cut wood are currently impossible to identify
to the species level and it is likewise impossible to determine their provenance. The DNA bar-
coding reference dataset presented here provides an important first step towards establishing a
reliable molecular tool for the identification and tracking of traded Dalbergia species from
Madagascar.

Table 3. Identification success rates and sequence divergence inDalbergia for individual and combined barcodingmarkers. The samples are ana-
lysed at species level and levels 1 and 2 based on the ‘Best match’ and ‘Best close match’ functions of TAXONDNA [47] for individual barcoding markers and
selected combinations. Identification success rates for ‘Best match’ and ‘Best close match’ are given as percentages (successfully identified/ambiguous/mis-
identified samples or /no match). Level 1: Malagasy samples split into groups I and II and non-Malagasy samples divided into monophyletic groups shown in
Fig 2. Level 2: Malagasy samples split into SG1 to SG4, non-Malagasy samples as in level 1. Intra- and interspecific distances were calculated using Kimura
2-parameter corrected p-distances between all sequence pairs.

Barcodes Best match Best close match Mean intraspecific distance
(range)

Mean interspecific distance
(range)

Species level

matK 21/72/8/- 21/72/6/1 0.0008 (0–0.0126) 0.0088 (0–0.0272)

rbcL 10/89/1/- 10/88/1/1 0.0020 (0–0.0099) 0.0073 (0–0.0139)

trnL 20/75/5/- 19/69/2/10 0.0010 (0–0.0115) 0.0131 (0–0.0447)

matK + rbcL 32/61/7/- 32/60/6/2 0.0014 (0–0.0094) 0.0081 (0–0.0189)

matK + trnL 25/65/10/- 24/64/7/5 0.0009 (0–0.0092) 0.0107 (0–0.0306)

matK + rbcL + trnL 33/56/10/- 32/55/6/7 0.0013 (0–0.0067) 0.0095 (0–0.0235)

Level 1

matK 95/2/3/- 93/1/2/4 0.0006 (0–0.0144) 0.0094 (0–0.0273)

rbcL 60/39/2/- 60/38/2/1 0.0010 (0–0.0099) 0.0078 (0–0.0139)

trnL 44/53/3/- 43/53/2/1 0.0005 (0–0.0232) 0.0140 (0–0.0447)

matK + rbcL 98/1/1/- 98/1/1/1 0.0008 (0–0.0094) 0.0086 (0–0.0189)

matK + trnL 98/0/2/- 95/0/1/4 0.0006 (0–0.0171) 0.0114 (0–0.0306)

matK + rbcL + trnL 98/0/2/- 97/0/1/2 0.0007 (0–0.0127) 0.0101 (0.0007–0.0235)

Level 2

matK 30/68/2/- 26/66/1/7 0.0009 (0–0.0144) 0.0113 (0.0018–0.0272)

rbcL 45/53/2/- 42/50/2/6 0.0029 (0–0.1186) 0.0085 (0–0.0139)

trnL 41/55/4/- 36/53/2/10 0.0022 (0–0.0232) 0.0164 (0–0.0447)

matK + rbcL 83/15/1/- 80/14/1/6 0.0019 (0–0.0094) 0.0100 (0.0009–0.0189)

matK + trnL 67/29/3/- 60/29/1/9 0.0015 (0–0.0171) 0.0135 (0.0030–0.0306)

matK + rbcL + trnL 97/0/3/- 91/0/1/7 0.0020 (0–0.0127) 0.0118 (0.0027–0.0235)

doi:10.1371/journal.pone.0157881.t003
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Species discrimination
Our analysis revealed that the endemic Malagasy species of Dalbergia are not monophyletic
but rather form at least two distinct monophyletic groups. These results are in agreement with
those reported by Vatanparast et al. [50], supporting the inference of non-monophyly of Mala-
gasy Dalbergia. The two Malagasy clades we recovered are divergent from African, American
and Asian samples and indicate at least two independent colonization events of Madagascar.

Our results place the Malagasy samples of Dalbergia into four subgroups, three of which are
well-supported (SG1, SG2 and SG4). With the exception of subgroup I, all subgroups encom-
pass multiple species. The members of these subgroups currently cannot be distinguished at
the species level using the barcoding markers considered here, but some of them can be distin-
guished morphologically. For example, SG2 comprises three species with distinct leaflet shapes
and differences in leaflet length: D.maritima var. pubescens with small leaflets (0.5–1.6 cm), D.
louvelii with intermediate leaflets (2–4 cm) and D.madagascariensis subsp. antongilensis with
much larger leaflets (4–8 cm) [17]. Similarly, subgroup SG4 contains seven species that can be
distinguished using a combination of morphology, ecology and geography. Dalbergia baronii
and D.monticola both have small leaflets (0.5–1.7 cm) but the first occurs exclusively in low-
altitude forests up to 150 m a.s.l. in eastern Madagascar whereas the latter is found in mid-alti-
tude forests from 250–1600 m a.s.l. of eastern and central Madagascar. Dalbergia pseudobaronii
has similar leaflets and spans the elevational ranges of D. baronii and D.monticola, from 50-
1000m a.s.l., but has very distinct fruits [17]. In subgroup SG4, D. normandii has the largest
leaflets (4–6 cm) and D. orientalis has leaflets of intermediate size (1.5–2.7 cm). These two spe-
cies occur throughout the sampling area in northeastern Madagascar (sites 1–8, Fig 1). Dalber-
gia mollis has velvety pubescent leaflets with intermediate to large leaflet length (2–7 cm) and
occurs in seasonally dry western forest up to 700m a.s.l. Finally, D. greveana also has intermedi-
ate to large sized leaflets (2.5–6 cm) and grows in seasonally dry western forests but is very dis-
tinct in its leaflet shape, making it easy to recognize even when voucher material is sterile.

Comparing our subgroups to those recovered by Vatanparast et al. [50] reveals several cases
of concordance even though species sampling differed substantially between their study and
ours. For the Malagasy species, their clade M1 corresponds to our monophyletic subgroup SG2
and their clade M3 closely matches our monophyletic subgroup SG4. Another shared finding
is the separation of Dalbergia bracteolata from the other members of the genus in Madagascar,
which is not surprising given that this species is thought to be originally from continental
Africa [17]. Clade M2 of Vatanparast et al. [50] does not correspond to any of our subgroups,
as it comprises species that were not included in our sampling. Our study revealed that D. gre-
veana is more closely related to D. baronii than to D. trichocarpa as suggested in Vatanparast
et al. [50]. The phylogenetic relationships inferred among non-Malagasy species in our study
are similar to those reported by Vatanparast et al. [50] with one notable exception. Our analy-
ses failed to resolve D. spruceana from Brazil as sister to all other species due to low branch
support, which rendered its position unclear. The recent barcoding study of Hartvig et al. [33]
focused on Dalbergia species from Asia and the largely non-overlapping species sampling pre-
cluded detailed comparisons between their results and ours. Together, these studies contribute
to a better understanding of the evolutionary and phylogenetic relationships among Dalbergia
species.

Species identification using DNA barcoding is known to be difficult among closely related
species [51–53] and our identification success rates at the species level were indeed very low. In
contrast, analyses above the species level provided good identification success. Thus, while reli-
able species identification is not possible with standard plastid DNA barcodes for Malagasy
Dalbergia, groups of closely related species can be distinguished with high success and the
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Malagasy endemic Dalbergia species studied can readily be differentiated from non-Malagasy
Dalbergia through the analysis of few diagnostic polymorphisms. The prospect of being able to
differentiate successfully between Malagasy and non-Malagasy rosewoods and between groups
of endemic species is an important result with regard to the enforcement of CITES regulations.

Diagnostic polymorphisms
The three chloroplast markers analyzed in this study vary with respect to the number of sites
that are informative for diagnostic purposes. To maximize barcoding efficiency in terms of
both time and cost, we used the CAOS workbench to identify diagnostic sites that enable the
delimitation of groups or subgroups of Malagasy Dalbergia. Our results revealed six diagnostic
positions in the trnL (UAA) region for distinguishing between Malagasy and non-Malagasy
Dalbergia. The advantage of the CAOS approach is that well-aligned insertions and deletions
are also used as diagnostic sites. In our study, we found that the presence of indel1 is diagnostic
for the Malagasy group I and the absence of indel2 is diagnostic for the Malagasy group II.

The trnL (UAA) region has repeatedly been found to have a high potential as a standard
DNA barcoding marker [20,29,35,54,55]. It has not, however, overtaken other barcoding mark-
ers because it is difficult to sequence in some taxa [54], and while trnL (UAA) is known to pro-
vide resolution even among closely related species in some taxa [54,56,57], this marker exhibits
low levels of divergence in others [58]. In the present study trnL (UAA) revealed more varia-
tion thanmatK and rbcL but was not able to provide full species-level resolution among all
Malagasy Dalbergia species investigated. The low resolution of chloroplast markers has been
widely discussed [52,53,59,60] and is a key reason why finding a universal DNA barcode for
land plants remains elusive [28,29].

Potential applications
The aim of this study was to explore the utility of DNA barcoding for identification of Mala-
gasy Dalbergia species and to initiate the development of a molecular reference dataset to help
authorities and regulatory bodies with the identification of Dalbergia timber from Madagascar.
DNA barcoding has been found useful for species identification in a wide diversity of research
fields, ranging from pure ecology [27,61,62] to the verification of food declarations [63–65]
and the identification of illegally traded species [23,66–69]. While many successful applications
have been developed for animals, such as the African elephant [70–72], the lack of a universal
barcode in plants has in many instances necessitated the development of case-specific identifi-
cation systems. Several have already been developed to track important timber groups such as
mahogany (Swietenia) [3], sapelli (Entandrophragma) [73], ramin (Gonystylus) [74] and oak
(Quercus) [75]. More recent studies have included Dalbergia species mainly from Asia to test
species identification and sample assignment [33–35]. These studies have demonstrated both
the potential and limitations of DNA barcoding in timber tracking and have shown that it is
particularly difficult to assign samples to exact geographic areas, despite the fact that this infor-
mation is of utmost importance for law enforcement, as in situations where decisions need to
be made based on whether logs originated from within a protected area.

Developing species identification systems for all CITES-listed species is of high priority, as
discussed in Keong [76] and Höltken et al. [77]. In the case of Dalbergia, the ability to deter-
mine whether material originated from Madagascar or elsewhere is sufficient to identify ille-
gally traded timber because all Dalbergia species of Malagasy origin are currently listed on
CITES appendix II without any export quota. The DNA barcoding reference dataset developed
here reveals that it is possible to determine whether rosewood of unclear or dubious origin
came fromMadagascar, which may be a valuable tool for the enforcement of CITES
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regulations. In order to realize the full potential of this tool, it will be necessary to expand the
reference dataset to include all potentially harvestable species of Dalbergia from throughout
Madagascar. Such a comprehensive reference dataset can then serve as the cornerstone for an
international rosewood identification system that serves many authorities and plays an impor-
tant role in efforts to combat the growing illegal exploitation and trade of Malagasy rosewoods.
In addition to expanding the cpDNA reference dataset to include more species, it would also be
worthwhile to explore whether nuclear DNAmarkers, such as microsatellites or single-nucleo-
tide polymorphisms (SNPs), can be used to distinguish among Dalbergia taxa from
Madagascar.

Conclusions
DNA barcoding with standard chloroplast barcoding markers does not provide sufficient reso-
lution to identify allDalbergia species from Eastern Madagascar that were represented by multi-
ple samples in this study. However, this method allows for efficient discrimination between
Malagasy and non-MalagasyDalbergia species, which may help enforce existing CITES regula-
tions because allDalbergia species fromMadagascar are currently listed on CITES Appendix II.

Supporting Information
S1 Table. Sample information with BOLD accession numbers. List of taxon names and
voucher information for 162 Dalbergia samples and the outgroup Pterocarpus indicus. Taxa
are ordered alphabetically for all samples collected fromMadagascar and below for non-Mala-
gasy samples. The column “year” indicates when the samples were collected. Dashes indicate
that a locality was not precisely known (e.g. DNA samples or living collections) in “sampling
location”. Groups (I-IV) for non-Malagasy samples and subgroups (SG1-SG4) for Malagasy
samples in Fig 2 are indicated in a separate column. Column “Voucher” gives the acronym of
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DNA samples. An asterisk (�) in column “Sample ID” indicates fertile vouchers.
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