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Abstract

Non-equilibrium thermodynamics has long been an area of substantial interest to ecologists

because most fundamental biological processes, such as protein synthesis and respiration,

are inherently energy-consuming. However, most of this interest has focused on developing

coarse ecosystem-level maximisation principles, providing little insight into underlying

mechanisms that lead to such emergent constraints. Microbial communities are a natural

system to decipher this mechanistic basis because their interactions in the form of substrate

consumption, metabolite production, and cross-feeding can be described explicitly in ther-

modynamic terms. Previous work has considered how thermodynamic constraints impact

competition between pairs of species, but restrained from analysing how this manifests in

complex dynamical systems. To address this gap, we develop a thermodynamic microbial

community model with fully reversible reaction kinetics, which allows direct consideration of

free-energy dissipation. This also allows species to interact via products rather than just

substrates, increasing the dynamical complexity, and allowing a more nuanced classifica-

tion of interaction types to emerge. Using this model, we find that community diversity

increases with substrate lability, because greater free-energy availability allows for faster

generation of niches. Thus, more niches are generated in the time frame of community

establishment, leading to higher final species diversity. We also find that allowing species to

make use of near-to-equilibrium reactions increases diversity in a low free-energy regime. In

such a regime, two new thermodynamic interaction types that we identify here reach compa-

rable strengths to the conventional (competition and facilitation) types, emphasising the key

role that thermodynamics plays in community dynamics. Our results suggest that account-

ing for realistic thermodynamic constraints is vital for understanding the dynamics of real-

world microbial communities.
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Author summary

There is a growing interest in microbial communities due to their important role in bio-

geochemical cycling as well as plant and animal health. Although our understanding of

thermodynamic constraints on individual cells is rapidly improving, the impact of these

constraints on complex microbial communities remains largely unexplored theoretically

and empirically. Here, we develop a new microbial community model which allows ther-

modynamic efficiency and entropy production to be calculated directly. We find that

availability of substrates with greater free-energy allows for a faster rate of niche genera-

tion, leading to higher final species diversity. We also show that when the free-energy

availability is low, species with reactions close to thermodynamic equilibrium are

favoured, leading to more diverse and efficient communities. In addition to the conven-

tional interaction types (competition and facilitation), our model reveals the existence of

two novel interaction types mediated by products rather than substrates. Though the con-

ventional interactions are generally the strongest, the novel interaction types are signifi-

cant when free-energy availability is low. Our results suggest that non-equilibrium

thermodynamics need to be considered when studying microbial community dynamics.

Introduction

The constraints thermodynamics place upon on individual organisms inevitably impact eco-

system dynamics. Thus, attempts to understand ecosystems through thermodynamic princi-

ples have been made repeatedly throughout the history of ecology [1–3]. These attempts have

generally involved the development of coarse, whole-ecosystem level extremal (maximisation

or minimisation) principles, such as flux [1] and power maximisation [2]. Most notable of

these is the maximum entropy production principle, that ecosystems tend towards states that

produce entropy at the maximum achievable rate [3]. This principle has been applied to some

degree of success to predicting ecosystem characteristics such as spatial distribution of vegeta-

tion [4] and biogeochemical cycling in ponds [5]. Though consideration of ecosystem wide

entropy production has led to insights in areas such as the conditions for ecosystem stability

[6], without detailed consideration of the underlying mechanisms, its explanatory potential

remains limited. However, when these mechanisms have indeed been considered, they are

implicitly assumed to be dissipating sufficient free-energy that thermodynamic constraints can

reasonably be neglected. In contrast, in biophysics, non-equilibrium thermodynamics at the

cellular level have been considered in much greater detail [7], particularly in the areas of

kinetic proofreading [8] and sensing accuracy [9, 10]. This opens the possibility of detailed

consideration of the impact of thermodynamic constraints on ecosystem dynamics.

Thermodynamic constraints are especially pertinent to microbial community dynamics

because microbial growth can be described explicitly in terms of the energetics of carbon sub-

strate processing. Microbes experience a large number of physical constraints on their metabo-

lism (see [11] for a review). Here, we consider two universally-relevant constraints. First, the

widely studied constraint of a finite cellular proteome which means that the increased expres-

sion of a particular class of metabolic protein must occur at the expense of other metabolic

proteins and/or ribosomes [12–14]. Second, in order to proceed rapidly metabolic reactions

must (net) dissipate substantial amounts of free-energy. This both limits the set of possible

(catabolic) reactions that microbial cellular metabolic networks can be formed from, and leads

to a significant reduction in reaction rates close to thermodynamic equilibrium. Both these

constraints affect microbial growth rates and ultimately microbial interactions, but the impact
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of the thermodynamic constraint has rarely been considered previously. Models of the impact

of thermodynamic inhibition have been developed to properly capture the growth rate of

anaerobic microbial populations [15]. This has been recently extended to study whether ther-

modynamics leads to distinct ecological strategies [16], to explain the coexistence of multiple

species on a single substrate [17], and to explain empirically observed limitations on the

growth of simple methanogenic communities [18]. However, these studies have considered

relatively simple systems of a few interacting species.

The carbon substrates that microbes feed upon are often classified in terms of the difficulty

involved in breaking them down, with those easily broken down being termed ‘labile’, and

ones that are hard to break down termed ‘recalcitrant’. In energetic terms, a recalcitrant sub-

strate can be thought of as one that requires a significant energy investment by a microbe for a

minimal return. This could emerge through multiple mechanisms such as high substrate acti-

vation energies, substrates that have to be broken down extracellularly, or reactions that yield

small amounts of free-energy. Thus, in a thermodynamic model, recalcitrance can be approxi-

mately modelled by considering substrates of low free-energy, potentially shedding light on

the role of substrate lability versus recalcitrance on the dynamics of microbial community

assembly.

Here, we develop a mathematical model that explicitly and mechanistically incorporates

thermodynamic constraints. We use this model to study the emergent impact of thermody-

namic constraints on microbial community diversity by simulating their assembly. Because

natural communities may assemble on a diversity of substrates, we focus on the relationship

between microbial strain (species) efficiency, substrate free-energy, and emergent species

diversity. We find free-energy availability to be the single most important driver of community

diversity, as greater energy availability allows for a faster rate of niche generation. We also

show that consideration of thermodynamic constraints leads to new insights into the funda-

mental mechanistic and energetic basis of species interactions.

The model

Our thermodynamic microbial community model is a thermodynamically-explicit extension

of the MacArthur consumer-resource model [19]. Its key features are illustrated in Fig 1 with a

detailed derivation given in S1 Appendix. In this model, catabolic reactions are explicitly mod-

elled, but anabolism is abstracted as protein translation. As the predominant energy cost for

microbial cells is protein translation [20], the implicit assumption that this is the only energetic

cost is a reasonable one. Each metabolite (β) is represented by its concentration Cβ and each

consumer (i) is represented by three variables: its population abundance Ni, ribosome fraction

ϕR,i, and internal energy (ATP) concentration ai. The dynamics of these variables are given by

dCb

dt
¼ kdb;1 � rCb þ

XB

i¼1

ðpi;bðCÞ � ci;bðCÞÞNi ð1Þ

dNi

dt
¼ ðliðai; �R;iÞ � diÞNi ð2Þ

d�R;i

dt
¼

1

tg
�
�

RðaiÞ � �R;i

� �
ð3Þ

dai

dt
¼ Ji � wmli � aili; ð4Þ
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where κ is the substrate supply rate, δβ,ξ is the Kronecker delta, ρ is the metabolite dilution

rate, B is the number of species in the community, pi,β is the (per cell) rate that the ith species

produces metabolite β, and ci,β is the (per cell) rate at which it consumes metabolite β. Further,

λi is the ith species’ growth rate, di its rate of biomass loss, τg is the characteristic time scale for

growth, �
�

R is the ideal ribosome fraction, Ji is the ATP production rate for the ith species, χ is

ATP use per elongation step, and m is the total mass of the cell (in units of amino acids). The

second term in Eq 4 corresponds to the energy use due to protein translation and the third

term corresponds to the dilution of energy due to cell growth.

Proteome partitioning

Due to finite cell size, a higher expression of a given type of protein must always come at the

expense of lowered expression of other types of proteins. This means that a cell’s ability to

obtain energy for growth is constrained not just by thermodynamics, but also by the amount

of protein it allocates to metabolism. In microbial models, this constraint is typically intro-

duced in the form of a fixed “enzyme budget” that has to be divided between substrates [21].

However, the fact that the size of this “budget” varies with the amount of protein allocated to

ribosomes has only recently begun to be considered [22], despite the fact that this constraint is

Fig 1. Overview of the thermodynamic microbial community model. A: A single substrate is supplied with rate κ, and diversifies into secondary

substrates (metabolites) through uptake, metabolism and leakage by the microbial populations. All metabolites are diluted out of the system with

constant dilution factor ρ. The magnification shows a schematic of the cellular sub-model, comprising five key processes: (1) uptake of metabolites, (2)

their breakdown into other metabolites (Eqs 12 and 13), (3) generation of ATP through this process (Eq 8), and (4) the use of this ATP to drive protein

synthesis (Eqs 5 and 6). (5) The cell proteome is partitioned into a constant housekeeping protein compartment (Q), a ribosome compartment (R), and

a metabolic protein compartment (P). B: An example matrix of possible metabolic reactions. Metabolites can only react to form new metabolites that

are one or two positions lower on the free-energy hierarchy. C: The thermodynamic trade-off that emerges from our model; ATP production rate

increases linearly with an increase in ATP per reaction event (η), up to the point where thermodynamic inhibition becomes significant. The position of

optimal η value shifts as environmental metabolite concentrations change. D: The four possible species interaction types in our model. Competition and

facilitation are present here like in all consumer-resource models that allow for the production of resources. In addition, there are two thermodynamic

interaction types: “pollution” where one species produces a metabolite that causes thermodynamic inhibition of the other species, and “syntrophy”

where a species consumes a metabolite that is thermodynamically inhibiting another species (and thus benefiting it).

https://doi.org/10.1371/journal.pcbi.1009643.g001
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known to significantly impact microbial growth [12, 13]. Therefore, we develop a minimal cell

model (Fig 1A), which extends mechanistic models of proteome constraints developed for

homogeneous cell populations to the multi-species community level [14].

This sub-model comprises of five key processes: (1) The cell exchanges metabolites with its

environment. For simplicity, we assume that the intracellular metabolite concentrations are

equal to the environmental concentrations. Even if real cells can use a variety of mechanisms

to maintain intracellular metabolite concentrations that make reactions more thermodynami-

cally favourable, this assumption imposes the universally seen limit on efficiency that arises

from the 2nd law of thermodynamics, i.e. maintaining a particular metabolite concentration

necessarily consumes more free-energy than it contributes to the reaction free-energy. (2)

Within the cell, substrates are broken down into lower free-energy metabolites. This process is

thermodynamically-reversible in contrast to the conventionally used irreversible Michaelis–

Menten kinetics (for more details see S1 Appendix). (3) This breakdown of substrates into

lower free-energy metabolites allows free-energy to be transduced via the production of ATP.

(4) This ATP is subsequently used to fuel protein synthesis [12–14]. Protein synthesis rate is

thus dependent on ATP concentration, but sufficient free-energy is dissipated for it to be con-

sidered an irreversible process. (5) The proteome is partitioned into three compartments: a

ribosome compartment R, a metabolic protein compartment P, and a compartment for all

other proteins required by the cell Q (termed “housekeeping”). As the housekeeping compart-

ment is assumed to be constant, a direct trade-off between the fraction of the proteome dedi-

cated to ribosomes and the fraction dedicated to metabolic proteins arises.

The growth rate of any given microbial species is determined by the total rate at which ribo-

somes synthesize proteins (process 4 in Fig 1A). This can be modelled by assigning each spe-

cies (i) two internal variables, the internal energy (ATP) concentration ai and the ribosome

fraction ϕR,i. The growth rate depends on both quantities and can be expressed as

liðai; �R;iÞ ¼
gðaiÞfb�R;i

nR
; ð5Þ

where γ(ai) is the effective translation elongation rate, fb is the average fraction of ribosomes

bound and translating, and nR is the number of amino acid per ribosome. As we assume that

protein synthesis is an irreversible process, the effective translation elongation rate is assumed

to be saturating with respect to the energy concentration, taking the form

gðaiÞ ¼
gmai

g1

2

þ ai
;

ð6Þ

where γm is the maximum elongation rate, and g1
2

is its half-maximum constant. With Eqs 5

and 6, we can now define the population dynamics in Eq 2 in terms of the cells’ internal state.

We therefore now consider the dynamics of a cell’s internal state, starting with the ribosome

fraction dynamics. We assume that for a specific internal energy concentration (ai) each cell

aims to reach a particular ribosome fraction �
�

RðaiÞ (the “ideal” ribosome fraction). Similar to

Eq 6 it is assumed to be a saturating function of energy concentration,

�
�

R ¼
ai

O1

2

þ ai
ð1 � �QÞ; ð7Þ

whereO1
2

is a half-maximum constant and ϕQ is the housekeeping protein fraction. By also not-

ing that the characteristic time scale for growth is given by τg = log2(100)/λi (see S1 Appendix),
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ribosome dynamics in Eq 3 can now be solved for a given value of the internal energy concen-

tration ai.

ATP production

To determine the dynamics of the cellular internal energy concentration the rate at which each

species produces ATP (process 3 in Fig 1A) must be determined. Fig 1B shows the general pat-

tern of possible reactions in our model for an example case with a small number of metabolites

(M = 5). Due to the explicit thermodynamic reversibility in our model, only reactions descend-

ing in free-energy are allowed. Further to this, the enzyme scheme we used is intended to cap-

ture simple enzymatic reactions rather than complex reactions composed of a succession (e.g.

glucose respiration). Hence, in our model direct links are only allowed between metabolites

with small separations (two positions or less) on the metabolite hierarchy. This network of

reactions is fully connected, i.e. every metabolite can be reached from any metabolite higher in

the metabolite hierarchy. Each species (i) is assigned a random subset (Oi) of this set of possible

reactions. As this subset is small, the reaction networks of individual strains are typically

incomplete, although for sufficiently complex communities the community-level reaction net-

work would tend to be fully connected. A set amount of ATP (ηα,i) is generated for each species

for each reaction α. The ATP production rate can then be found by summing the product of

this and the reaction rate as

Ji ¼
X

a2Oi

Za;iqa;iðEa;i; Sa;WaÞ; ð8Þ

where qα,i is the ith species’ (mass specific) reaction rate for reaction α, Eα,i is the copy number

of enzymes for reaction α that the species possesses, Sα is the concentration of reaction α’s sub-

strate, and Wα is the concentration of of reaction α’s waste product. The enzyme copy number

depends on metabolic protein fraction, and so can be expressed in terms of the ribosome frac-

tion as

Ea;i ¼
mna;i�P;i

nP
¼

mna;ið1 � �R;i � �QÞ

nP
; ð9Þ

where να,i is the ith species’ proportional expression level for reaction α, and satisfies
P

a2Oi
na;i ¼ 1, ϕP,i its metabolic protein fraction, and nP is the mass (average number of amino

acids) of a metabolic protein [14]. The reaction rate in Eq 8 is derived by assuming a reversible

kinetic scheme (derivation in S1 Appendix) and can be expressed as

qa;iðEa;i; Sa;WaÞ ¼
ka;iEa;iSað1 � yiðSa;WaÞÞ

KSa ;i
þ Sað1þ ra;iyiðSa;WaÞÞ

; ð10Þ

where kα,i is the maximum forward rate for reaction α for the ith species, KSa ;i
is its substrate

half-saturation constant for reaction α, rα,i is its reversibility factor for reaction α, and θi(Sα,

Wα) is a thermodynamic factor given by

yiðSa;WaÞ ¼
QðSa;WaÞ

Ka;i
; ð11Þ

where Q(Sα, Wα) is the reaction quotient, which in the single-reactant/single-product case we

consider, is defined as Q(Sα, Wα) = Wα/Sα, and Ka;i is the ith species’s equilibrium constant for

reaction α. The thermodynamic factor θi(Sα, Wα) quantifies how far from equilibrium the

reaction is, taking a value of 1 at equilibrium and tending towards 0 far from equilibrium. It is

PLOS COMPUTATIONAL BIOLOGY Thermodynamic constraints on the diversity of microbial ecosystems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009643 December 3, 2021 6 / 21

https://doi.org/10.1371/journal.pcbi.1009643


worth noting that for high Ka;i values Eq 10 will not significantly differ from the Michaelis–

Menten case. With the rate of energy acquisition (Ji) now sufficiently defined, the dynamics of

the internal energy concentration (ai) can be obtained by Eq 4. Finally, we wish to consider the

impact the species have on the environmental metabolite concentrations through the produc-

tion and consumption of metabolites (process 2 in Fig 1A). From the expression for the reac-

tion rate, the consumption and production rates for metabolite β that appear in Eq 1 can be

defined as

pi;bðCÞ ¼
X

a2Oi

dCb;Wa
qa;iðEa;i; Sa;WaÞ; ð12Þ

and

ci;bðCÞ ¼
X

a2Oi

dCb;Sa
qa;iðEa;i; Sa;WaÞ: ð13Þ

In the above, dCb;Wa
and dCb ;Sa

are Kronecker deltas that are zero unless metabolite β is the

waste product or substrate of reaction α, respectively.

Free-energy dissipation and thermodynamic inhibition

Due to the thermodynamic reversibility in our model, the amount of free-energy dissipated

affects reaction rates. We express the amount of free-energy obtained from a given reaction

event as the parameter η (units of number of ATP molecules). Cells can also transduce free-

energy by pumping ions across membranes. Hence, we assume the minimum value this

parameter can take is η = 1/3, which is approximately equivalent to the amount of free-energy

transduced by pumping one ion across a membrane. The maximum possible η value corre-

sponds to all of the free-energy being transduced to ATP and none of it being dissipated. How-

ever, in this case the overall reaction will be at equilibrium and there will be no net production

of ATP. This impact of free-energy dissipation on the dynamics occurs through the equilib-

rium constant which is specified as

Ka;i ¼ exp
� DaG0 � Za;iDGATP

RT

� �

;

where T is temperature, R is the gas constant, ΔGATP is the Gibbs free-energy per mole of ATP,

and ΔαG0 is the standard Gibbs free-energy change when one mole of reaction α occurs. As η
changes, the reaction rate (Eq 10) changes due to the change in this equilibrium constant. An

example of the impact this has on the ATP production rate is visualised in Fig 1C. For low η
values, the equilibrium constant is very large so there is a negligible thermodynamic impact on

the dynamics, and thus the ATP production rate initially scales linearly with η. However, the

exponential form of the equilibrium constant means that there is only a narrow region with

anything other than negligible or complete thermodynamic inhibition. This means that ATP

production peaks and then rapidly declines to zero as η increases. The narrowness of this rate-

yield trade-off means that there exists a clear optimal strategy with alternative thermodynamic

strategies being sub-optimal. However, as the position of the peak of this trade-off is deter-

mined by the waste product concentration, environmental conditions will determine the opti-

mal strategy.

The inclusion of thermodynamic reversibility in our model has the additional benefit of

allowing the entropy production rate (free-energy dissipation rate) to be directly calculated.

To do this the free-energy dissipated per reaction event of reaction αmust be found for each
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species (i). This can be expressed as

Di;a ¼ DaG0 þ RT lnðQðSa;WaÞÞ þ Za;iDGATP:

From this, whole community entropy production rate is then found to be

dGd

dt
¼
XB

i¼1

X

a2Oi

Di;aqa;iðEa;i; Sa;WaÞ

T

� �

Ni

 !

: ð14Þ

This entropy production can be used as a state variable allowing the complex dynamics

involved in microbial community assembly to be tracked in a simpler but still physically mean-

ingful manner. Without the overall summation the entropy production of individual species

can also be found.

Emergence of novel interaction types

The types of species interactions that emerge from this model and the mechanisms that lead to

them are illustrated in Fig 1D. Similarly to other microbial consumer-resource models [23–

25], species in our model can interact by competing for shared substrates (competition) or by

one species producing a metabolite that the other uses (facilitation). In addition, due to the

possibility of thermodynamic inhibition, interactions via waste products (rather than sub-

strates) are now possible. Furthermore, species can also now interact by one species producing

a product that thermodynamically inhibits the other species (pollution), or by one species con-

suming a product that inhibits the other (syntrophy). Example plots for syntrophy and pollu-

tion interactions (in a simple community) are shown in S1 and S2 Figs, respectively. For the

more complex communities we move on to consider, these interactions are determined by

perturbing each metabolite in turn at steady state, and calculating the response of each species.

Then, the net impact of each species on the concentration of each metabolite is calculated,

which combined with the perturbation response allows interaction strength between each spe-

cies for each metabolite to be quantified. This method is reminiscent of the calculation of “sus-

ceptibilities” in the cavity method [26, 27]. An important difference is that our responses are

calculated numerically at steady state, as analytic “susceptibilities” could not be obtained. This

was due to reaction rates in our model depending on both substrate and waste-product con-

centrations, which entails greater dynamically coupling between different metabolites. Finally,

the interaction types are classified using the sign of the perturbation response and whether the

species makes a net positive or negative impact on the concentration of the perturbed metabo-

lite (for the full process see S1 Appendix).

Simulations

To simulate community assembly we numerically integrated the system of M + 3B ordinary

differential equations (Eqs 1–4). We generated the (M metabolite) reaction networks following

the pattern shown in Fig 1B, with the free-energy spacing of each step downwards in the

metabolite hierarchy being equal. For each community, we then generated a random set of B
species. Each species was assigned a number of reactions (NO) drawn randomly from a uni-

form distribution. We then generated the reaction set (O) for that species by drawing the NO

reactions at random from the full reaction network. We assigned random kinetic parameters

(k, KS and r) to each reaction of each species, drawn from log-normal distributions as they

must be strictly positive. Subsequently, we set the relative reaction expression levels (ν) by

assigning each reaction a uniformly distributed random number normalised to the sum of all

reactions for the species in question. The next step was to assign the η values to each reaction
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for a species. When η values are sufficiently low, the dynamics remain far from equilibrium

and the enzyme kinetics are effectively irreversible Michaelis–Menten. Thus, we can generate

communities with irreversible Michaelis–Menten enzyme kinetics simply by restricting the

maximum η value. Henceforth, for the sake of brevity we refer to these communities as having

Michaelis–Menten enzyme kinetics. We randomly chose η values from a uniform range

between the minimum value (η = 1/3) and a maximum value which varies based on whether

we were considering Michaelis–Menten or reversible kinetics. For Michaelis–Menten kinetics,

the maximum possible value of η was chosen such that the reaction will reach equilibrium at a

product to substrate ratio of 1 × 105. If instead we considered reversible kinetics, the maximum

possible value of η was chosen such that the reaction will reach equilibrium at a product to sub-

strate ratio of 1 × 10−2. After we had generated the random communities, each replicated

assembly simulation was initiated with equal abundance across species and the system numeri-

cally integrated till the dynamics reached steady state (1 × 108 seconds). A table of parameters

and parameter ranges we used for this model can be found in S1 Appendix.

Results

The dynamical behaviour of our model is demonstrated in Fig 2. The population dynamics

(Eq 2) of the species that survive to steady state, along with a small number of species that go

extinct, are shown in Fig 2A. The corresponding ribosome fraction dynamics (Eq 3) are shown

in Fig 2B. The fractions increase during favourable conditions, leading to an increased growth

rate before decreasing to a steady state value (for surviving species). All species are observed to

converge on the same ribosome fraction at steady state. This occurs because the values of the

two half-maximum constants (g1
2
, O1

2
) are fixed across species, meaning a decreased ribosome

fraction (Eq 7) cannot be counteracted by an increased translation rate (Eq 6). In Fig 2C the

metabolite concentration dynamics (Eq 1) for this community are shown. Initially, the single

supplied metabolite accumulates, but as the population of species using this metabolite

increases its concentration decreases and the concentration of metabolites one or two steps

down the hierarchy increases. This process repeats leading to a sequential diversification of

substrates, which leads to clear shifts seen in the ribosome fraction and population dynamics.

In Fig 2D the rate of community entropy production (Eq 14) is plotted. The entropy produc-

tion rises as the substrate diversifies and the total population increases, and shows clear peaks

at the time points where accumulated substrates are rapidly depleted. The number of entropy

production spikes shows a strong correlation with the final number of substrates diversified

(Fig 2D inset).

Final community states depend on free-energy availability

We now assign every microbe to a functional group based on the substrate of its most

expressed reaction. The relative abundance of these functional groups with time is shown for a

representative parameter set in Fig 3A. The functional diversity initially collapses and then

slowly relaxes towards steady state. Using the inverse Simpson index, which corresponds to

the effective number of types (here functional groups) in an community we find that func-

tional diversity collapse is common across our simulations. The final community states are

now compared across four different regimes in Fig 3B. The regimes compared are low free-

energy (recalcitrant) substrates and high free-energy (labile) substrates, and whether the

enzyme kinetics are Michaelis–Menten or reversible. For all regimes, species are assigned

between 1 and 5 reactions from a 25 metabolite (47 reaction) network, and simulations are

started with 250 species. The first property compared is the number of surviving functional

groups. Systems supplied with a substrate of higher free-energy see a greater number of
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Fig 2. Key dynamical behaviours of the model. The vertical dashed lines in all plots mark the time point where the

third metabolite is available in sufficient quantity (1 × 10−4 moles) to support growth. This specific simulation is started

with an initial community of 250 species, each of which is assigned between 1 and 5 reactions from a 25 metabolite (47

reaction) network. The parameter set used here was one of the 250 parameter sets generated using a reversible kinetic

scheme and a total free-energy change of 5.0 × 106 J mol−1. A: Microbial population dynamics. B: Ribosome fraction
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surviving functional groups. Using a reversible kinetic scheme (rather than Michaelis–Men-

ten) only increases the number of surviving functional groups in the low free-energy case. A

nearly identical pattern is observed for the number of surviving species, suggesting that the

decline in functional diversity is predominantly driven by a decline in species diversity. To test

whether high free-energy substrates can support more species we then compared the ratio

between the number of surviving species and the number of substrates diversified to. We

found that the number of survivors per substrate is lower for high free-energy substrates, with

no significant difference between kinetic schemes. For the community entropy production

rate, higher substrate free-energy corresponds to higher entropy production rates. There is

again only a significant difference between kinetic schemes when substrate free-energy is low.

Free-energy availability increases rate of niche generation

The naive explanation for the diversity results in Fig 3B is that higher free-energy availability

increases the chance of a species being viable on a particular substrate. However, this is clearly

contradicted by the surviving species per substrate results shown in Fig 3B. A more careful

investigation of the mechanism that sustains diversity is displayed in Fig 4. The first variable

we consider is the number of surviving species, which is shown in Fig 4A. All regimes show a

significant loss in species diversity at a specific time. This is the time point where species that

never grow at all reach extinction. The number of surviving species drops to a significantly

lower value across all regimes and then levels out, remaining at a substantially higher level

for high free-energy (labile) substrates. When low free-energy (recalcitrant) substrates are

dynamics. Note that all species that survive to -steady state settle to the same ribosome fraction that balances the

constant biomass loss rate. C: Metabolite dynamics. In contrast to A, these are shown on a linear scale to show the

changes in key metabolite concentrations. The inset shows densities of the initial and final number of metabolites

across 250 simulations. D: Entropy production rate of the community with time. The time points where accumulated

metabolites drop below an exhaustion threshold (2 × 10−3 moles) are marked on the x-axis (colour-coding corresponds

to plot C). In the inset the number of entropy production spikes is plotted against the number of new substrates

generated (over 250 simulations) with a correlation of 0.769. The best fit line (red) shows a slope of 1.36 and a y

intercept of 0.523.

https://doi.org/10.1371/journal.pcbi.1009643.g002

Fig 3. Free-energy availability increases species diversity. A: Relative abundances of functional groups over time. The inset density plot shows initial

and final distributions of inverse Simpson’s diversity indices for functional groups across 250 simulations (using the same simulation parameters as Fig

2). B: Comparisons between the four free-energy × reversibility regimes. For each regime, the average and 99% confidence intervals obtained from 250

simulations are plotted. Two values of the total free-energy of the supplied substrate are considered: high (1.5 × 107 J mol−1), and low (1.5 × 106 J

mol−1). For both energy regimes, we consider both reversible (black symbols) and Michaelis–Menten (M–M grey symbols) kinetics. Cases with a

significant difference between these pairs are marked with a star (P< 0.01). The greatest differences are seen between high (labile) and low

(recalcitrant) free-energy substrates, and only in cases of low free-energy does the kinetic scheme used cause significant differences.

https://doi.org/10.1371/journal.pcbi.1009643.g003
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considered, a small but significant difference in the number of survivors between the reversible

and Michaelis–Menten regimes can be seen to emerge after the mass extinction event.

The second variable we consider is the number of substrates diversified, shown in Fig 4B.

For all regimes, the number of substrates rapidly plateaus. The plateau occurs after the point

where the majority of species can no longer contribute to the substrate dynamics. At high sub-

strate free-energy, the plateau occurs at a far higher number of substrates than at low substrate

free-energy, and at low substrate free-energy the reversible case plateaus slightly higher than

the corresponding Michaelis–Menten case. This mirrors the species diversity shown in Fig 4A,

indicating that diversity is driven by the number of available substrates (niches) being gener-

ated during assembly. The average growth rates for the four regimes are shown in Fig 4C. All

regimes show an initial period of rapid growth while the energy availability per species is high

which settles down to a steady growth rate as the total population increases. The most pro-

nounced peaks are seen for high free-energy (labile) substrates due to the greatly increased

energy availability. There is a small difference in peak height for low free-energy (recalcitrant)

substrates as allowing reactions close to equilibrium leads to greater free-energy extraction

Fig 4. Averaged assembly patterns across communities. Averages (across 250 simulations) of key quantities over time are shown (with 99%

confidence intervals) for the four regimes considered in Fig 3. To better reveal the dynamics only a small initial time window is shown. A: Average

species diversity over time. The dashed black line shown in all four plots marks the time point where 75% of species have dropped below the threshold

where they can no longer significantly impact the metabolite dynamics. B: Substrate diversification plateaus for all regimes at approximately this time.

C: Across all regime growth rate rapidly peaks, the peak is both earlier and higher for high free-energy (labile) substrates. D: Dynamics of the average

reaction efficiency, i.e. the fraction of the free energy change that is used to generate ATP rather than being dissipated (full definition provided in S1

Appendix). The position of the peaks can be seen to match the position of the corresponding growth rate peaks in plot C. The four plots use the same

parameters for the respective regimes as are used in Fig 3.

https://doi.org/10.1371/journal.pcbi.1009643.g004

PLOS COMPUTATIONAL BIOLOGY Thermodynamic constraints on the diversity of microbial ecosystems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009643 December 3, 2021 12 / 21

https://doi.org/10.1371/journal.pcbi.1009643.g004
https://doi.org/10.1371/journal.pcbi.1009643


from the environment. The vastly different growth rates across species’ populations account

for the differing rates of niche generation (substrate diversification) seen in Fig 4B.

The strategy of allowing near-equilibrium reactions increases free-energy yield, but also

means that thermodynamic equilibrium occurs at far lower waste product concentrations.

This means that the chance of a species expressing protein for a reaction that cannot proceed

becomes far higher. To ascertain the importance of this effect we plot average reaction effi-

ciencies (defined in S1 Appendix) with time in Fig 4D. The average thermodynamic effi-

ciency of the community changes through a process of species sorting, as the proportional

abundance of species with differing average reaction efficiencies changes. Species sorting

drives an increase in average reaction efficiency during the initial growth period across all

regimes, as species with highly efficient reactions yield more free-energy, and thus grow

faster. The two low free-energy (recalcitrant) cases are substantially further apart than the

two high free-energy (labile) cases. This arises because low free-energy reactions are inher-

ently closer to equilibrium. Hence, the reversible case has higher efficiency because its closer

to equilibrium, and the efficiency of the Michaelis–Menten case is reduced more signifi-

cantly to ensure reactions are far from equilibrium. In the reversible low free-energy case,

after the initial period waste products accumulate and reactions become thermodynamically

inhibited, a sharp efficiency peak is created. In the corresponding Michaelis–Menten case,

the reactions are always far-from-equilibrium and so this inhibition never occurs and the

efficiency simply plateaus. As the higher free-energy (labile) cases are generally further from

equilibrium, the pattern here is likely driven by a transition from an initial highly efficient

community that breaks down the initial substrate to more diverse community that breaks

down a wider range of secondary substrates. This community is less thermodynamically effi-

cient as the broader range of substrate means that competition for metabolites (ultimately,

free-energy) is weaker.

Thermodynamic interaction types influence community assembly and

diversity

Finally, we examined the preponderance of the different species interaction types (cf. Fig

1D) under the low/high free-energy and reversible/irreversible regimes. As the choice of

kinetic scheme only significantly affected previous results for low free-energy (recalcitrant)

substrates, we first compare kinetic schemes for this case in Fig 5. We show that under

Michaelis–Menten like enzyme kinetics (Fig 5A), there is a clear separation of scales between

the two conventional (competition and facilitation) interaction types on the one hand, and

the two thermodynamic ones (syntrophy and pollution) on the other. Our results thus imply

that when considering the Michaelis–Menten (high dissipation) limit of a reversible kinetic

scheme, thermodynamic interactions are observed (Fig 5B), but are so weak as to not affect

the dynamics (Fig 5A). In contrast, when considering a reversible kinetic scheme the separa-

tion of scales between the strengths of the thermodynamic and non-thermodynamic interac-

tion types disappears (Fig 5C), and thermodynamic interactions become marginally more

common (Fig 5D). Taken together, this implies that thermodynamic interactions have a

meaningful impact on the overall community dynamics when a reversible kinetic scheme is

used and substrate free-energy is low. In S3 Fig the results are shown for the high free-energy

(labile) case, where a similar overall pattern is seen. However, the proportion of thermody-

namic interactions is significantly lower, as is the mean strength of the thermodynamic inter-

actions relative to the non-thermodynamic interactions. This is expected because the kinetic

scheme is largely irrelevant to interaction dynamics when the system is assembled on a high

free-energy substrate.
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Discussion

We have shown that differences in the diversity of microbial communities are strongly influ-

enced by the free-energy level of the substrates that they are assembled on (Fig 3). This is

because high free-energy (labile) substrates allow more rapid creation of niches during the ini-

tial phase of assembly. At the end of this initial phase of assembly, diversity collapses because

species that are not able to grow due to the lack of available substrates (niches) go extinct. As

more niches are generated in the high-free energy case than in the low-free energy case, a

greater level of species diversity to be sustained at steady state (Fig 4). We also find that for low

free-energy (recalcitrant) substrates near-to-equilibrium reactions significantly increase the

availability of free-energy, and thus the diversity. However, after the initial phase of commu-

nity establishment, they are disfavoured as waste products build up. Underlying these dynam-

ics are distributions of the different types of species interactions: thermodynamic interaction

types (pollution and syntrophy) are rarer than the conventional ones (competition and

Fig 5. Thermodynamic and conventional interactions can be of comparable strength. A: Histogram of strengths of the four interaction types (shown

schematically in Fig 1D). The vertical red line marks the point where the distribution of the strengths of the pollution interaction is at half its maximum.

A clear separation of strengths between conventional and thermodynamic interactions can be observed. B: Simplex showing the relative proportions of

competition, facilitation and the thermodynamic (pollution and syntrophy) interaction types. Each point represents one out of the 250 communities we

simulated for each regime. Competition is by far the most common interaction type, with thermodynamic and facilitation interactions being similarly

common. C: Corresponding plot to Fig 5A for reversible kinetics. Thermodynamic and conventional interactions now reach comparable strengths. D:

Corresponding plot to panel B for reversible kinetics. Competition remains the most common interaction type, but thermodynamic interactions are

now marginally more common than facilitation. All cases considered here are for low free-energy (recalcitrant) substrates (1.5 × 106 J mol−1).

https://doi.org/10.1371/journal.pcbi.1009643.g005
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facilitation), but they can reach similar magnitudes of strength when the supplied substrate has

low free-energy and the kinetics are reversible (allowing non-equilibrium thermodynamics to

operate) (Fig 5). Taken together, these results indicate that thermodynamic inhibition can con-

strain the diversity of microbial communities when free-energy is scarce.

Thermodynamic constraints are known to be generally more important in anaerobic than

aerobic microbial communities due to the lower free-energy availability. This is why previous

microbial community models incorporating thermodynamic inhibition were developed spe-

cifically for anaerobic systems [15, 16]. However, aerobic microbial communities frequently

assemble on relatively recalcitrant substrates in nature (e.g., high-cellulose or high-chitin

resources; [28]). Therefore our model and results are relevant beyond anaerobic systems. For

the relatively labile substrates typically used in laboratory experiments, a non-thermodynamic

model would be adequate. However, when modelling growth on more realistic recalcitrant

substrates thermodynamic effects are likely to be important. Most microbes preferentially use

labile substrates, but shifts towards using recalcitrant substrates has been observed to occur

both as temperature increases [29], and as communities assemble [30]. Thus, understanding

community-level thermodynamic constraints when the substrate is recalcitrant is necessary

for truly understanding microbial community assembly in nature.

The relative importance of competitive versus cooperative interactions to microbial com-

munities is currently an open question. Most of this work has taken a phenomenological

empirical approach to characterise and classify such interactions [31]. Whole-genome com-

munity-scale metabolic modelling now allow a more mechanistic understanding of these

interactions by predicting both the substrate overlap and metabolite production (leading to

facilitation) between microbial species [32]. However, these approaches necessarily assume

steady state metabolite concentrations, and do not account for the nonlinear feedback loops

that develop in dynamic complex real microbial communities. We therefore took the middle

road in terms of model complexity by incorporating non-equilibrium thermodynamics into a

conventional consumer-resource model with cross feeding [19, 23]. Doing this introduces a

dependence of reaction rate on product concentration, which leads to the emergence of novel

interaction types between species via products rather than via substrates (see Figs 1D and 5).

Our results suggest that characterizing communities simply by either the relative proportion of

positive and negative interactions, or the relative strength of competition and facilitation is

insufficient to capture the true complexity of microbial interactions and their effects on com-

munity dynamics.

Because thermodynamic reversibility is explicitly included in our model, we are able to

directly calculate the rate at which communities produce entropy (Eq 14). This is a key

advance because despite the long-standing interest in ecology about entropy production [2,

3], calculation of entropy production rates from ecological models and ecosystems has not

been done in a explicit and consistent manner. Fig 2 shows that spikes in the rate of entropy

production over time can indicate periods where the availability of resources are changing

rapidly. This has potential empirical relevance as it suggests that key episodes in the develop-

ment of microbial communities could be detected by the rate at which they add heat to their

environment. Additionally, as seen in Fig 3B, the rate of entropy production at steady state

can be an indicator of free-energy availability, which only varies significantly between kinetic

schemes in the case of low free-energy (recalcitrant) substrates. Potentially rates of commu-

nity entropy production calculated from our model could be compared with experimental

measurements of heat production, in order to establish the thermodynamic efficiency of

microbial communities.

A comparison of our models assumptions and results with other recent work can be found

in S1 Appendix. To the best of our knowledge no previous work has combined both proteomic
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and thermodynamic constraints into a microbial community assembly model. Some of the

previous studies find, in contrast to our results, that the number of surviving consumer species

can exceed the number of substrates. This generally stems from the existence of distinct meta-

bolic strategies, i.e. differences between species in their allocation of enzymes to different sub-

strates. Entire communities are found to be able to survive if the resource supply vector is

contained by the convex hull formed by the community’s set of strategies [21, 33]. This

enhanced community diversity can be further facilitated by adaptive proteome reallocation

between reactions [22]. Reconciling our model’s results with these previous models would

require the development and analysis of a unified model, combining thermodynamic con-

straints with adaptive reallocation of proteome between reactions. In addition, a recent study

by Marsland et al. also found a dependence of final species diversity on energy supply [23].

Our model offers additional insight, by establishing a clear link between free-energy availabil-

ity and the dynamics of microbial community assembly. This insight was only possible because

our model incorporated both proteomic and (non-equilibrium) thermodynamic constraints.

A major assumption of our model is that the metabolite dynamics of the whole community

can be captured by merely considering well mixed external metabolites that are accessible to

all species, i.e. ignoring local metabolite concentrations and internal metabolites. This assump-

tion is frequently made in microbial consumer-resource modelling [23, 24, 34]. If we were to

include internal metabolites, species would be able to maintain concentration gradients

(through uptake and excretion), thus preventing reactions from reaching thermodynamic

equilibrium. It is important to note however, that for the catabolic reactions that we consider,

the free-energy cost of maintaining a particular concentration gradient will always, due to the

2nd law of thermodynamics, be greater than the reaction free-energy contributed by the gradi-

ent. The limits that thermodynamic inhibition place on microbial growth cannot therefore be

evaded through this mechanism. Another limitation of our study is that we only considered

metabolite hierarchies with equal free-energy spacing between metabolites. Extending this to

allow free-energy gaps of variable sizes in the same hierarchy would mean that thermodynamic

bottlenecks develop, which mean that species need to invest substantial amounts of protein in

reactions close to thermodynamic equilibrium in order for the system to fully develop [35].

This potentially allows the thermodynamics of more realistic scenarios, such as overflow

metabolism to be investigated [36, 37].

Recently, the existence of an (organism specific) upper limit on the rate of free-energy dissi-

pation (entropy production) has been suggested [38]. Niebel et al. consider cells that exhibit

“overflow metabolism”, i.e. incomplete oxidisation of their growth substrate. By increasing its

use of metabolic overflow pathways, the cell makes increased use of reactions that dissipate less

free-energy relative to the free-energy retained for growth, thus resulting in a maximum free-

energy dissipation rate. Cells cannot adapt their metabolism in such an manner in our model,

where changes in the community-level distribution of metabolic strategies changes solely

through species sorting. However, in our model a maximum metabolic flux is effectively

imposed because both the metabolic proteome fraction (ϕP) and the (randomly chosen) kinetic

parameters are bounded. Thus, given that every substrate has a fixed Gibbs free-energy, a spe-

cific maximum possible free-energy dissipation rate is implied by this maximum metabolic

flux. We would not expect this dissipation rate to be reached due to competition between spe-

cies, and would instead expect the system to settle to a lower dissipation rate (see Fig 2B).

Interestingly, our maximum dissipation rate arises from proteomic rather than thermody-

namic constraints, suggesting a potential link with proteomic constraint-based explanations

for the existence of overflow metabolism [36]. It is worth noting that if cells are genuinely con-

strained by the need to remove the entropy generated by free-energy dissipation, then thermo-

dynamically efficient reactions would be additionally favoured as they produce less entropy.
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Species would therefore be expected to operate closer to thermodynamic equilibrium, imply-

ing that thermodynamic interactions could be even more important than our results suggest.

Our results provide a new perspective on the apparent simplicity and modularity of assem-

bly dynamics reported by recent empirical studies [24, 39, 40]. In Goldford et al., a diverse ini-

tial community was inoculated onto a single carbon source [24], and the relative abundances

of various taxa tracked over successive dilutions. Similar to Fig 3A they observed a rapid col-

lapse in diversity, which then levelled out to a relatively simple community with cross-feeding.

Our results highlight that this pattern would very likely be impacted by substrate lability. Datta

et al. considered assembly in an open system (one where new species can enter) [39], finding a

highly reproducible assembly process consisting of multiple distinct phases, throughout which

species diversity was observed to vary non-monotonically. In contrast, in our closed system

diversity declines monotonically, and thus the rate of niche generation is of critical importance

(see Fig 4C). Generated niches cannot contribute to diversity after the species that could feasi-

bly occupy them have gone extinct. Furthermore, consistent with both real systems [24, 40]

and conventional microbial consumer-resource models [34], modularity emerges in our

model microbial communities (see Fig 3A). We observe that the first functional group pre-

dominates across all regimes, but the relative abundances of the secondary functional groups

are highly contingent as new species cannot enter the system, so the large number of niches

generated by substrate diversification are not guaranteed to be filled. Functional groups also

possess definite patterns of interaction types (see Figs 1D and 5) with competition occurring

primarily within functional groups, facilitation and syntrophy occurring primarily between

functional groups, and pollution occurring both within and between neighbouring functional

groups (for further discussion of this point see S1 Appendix).

Our model was designed to have sufficient complexity to capture the effects of cellular pro-

teome fractions and non-equilibrium thermodynamics, which are generally ignored in com-

munity-scale models. Modelling at the intermediate scale provides novel, empirically-relevant

insights, while avoiding the high complexity of models with fully-explicit intra-cellular dynam-

ics [41]. Including a proteome trade-off generates a direct mechanistic link between free-

energy availability and growth rate, because in regimes of greater free-energy availability, less

of the proteome needs to be dedicated to metabolism, leading to a higher ribosome fraction,

and thus the higher maximum growth rates seen in Fig 4C. One of the ways that we reduced

model complexity, was by making the simplifying assumption that the saturation constants,

for both translation rate and proteome fraction, were fixed across species. Relaxing this

assumption would allow different ribosome expression strategies to coexist in our model, lead-

ing to meaningful variation in steady-state ribosome fraction. Fruitful investigation into the

role that different proteome strategies play in microbial community assembly would then be

possible, particularly in regards to the observed negative relationship between the number of

ribosomal RNA operons a species possesses and its carbon use efficiency [42]. We were also

unable to explicitly test whether a specialist vs generalist trade-off exists in our model, because

the substrate supply conditions we studied systematically favoured species with more reac-

tions, as they had a greater probability of possessing a reaction for utilizing available substrates

early in the assembly process. Changing the assembly process to allow continual immigration

of species into the system would allow proper investigation into the existence and strength of

the specialist vs generalist trade-off. Our framework could also fruitfully be extended by mak-

ing links with metabolic ecology, particularly with the suggestion that the recently-reported

variation in thermal sensitivity of microbial growth rates [43, 44] can be linked to proteome

allocation [45].

In summary, our results show that an explicitly thermodynamic model of complex, dynam-

ically assembling ecosystems can provide novel insights into the mechanisms that generate
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and maintain diversity, how diversity depends on free-energy availability, the role of entropy

production, and the nature of underlying interactions between populations. This illustrates the

value and importance of considering non-equilibrium thermodynamics explicitly in the

modelling of microbial communities.

Supporting information

S1 Appendix. Supplementary text. A comparison of Michaelis–Menten and reversible

enzyme kinetic schemes, a full derivation and validation of the proteome trade-off model, a

definition of the measure used to quantify reaction efficiency, details of the method used for

identifying interactions and quantifying their strengths, a comparison of our results with those

of previous models, heat-maps showing the strength and frequency of the different interaction

types between functional groups, tables of model parameters, a table summarising the assump-

tions underlying our model, and plots demonstrating the robustness of our results to changes

in the parameterisation.

(PDF)

S1 Fig. Syntrophy leads to favouring more efficient species. Our system here consists of

three metabolites (only the first of which is supplied) and three species. The species A and B

both break down metabolite 1 to produce metabolite 2, and species C breaks down metabolite

2 to produce metabolite 3. Species B generates more ATP per mole of reaction than A does. A:

When species A and species B are grown together species A initially grows faster due to its

greater ATP yield. However, as steady state is approached species A dies off to be replaced by

species B. B: Species A dying off occurs due to the build of metabolite 2, which inhibits species

A more due to it being closer to thermodynamic equilibrium. C: When species C is included,

species A now survives to steady state (along with species C) instead of species B. D: The con-

centration of metabolite 2 is reduced due to consumption by species C, reducing the thermo-

dynamic inhibition of species A. We term this a syntrophy interaction.

(TIF)

S2 Fig. Pollution can render species non-viable. Our system here consists of three metabo-

lites (the first two of which are supplied) and two species. Species A breaks down metabolite 2

to produce metabolite 3, and species B breaks down metabolite 1 to produce metabolite 3. A:

When species A is grown on its own it reaches a steady state population. B: As species A only

breaks down metabolite 2, both metabolite 1 and 3 accumulate. C: When species B is added to

the system species A is driven to extinction. D: In this case, greater accumulation of metabolite

3 occurs as species B breaks down metabolite 1 into it. Species A therefore experiences a

greater level of thermodynamic inhibition. As species A and B do not share a substrate this

competitive exclusion occurs purely via waste products, we therefore term this a pollution

interaction.

(TIF)

S3 Fig. Interactions high energy case. Identical plot to Fig 5 but for the high energy supply

case (1.5 × 107 J mol−1).

(TIF)
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