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SUMMARY
Although thousands of anti-SARS-CoV-2monoclonal neutralizing antibodies (nAbs) have been identified and
well characterized, some crucial events in the development of these nAbs during viral infection remain un-
clear. Using deep sequencing, we explore the dynamics of antibody repertoire in a SARS-CoV-2-infected
donor, from whom the potent and broad nAb P2C-1F11 (the parent version of Brii-196) was previously iso-
lated. Further analysis shows a rapid clonal expansion of some SARS-CoV-2-specific antibodies in early
infection. Longitudinal tracing of P2C-1F11 lineage antibodies reveals that these elite nAbs were rare. Using
sequence alignment, structure modeling, and bioactivity analysis based on site-mutated assay, we demon-
strate that a key substitution F27I in heavy chain contributes significantly to the maturation of P2C-1F11-like
antibodies. Overall, our findings elucidate the developmental process and maturation pathway of P2C-1F11,
providing some important information for the design of novel immunogens to elicit more potent nAbs against
SARS-CoV-2 infection.
INTRODUCTION

The coronavirus disease 2019 (COVID-19) caused by the infec-

tion of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) has spread globally as a severe pandemic for

more than 2 years (Cucinotta and Vanelli, 2020), which has

already resulted in over 559 million infections and more than

6.3 million fatalities as of July 2022. To make matters worse,

the adaptive evolution of SARS-CoV-2 has led to the emergence

of a series of variants with higher transmissibility and/or immune

evasion, such as Alpha, Beta, Gamma, Delta, and Omicron

(Karim and Karim, 2021; Planas et al., 2021; Wang et al.,

2021a, 2021b). The spike protein of SARS-CoV-2 is a homo-

trimer expressed on the surface of the virus and contains two

functional subunits, named S1 and S2, which trigger the viral en-

try into the host cell (Lan et al., 2020). Upon the receptor-binding

domain (RBD) of S1 binding to the cell receptor (angiotensin-

converting enzyme 2 [ACE2]), the S1 domain is shed from the vi-

rus surface and the S2 domain is subsequently exposed to

mediate the membrane fusion between the virus and host cell

(Walls et al., 2019). Therefore, blocking or disturbing the binding

of RBD to the ACE2 is an important intervention strategy to pre-
Ce
This is an open access article under the CC BY-N
vent and control the COVID-19 pandemic. Among the possible

approaches, the RBD-specific monoclonal neutralizing anti-

bodies (nAbs) are considered good candidates for the develop-

ment of potential prophylactic and therapeutic agents against

SARS-CoV-2.

So far, a large number of monoclonal nAbs have been identi-

fied from SARS-CoV-2-infected individuals, vaccine recipients,

and immunized animals, showing the effective blockade of viral

infection in vitro and in vivo (Cao et al., 2020; Ju et al., 2020; Rob-

biani et al., 2020; Wang et al., 2021c). Multiple neutralizing anti-

body drugs have also been approved for emergency use alone or

in combined use, such as Regeneron (REGN10933 and

REGN10987), Eli Lilly (LY-CoV555 and LY-CoV016), Vir Biotech-

nology (VIR-7831), AstraZeneca (AZD8895 and AZD1061), and

Brii Biosciences (Brii-196 and Brii-198) (Liu et al., 2022). Current

studies largely focus on the neutralizing potency and breadth of

these nAbs; however, some important immunological questions

remain unanswered. For example, what are the features of the

monoclonal antibody (mAb) response in the early stage of

SARS-CoV-2 infection? When do the broad and potent nAbs

appear and what is the abundance of these nAbs? What are

the key events during the development of these potent nAbs?
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Figure 1. Antibody repertoire profiles of donor P#2 across the SARS-CoV-2 infection
(A) Schematic representation of experimental design. Blood samples from P#2 were collected at three time points after symptom onset (visit 1: day 9, early

infection; visit 2: day 28, clinical recovery; visit 3: day 63, clinical follow-up). The full-length repertoires of variable region of antibodies were obtained by targeted

amplification and sequencing on the Illumina MiSeq (2 3 300 bp) platform.

(legend continued on next page)
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Addressing these issues will expand our immunological insights

into nAbmaturation and reformation in virus acute infection such

as SARS-CoV-2. Previously, we isolated a broad nAb (bnAb) with

potent neutralizing activities against various SARS-CoV-2 vari-

ants, named P2C-1F11, from a COVID-19 convalescent individ-

ual (P#2), whose Fc-modified version was the aforementioned

Brii-196 (Ju et al., 2020; Wang et al., 2021b). Series of blood

samples of P#2 collected throughout the whole disease process

give us an opportunity to study the dynamic of antibody reper-

toire and the development of P2C-1F11 lineage antibodies in

this patient.

In this study, we performed a long-read deep sequencing and

applied a repertoire analysis to study the longitudinal dynamic of

B cell repertoire from the acute phase to the convalescent phase

in P#2. Tens of millions of antibody sequences in total were ob-

tained across three time points, namely day 9, day 28, and day

63 after the onset of symptoms. Antibody repertoire analysis

offered a clear and detailed picture of antibody response to the

SARS-CoV-2 infection. Of note, we traced the development of

P2C-1F11 lineage antibodies within this patient. In summary,

our repertoire analysis and function verification demonstrated

the maturation pathway of P2C-1F11-like nAbs while high-

lighting the pivotal role of F27I mutation in heavy chain in deter-

mining the potent neutralizing activity and pointing out the direc-

tion of the novel SARS-CoV-2 vaccine design.

RESULTS

Dynamic B cell repertoire response revealed by next-
generation sequencing analysis during the SARS-CoV-2
infection
A COVID-19 patient, named P#2, was traveling in Wuhan in the

first 6 days of the disease (day �4 to day 2), when symptoms

of COVID-19 emerged on day 0. P#2 was admitted to hospital

on day 9 and discharged on day 25. The SARS-CoV-2 RNA

turned negative from day 18 after the onset of symptoms. To

measure the dynamic B cell response elicited by the SARS-

CoV-2 infection, peripheral blood mononuclear cells (PBMCs)

were collected at three time points (visit 1: day 9, early infection;

visit 2: day 28, clinical recovery; visit 3: day 63, clinical follow-up)

(Figure 1A). Antibody repertoire analysis based on next-genera-

tion sequencing (NGS) has been widely used to study the com-

plex and diverse B cell response during viral infection (Gao

et al., 2019; Kong et al., 2016; Kumar et al., 2020). At each

time point, total RNA was obtained from PBMCs and used to

prepare the antibody libraries of heavy chain and light chains

(k and l). We combined 50-RACE PCR primer with 30-specific
primers targeting the constant regions of immunoglobulin G

(IgG), Igk, and Igl to amplify the full-length variable regions of un-

paired heavy and light chains for bulk sequencing. The NGS on

the Illumina MiSeq (2 3 300) platform generated a total of about

13.8, 15.0, and 16.3million raw reads for visit 1, visit 2, and visit 3,
(B–D) Distributions were plotted for (B) germline V gene usage (only those above 1

heavy and light (k/l) chains. The antibody database of healthy individuals was do

columbia.edu/). Color coding represents the three time points analyzed, with vis

shown in gray. HC, heavy chain; KC, k chain; LC, l chain.

See also Table S2.
respectively (Table S1). After data processing (Figure S1), we ob-

tained about 9.2, 10.0, and 11.6 million high-quality and full-

length sequences of antibody variable regions for in-depth anal-

ysis at visit 1, visit 2, and visit 3, respectively (Table S1).

In P#2, SARS-CoV-2 infection rapidly induced a strong anti-

body response, showing diverse and dynamic distributions in

germline gene usage throughout thewhole disease process (Fig-

ure 1B and Table S2). In the early stage of infection (day 9 after

symptom onset), the antibody repertoires of visit 1 were domi-

nated by a few germline genes. IGHV3-11, IGKV3-20, and

IGLV2-14 occupied over 50%, 30%, and 70% of the heavy, k,

and l chain repertoires, respectively. In the convalescent period,

the heavy-chain repertoire showed a relatively steady germline

distribution at visit 2 (day 28 after symptom onset) and visit 3

(day 63 after symptom onset). A similar pattern was found in

the k-chain repertoire. By contrast, IGLV4-69 and IGLV6-57

were predominantly used over 40% and 30% in the l-chain

repertoire of visit 2 and visit 3, respectively.

We next determined the degree of somatic hypermutation

(SHM) of antibody repertoire at each time point. As shown in Fig-

ure 1C, antibodies at visit 1 had higher SHMs than at visit 2 and

visit 3, with main distributions of around 5% for heavy-, k-, and

l-chain repertoires. Of note, there was a significant increase in

the population of germline-like antibodies at visit 2 compared

with visit 1 for both heavy and light chains, whose SHMs were

around or lower than 1%. This kind of limited SHM is an important

characteristic of SARS-CoV-2-specific antibodies (Kreer et al.,

2020; Zhang et al., 2022). In addition, we analyzed the distribu-

tions of complementary determining region 3 (CDR3) loop length

in heavy- and light-chain repertoires at three time points, which

is a crucial region in determining the antibody specificity

(Montague et al., 2021). Due to the enormous diversity of D

gene, the CDR3 of heavy chain (HCDR3) is highly variable in the

loop length, yet those of k and l chains were relatively steady

(Gao et al., 2019). As shown in Figure 1D, HCDR3 loops with 19

amino acids accounted for over 60%of the heavy-chain repertoire

at visit 1. The HCDR3 lengths were evenly distributed, ranging

from seven amino acids at visit 2 to 23 amino acids at visit 3.

Similar to the heavy chain, there was a significantly dominant pop-

ulation occupying more than 70% of the l-chain repertoire at visit

1, whose LCDR3 loop lengths were consistently 10 amino acids.

Rapid clonal expansion of SARS-CoV-2-specific
antibodies in the early stage of virus infection
The above analysis of B cell repertoire revealed that the propor-

tions of antibody sequences with the same germline gene usage

and CDR3 length were rapidly increased after SARS-CoV-2

infection. We hypothesized that some B cells underwent clonal

expansion in a very short time after infection. First, we summa-

rized all antibody sequences obtained from three time points

and clustered them into different clones based on the following

features: identical V and J germline gene, identical CDR3 length,
%of the repertoire are shown), (C) degree of SHM, and (D) CDR3 loop length for

wnloaded and reanalyzed from the cAb-Rep database (https://cab-rep.c2b2.

it 1 shown in pink, visit 2 in yellow, and visit 3 in blue. The healthy database is
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and the amino acid identity in the region of CDR3 R 80% (Yan

et al., 2021). As shown in Figure S2A, a total of 161,507,

304,798, and 68,381 clones were identified in heavy-, k-, and

l-chain repertoires, respectively. Of note, a small number of

clones were shared among the repertoires of three time points.

In particular, the top 15 clones in size of heavy-chain repertoires

at visit 1, visit 2, or visit 3 were scarcely detected in repertoires

from the other two time points (Figure S2B).

The Shannon index is often used to assess the clonality score

of an immune repertoire and ranges from 0 to 1, where 0 means

that each clonotype has no clonal expansion and 1 means that

the group includes only one clonotype (Zhang et al., 2018).

Here, we performed overall clonality analysis of the antibody rep-

ertoires at three time points. The results showed that the reper-

toires of heavy chain and l chain displayed the greatest clonality

at visit 1 and obviously declined over time, with Shannon indexes

falling from 0.76 and 0.75 to 0.39 and 0.58 at visit 2, and 0.37 and

0.64 at visit 3, respectively (Figure 2A). To obtain a holistic view of

the different antibody clonotypes at three time points, we

selected the top 10,000 frequent clones of heavy, k, and l

chains, respectively, and constructed tree-maps to represent

the relative abundances at visit 1, visit 2, and visit 3 (Figure 2B).

Compared with visit 2 and visit 3, the clones contained at visit 1

were obviously larger in scale. For example, clone-family 1 of

heavy chain (CFH1) and clone-family 1 of l chain (CFL1) occu-

pied over 50% of the population of their clonotypes.

To verify whether these expanded antibodies were SARS-

CoV-2 specific and what were their biological functions, we

selected and synthesized some representative sequences to

evaluate their binding, neutralizing, and non-neutralizing activ-

ities against SARS-CoV-2. At each time point, we mainly verified

the biological function of the top two or three expanded clones.

After removing duplicate amino acid sequences, we chose ten

antibody sequences with the highest abundance from each

clone to calculate their phylogenetic distances. Several repre-

sentative sequences of heavy and light chains were manually

selected for the subsequent synthesis and antibody production
Figure 2. Clonal expansion of antibody repertoires of donor P#2 at thr

(A) Diversity of heavy- and light-chain repertoires in different phases. Values were

(B) V-J-CDR3 tree-map of the repertoires. Each rectangle or circle in the tree-map

more than 80% identity between CDR3 amino acid sequences. The top 10,000mo

The size of each rectangle or circle denotes the relative frequency of an individua

separated by commas. The top clonotypes in each repertoire are listed, and their

are randomly chosen, and the colors do not match between plots.

(C) ELISA binding of representative clone-family (CF) antibodies to the SARS-C

selected heavy chains are represented by different shapes, and the selected light

1-specific antibody, VRC01, acted as the negative control, while P2C-1F11 and r

NP, respectively. NC, negative control; PC, positive control. The OD450 value of

(D) Binding specificity analysis of representative CF mAbs. CF1 and CF2 were tw

SARS-CoV-2-spike nAbs were used as control. P2C-1F11 and 4A8, both specific

targets the S2 subunit of SARS-CoV-2 and cross-reacts with several other human

Upper panel: ELISA binding to spike proteins of seven human coronaviruses andH

of WT SARS-CoV-2. The OD450 value of R0.2 is considered positive.

(E) Biological functions of representative CF mAbs. Left panel: Neutralization of si

control; Right panel: ADCC of two CF mAbs, with REGN10987, REGN10933, and

respectively (Hansen et al., 2020). ADCC, antibody-dependent cell-mediated c

experiments. The curves are representatives of independent experiments with s

neutralization.

See also Figures S2–S4 and Table S3.
(Figure S3). At visit 1, four heavy chains were paired with five light

chains, respectively, and tried to produce human IgG1 mAbs for

lack of the natural pairing information between heavy and light

chains in bulk sequencing. Using the same strategy, a total of

21 and 18 clone-family (CF) mAbs were successfully obtained

from visit 2 and visit 3, respectively (Table S3).

Firstly, we tested whether these CF mAbs could bind to the

wild-type (WT) SARS-CoV-2 spike (S) protein or nucleocapsid

protein (NP), which were two primary antigens examined for sero-

conversion (Sette and Crotty, 2021). As shown in Figure 2C, most

CF mAbs showed higher affinities for binding to spike than NP,

suggesting that these expanded antibodies could recognize the

virus antigen to different degrees.We then selected two represen-

tative CFmAbs derived from the largest clonotypes of heavy- and

light-chain repertoires to evaluate the virus specificity and deter-

mine the recognition domain of spike protein (Figure 2D). CF1

and CF2 targeting the S1 subunit were both specific for SARS-

CoV-2 and did not cross-react with the spike proteins of the other

six human coronaviruses (SARS-CoV, MERS-CoV, HCoV-HKU1,

HCoV-OC43, HCoV-229E, and HCoV-NL63), suggesting that

these CF mAbs might be induced by the primary infection of

SARS-CoV-2 rather than derived from the reactivation of pre-ex-

isting cross-reactive memory B cells. Finally, we evaluated the

biological functions of these SARS-CoV-2 spike-specific CF

mAbs including the neutralization and an important non-neutrali-

zation (antibody-dependent cell-mediated cytotoxicity [ADCC]).

Compared with some approved antibody drugs (P2C-1F11 and

REGN10987), these expanded mAbs displayed weaker neutral-

izing and ADCC activities on the whole (Figures 2E and S4;

Table S3). More studies in the future are needed to determine

whether these expanded mAbs identified from different stages

of SARS-CoV-2 infection could play other antiviral roles or not.

Longitudinal tracing of P2C-1F11 lineage antibodies
during SARS-CoV-2 infection in P#2
Judging from the above results, the potent neutralizing anti-

body, P2C-1F11, seemed not to originate from dominant
ee time points

calculated using the Shannon index. HC, heavy chain; KC, k chain; LC, l chain.

represents a clonotypewith the same V and J gene, the sameCDR3 length, and
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for SARS-CoV-2, are anti-RBD and anti-NTDmAbs, respectively, while CC40.8

coronavirus spike proteins (Chi et al., 2020; Ju et al., 2020; Zhou et al., 2022).
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ytotoxicity. The data presented here are means of at least two independent

imilar results. A cutoff value of 50% is indicated by a horizontal dashed line in
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Figure 3. Lineage tracing of P2C-1F11 in the P#2 repertoires across the SARS-CoV-2 infection
(A) Identity-divergence two-dimensional (2D) plots of heavy (left panel) and light (right panel) chain repertoires of P#2 at time points visit 1, visit 2, and visit 3. The x

axis indicates the sequence divergence from the putative germline gene, and the y axis indicates their identity with respect to the P2C-1F11 heavy or k chain.

Color coding denotes the density of the sequence.

(B) Sequence logo of the P2C-1F11 lineage heavy chains at visit 1 (n = 23), visit 2 (n = 66), and visit 3 (n = 27) with their CDRs highlighted.

(legend continued on next page)
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germline genes or expanding clones. The heavy chain of P2C-

1F11 was derived from IGHV3-66, whose abundance was

lower in the antibody repertoires of P#2 at three time points

(Table S2). Therefore, we used the heavy- and light-chain se-

quences of P2C-1F11 as bait to longitudinally trace the devel-

opment of P2C-1F11 lineage antibodies in the repertoires at

three time points according to our previously established

methods (Kong et al., 2016; Kumar et al., 2020). Together

with P2C-1F11, another six mAbs (P2B-2F6, P2C-1A3, P2C-

1C10, P2B-2G4, P2A-1A8, and P2A-1A10) derived from

different germline genes were also isolated from P#2 at visit 2

and effectively inhibited the infection of SARS-CoV-2 live virus

(Ju et al., 2020). The heavy- and light-chain repertoires with

respect to each mAb were visualized overall on identity-diver-

gence two-dimensional (2D) plots (Figures 3A and S5). We

observed some distinct or contiguous islands on these 2D plots

with a high identity of over 90% and similar degrees of SHM to

the reference antibody sequences, whose proportions were the

largest in the repertoires of visit 2. By contrast, the dynamic

lineage of antibody light chains displayed a relatively stable dis-

tribution across three time points.

Considering the high potency and wide application of P2C-

1F11, we mainly investigated the dynamic of P2C-1F11 lineage

antibodies. In the early stage of infection, this lineage did not

appear or was not rapidly enriched. The population of these

similar mAbs showed a marked expansion at visit 2, from which

P2C-1F11 was isolated, and then became significantly smaller

at visit 3 (Figure 3A). Furthermore, the sequence alignment

among these similar antibodies revealed their great differences

in detail. We selected a total of 23, 66, and 27 distinct heavy-

chain sequences of P2C-1F11 lineage at visit 1, visit 2, and visit

3, respectively, according to the following process: (1) remove

repetitive amino acid sequences; (2) rank by the identity to

heavy chain of P2C-1F11 (P2C-1F11HC); (3) conduct phyloge-

netic analysis with P2C-1F11HC (Figures 3B–3E). Although the

identities of these antibody sequences to P2C-1F11HC

reached at least 80% or even exceeded 95%, there were

obvious differences in their three CDRs. To investigate the

functional variation within the P2C-1F11 lineage, we selected

representative heavy-chain sequences at three time points,

paired them with the P2C-1F11 light chain to produce mAbs,

respectively, and then measured their neutralizing activities

against WT SARS-CoV-2 and variants (Figure 3F and

Table S4). Of note, most of these mAbs exhibited moderate

or weak neutralizing potencies except 1F11-V3S3, which

neutralized all tested pseudoviruses with potencies similar to

that of P2C-1F11. These data suggested that some minor dif-

ferences in sequence could lead to great divergences in the

function of antibodies.
(C–E) Phylogenetic analysis of the heavy-chain sequences of P2C-1F11 lineage a

were constructed on the basis of the amino acid sequences of selected antibodie

functionally tested are highlighted in red, and branches of P2C-1F11 are marked

(F) Neutralization of representative P2C-1F11 lineage antibodies againstWTSARS

antibodies consisting of identified heavy chains and the P2C-1F11 light chain were

representatives of at least two independent experiments with similar results. A c

See also Table S4.
A key F27I substitution from germline contributes to the
maturation of P2C-1F11-like antibodies
In this study, we identified a total of 14 P2C-1F11 lineage

nAbs in the antibody repertoires of P#2. Sequence alignment

and functional analysis showed that some key amino acid re-

siduals might play important roles in determining the neutral-

ization of mAbs (Figure 4A). Under the same sequences of

HCDR2 and HCDR3, I27 located in HCDR1 was only shared

in two potent nAbs, P2C-1F11 and 1F11-V3S3. In contrast,

1F11-V2S1 and 1F11-V3S1 still kept the F27 residue in line

with the germline gene, with moderate neutralizing activities

decreased by about 14-fold and 339-fold compared with

P2C-1F11. Based on the crystal structure of the P2C-1F11/

SARS-CoV-2 RBD complex (Ge et al., 2021; Zhang et al.,

2021), the I27 residue was directly involved in the contact

interface, suggesting its potential influence on recognition. In

our previous study, we also identified another two IGHV3-

53/3-66 public nAbs, named P22A-1D1 and P5A-3C8, and

resolved their crystal structures with the RBD, whose

HCDR1 sequences were identical to that of P2C-1F11HC

except the F27 residue (Zhang et al., 2021). As shown in Fig-

ure 4B, F27 of the germline gene only forms three van der

Waals interactions with A475, F486, and N487 residues on

the SARS-CoV-2 RBD. However, the I27 builds an additional

two salt bridges with N478 residue, contributing substantially

to the recognition of P2C-1F11 to the RBD. This interaction in

between seems to be relatively weaker when the I27 residue

of P2C-1F11HC is artificially reversed to F27 of the germline

gene, which (highlighted in red) is additionally displayed with

reference to the structural information of P22A-1D1 and

P5A-3C8.

To prove the importance of F27I mutation, the F27 residue of

1F11-V2S1 and 1F11-V3S1 was site-mutated to I27, respec-

tively. Measured by a surface plasmon resonance (SPR) exper-

iment, the binding affinities of 1F11-V2S1-F27I and 1F11-V3S1-

F27I to the RBD were improved by 8.9-fold and 11.1-fold

(Figure 4C). Meanwhile, we also mutated the I27 residue of

1F11-V3S3 and P2C-1F11 back to F27, respectively, then

tested their binding activities. The results showed that the affin-

ities of 1F11-V3S3-I27F and P2C-1F11-I27F to the RBD were

largely decreased more than 7-fold compared with those of

1F11-V3S3 and P2C-1F11 (Figure 4C). Similar evidence was

obtained from the neutralizing assay (Figure 4D). Whether

against the WT SARS-CoV-2 or other variants, the neutralizing

potencies of 1F11-V2S1-F27I and 1F11-V3S1-F27I were

increased more than 13-fold. By contrast, the potencies of

1F11-V3S3-I27F and P2C-1F11-I27F were largely decreased

more than 8-fold. The great differences in binding affinities

and neutralizing potencies against SARS-CoV-2 between the
ntibodies at (C) visit 1, (D) visit 2, and (E) visit 3. The maximum-likelihood trees

s. The synthesized heavy chains paired with the P2C-1F11 light chain for being

with red dots.

-CoV-2 pseudovirus and other variants (Beta andDelta). The P2C-1F11 lineage

synthesized and tested, with P2C-1F11 as the positive control. The curves are

utoff value of 50% is indicated by a horizontal dashed line.
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I27 and F27 versions of these mAbs indicated that the F-to-I

substitution at residue 27 of HCDR1 should be one important

step in helping the development and maturation of these

P2C-1F11-like mAbs.

DISCUSSION

Since the beginning of the COVID-19 pandemic from late 2019

and early 2020, researchers immediately got to work around the

clock to develop various strategies to fight against SARS-CoV-

2.We andmany other groups reported a number of potent nAbs

(Cao et al., 2020; Hansen et al., 2020; Ju et al., 2020; Liu et al.,

2020; Pinto et al., 2020; Robbiani et al., 2020; Rogers et al.,

2020) that were considered as good antiviral drug candidates.

Meanwhile, a large body of scientists focused on the human im-

mune response to SARS-CoV-2 infection, especially B cell re-

ceptor repertoires (Galson et al., 2020; Montague et al., 2021;

Nielsen et al., 2020; Schultheiss et al., 2020; Yan et al., 2021).

Understanding this B cell response is also critical in supporting

the development of COVID-19 treatments. In this study, unlike

the traditional studies, we performed a rather comprehensive

sequence analysis together with key function verification and

drew some important conclusions.

First, we described a rapid and strong antibody response

against acute SARS-CoV-2 infection in a COVID-19 patient.

The germlines of IGHV3-11 and IGLV2-14 accounted for

more than half of the heavy- and l-chain repertoires, respec-

tively, 9 days after the onset of symptoms, mainly due to the

rapid clonal expansion of V1.CFH1 and V1.CFL1. We consid-

ered that this might be a SARS-CoV-2-specific antibody

response, because neither CF1 nor CF2 mAbs could recog-

nize the spike proteins of other human coronaviruses. These

early antibodies did not display potent neutralizing and

ADCC activities against SARS-CoV-2, so other biological

functions need to be studied in the future. It should be noted

that the germline gene IGHV3-66 of P2C-1F11 or its similar

gene IGHV3-53 did not dominate the antibody repertoires

across three time points.

Second, we traced the development of P2C-1F11 lineage an-

tibodies in this COVID-19 patient, P#2. Unlike most of the previ-

ous studies (Galson et al., 2020; Kim et al., 2021;Montague et al.,

2021; Nielsen et al., 2020; Schultheiss et al., 2020), we per-

formed a series of strict function verification of these very similar
Figure 4. Analysis of critical residues for the functional maturation of
(A) Sequence alignment of representative P2C-1F11 heavy-chain variants with the

critical for the P2C-1F11 maturation is marked in red. The neutralization of each

(B) Structural comparison of the interactions with the WT SARS-CoV-2 RBD betw

3C8) carrying germline residue F27. The germline IGHV3-53 is closely related to IG

are often referred to collectively as IGHV3-53/3-66 antibodies (Wang et al., 2022;

chains are in cyan. The position of mutant residue I27F on HCDR1 of P2C-1F11 is

distance of 4.5 Å is used as themaximal cutoff value for the intermolecular interact

and solid black lines, respectively. HC, heavy chain.

(C) Binding kinetics of mAbs to the WT SARS-CoV-2 RBD protein measured by SP

lines represent fitted curves based on the experimental data. Binding kinetics were

to 6.25 nM. Results presented are representative of two independent experimen

(D) Neutralization of mAbs against SARS-CoV-2 pseudoviruses of WT and other va

mutated antibodies are in red. Results presented are representative of at least two

by a horizontal dashed line.
amino acid sequences including the neutralization against WT

SARS-CoV-2 and other variants. The majority of synthetic

mAbs were unable or too weak to inhibit the virus infection, sug-

gesting that this kind of potent nAbs is rare and that some key

amino acid residues might play important roles in their binding

neutralizing activities. Combining the potency and broad spec-

trum, P2C-1F11 ranked first in a total of 206 RBD-specific

mAbs we isolated from eight SARS-CoV-2-infected individuals

(Ge et al., 2021; Ju et al., 2020; Wang et al., 2021b; Zhang

et al., 2021). This fact proved again that broadly elite nAbs orig-

inating from the P2C-1F11 lineage were uncommon, so it should

be extremely important to clarify their processes of development

and maturation.

Third, we demonstrated that the F27I mutation in HCDR1 was

a critical factor in determining the binding affinities and neutral-

izing potencies of P2C-1F11-like antibodies. This mechanism

was solidly supported by the sequence alignment, structure

modeling, and bioactivity analysis based on a site-mutated

experiment. A single substitution in the heavy chain, F27I, helped

P2C-1F11-like antibodies to rapidly mature to potent nAbs from

the original germline antibody. Similar to what researchers did in

the study of HIV-1-specific nAbs (Huang et al., 2016; Kong et al.,

2016; Umotoy et al., 2019; Wu et al., 2015), this discovery in the

anti-SARS-CoV-2 antibody has at least two meanings: one is

that it will largely contribute to enhancing the binding affinity

and neutralization in antibody engineering, and the other is that

it will also provide guidelines for the design of SARS-CoV-2

vaccine.

In conclusion, we analyzed the dynamic of antibody repertoire

response to SARS-CoV-2 infection, whose pattern in the early

stage was largely different from that in the convalescent stage.

P2C-1F11 provided us with an opportunity to explore the early

development of this lineage antibody, especially to reveal the

key events in the maturation from germline. Our findings demon-

strated that the human immune system successfully combated

SARS-CoV-2 infection by driving the F-to-I mutation at residue

27 in HCDR1 of P2C-1F11-like nAbs, providing useful informa-

tion for the rational design of next-generation nAbs and SARS-

CoV-2 vaccines.

Limitations of the study
In this study, we performed 50-RACE PCR and bulk

sequencing to obtain the as many genes in the full-length
P2C-1F11-like antibodies
ir three CDRs highlighted in pink. The identified hotspot residue that potentially

mAb against WT SARS-CoV-2 is presented as IC50 value.

een P2C-1F11 and two IGHV3-53/3-66 public antibodies (P22A-1D1 and P5A-

HV3-66, except for an I12V substitution within the frame region 1 (FR1), so they

Yuan et al., 2020; Zhang et al., 2021). RBD is in green, while the antibody heavy

inferred based on that of the two public antibodies and is highlighted in red. The

ions. The van derWaals and salt-bridge interactions are represented by dashed

R. The black lines indicate the experimentally derived curves while the colored

measured for six concentrations of the RBD at 2-fold dilution ranging from 200

ts. The mean dissociation constant (KD) values are indicated.

riants (Beta and Delta). The prototype antibodies are marked in blue while site-

independent experiments with similar results. A cutoff value of 50% is indicated
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antibody variable region as possible. Sufficient sequencing

depth supported the analysis of antibody repertoire. However,

the heavy and light chains were not naturally paired.

Future study by high-throughput single B cell transcriptome

sequencing with paired heavy and light chains might provide

a deeper understanding of the maturation pathway of human

antibodies. We demonstrated that F27I substitution was one

of the key events in the development of P2C-1F11-like

nAbs, but not the only one. Despite I27 also being found in

the CDR1 of 1F11-V3S13, some other differences might also

affect its neutralization, such as L51 in CDR2 and G100 and

D101 in CDR3. More relevant mechanisms underlying the

maturation of P2C-1F11-like nAbs need to be uncovered in

the future.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

P2C-1F11 Ge et al. (2021) PDB code 7CDI

4A8 Chi et al. (2020) PDB code 7C2L

CC40.8 Zhou et al. (2022) PDB code 7SJS

REGN10933 Hansen et al. (2020) PDB code 6XDG

REGN10987 Hansen et al. (2020) PDB code 6XDG

VRC01 Zhou et al. (2013) PDB code 4LST; RRID: AB_2491019

HRPgoat anti-human IgG (H + L), polyclonal ZSGB-BIO Cat# ZB-2304

Bacterial and virus strains

E. coli DH5a Takara Cat# 9057

SARS-CoV-2/wild-type (WT) Ju et al. (2022) N/A

SARS-CoV-2/Beta Ju et al. (2022) N/A

SARS-CoV-2/Delta Ju et al. (2022) N/A

Chemicals, peptides, and recombinant proteins

FreeStyle 293 expression medium Gibco Cat# 12338026

SARS-CoV-2 WT S1 Sino Biological Inc. Cat# 40591-V08H

SARS-CoV-2 WT RBD Sino Biological Inc. Cat# 40592-V08B

SARS-CoV-2 WT NTD Sino Biological Inc. Cat# 40591-V49H

SARS-CoV-2 WT S2 Sino Biological Inc. Cat# 40590-V08B

SARS-CoV-2 WT spike Sino Biological Inc. Cat# 40589-V08B1

SARS-CoV-2 WT NP Sino Biological Inc. Cat# 40588-V08B

SARS-CoV spike Sino Biological Inc. Cat# 40634-V08B

MERS-CoV spike Sino Biological Inc. Cat# 40069-V08B

HCoV-HKU1 spike Sino Biological Inc. Cat# 40606-V08B

HCoV-OC43 spike Sino Biological Inc. Cat# 40607-V08B

HCoV-229E spike Sino Biological Inc. Cat# 40605-V08B

HCoV-NL63 spike Sino Biological Inc. Cat# 40604-V08B

Penicillin-Streptomycin (10,000 U/mL) Gibco Cat# 15140163

Ampicillin Amresco Cat# 69-52-3

Polyethylenimines (PEIs) 25K PolySciences Cat# 23966

Trypsin Gibco Cat# 25200–072

Fetal bovine serum Gibco Cat# 10099–141C

Dulbecco’s Modified Eagle Medium Gibco Cat# 11965–092

HEPES (1M) Buffer Solution Gibco Cat# 15630–080

Opti-MEM Reduced Serum Medium Gibco Cat# 51985034

Roswell Park Memorial Institute (RPMI)

1640 Medium

Gibco Cat# 11875–101

DEAE-Dextran hydrochloride Sigma Aldrich Cat# D9885-10G

Critical commercial assays

RNeasy Plus Mini Kit Qiagen Cat# 74134

QIAquick Gel Extraction Kit Qiagen Cat# 28706

Bright-Lite Luciferase Assay System Vazyme Biotech Cat# DD1204-03

Single Cell Full Length mRNA-Amplification

Kit

Vazyme Biotech Cat# N712

Gold Hi EndoFree Plasmid Maxi Kit CWBIO Cat# CW2104M

(Continued on next page)

Cell Reports 40, 111335, September 13, 2022 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TMB substrate Sangon Biotech Cat# E661007-0100

Deposited data

Human antibody repertoire This paper National Genomics Data Center:

HRA002366

Experimental models: Cell lines

HEK293F Gibco Cat# R79007

Human: HEK293T ATCC Cat# CRL-3216

HEK293T expressing human ACE2 YEASEN Biotech Cat# 41107ES03

Jurkat-FcgRIIIa-V158 Effector Cells Vazyme Biotech Cat# DD1301

Recombinant DNA

pNL4-3.Luc.R-E� NIH AIDS Reagent Program Cat# 3418

Software and algorithms

TrimGalore v0.6.0 Trim Galore https://github.com/FelixKrueger/

TrimGalore/

PANDAseq v2.11 Masella et al. (2012) https://github.com/neufeld/pandaseq

IgBlast v1.17.1 Ye et al. (2013) https://ncbi.github.io/igblast/

Needleall A program from EMBOSS package http://emboss.sourceforge.net/apps/

release/6.6/emboss/apps/needleall.html

MEGA v10.2.6 Kumar et al. (2008) https://www.megasoftware.net/

PyMOL PyMOL http://www.pymol.org

Graphpad Prism 8 GraphPad https://www.graphpad.com/

R R https://www.r-project.org/

Other

IMGT Reference directory sets Lefranc et al. (2005) http://www.imgt.org/vquest/refseqh.

html#VQUEST
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Zheng

Zhang (zhangzheng1975@aliyun.com).

Materials availability
All unique/stable reagents generated in this study are available from the lead contact with a completedMaterials Transfer Agreement.

Data and code availability
The sequencing data generated in this study have been deposited in the National Genomics Data Center (https://bigd.big.ac.cn/)

under accession number: HRA002366, and the data will be publicly available as of the date of publication. This paper does not

report original code. Any additional information required to reanalyze the data reported in this paper is available from the lead con-

tact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
The blood samples were donated by a SARS-CoV-2 convalescent patient (P#2, female, 65 years old), who returned to Shenzhen from

Wuhan and was hospitalized at Shenzhen Third People’s Hospital, China (Ju et al., 2020). This study was approved by the Ethics

Committee of Shenzhen Third People’s Hospital (approval number: 2020–084). This participant had provided written informed con-

sent for sample collection and subsequent analysis. Peripheral blood mononuclear cells (PBMCs) were separated from blood sam-

ples by Ficoll-Hypaque gradient (GE Healthcare) centrifugation, maintained in freezing medium, and stored in liquid nitrogen until

used for antibody repertoire sequencing.
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Cell lines
HEK293F (Gibco) cells were cultured in suspension using FreeStyle 293 expression medium (Gibco) at 37�C with 8% CO2 at

130 rpm. HEK293T (ATCC) and Jurkat-FcgRIIIa-V158 (Vazyme Biotech) cells were maintained in Dulbecco’s modified eagle me-

dium (DMEM, Gibco) and Roswell Park Memorial Institute 1640 medium (RPMI-1640, Gibco), respectively, supplemented with

10% Fetal bovine serum (FBS, Gibco), 1% penicillin-streptomycin (Gibco) and 1% Hepes (1M) buffer solution (Gibco) at 37�C
with 5% CO2.

METHOD DETAILS

Antibody libraries preparation and sequencing
The amplification of antibody variable region genes was using an improved 50-RACE polymerase chain reaction (PCR) (Kumar et al.,

2020). Total RNAwas extracted from 1�5million PBMCswith RNeasy PlusMini Kit (Qiagen). For antibody repertoire preparation and

analysis, 50-RACEPCRwas performedwith Single Cell Full LengthmRNA-Amplification Kit (Vazyme) according to themanufacturer’s

protocol. Three separate PCR reactions were performed for amplification of antibody VH, Vk and Vl (VL) regions, and the PCR prod-

ucts at�600 base pairs were gel-purified with QIAquick Gel Extraction Kit (Qiagen). The 50-RACE primer (Universal Primer Mix, UPM)

was provided in the commercial kit and the sequences of 30-specific primers were listed here: AAGACCGATGGGCCCTTG for VH,

GGGAAGATGAAGACAGATGGT for Vk, and GGGYGGGAACAGAGTGACC for Vl (Jiang et al., 2013; Liao et al., 2009). VH and VL

libraries were prepared by BerryGenomics and further performed deep sequencing using the Illumina MiSeq platform with

2 3 300 configurations.

Bioinformatics analysis of repertoire sequencing data
TrimGalore-0.6.0 (https://github.com/FelixKrueger/TrimGalore/) was used to automate quality and adapter trimming as well as qual-

ity control on the raw FASTQ files. The 30 ends of reads with quality scores below 20 were trimmed and reads less than 150 bp in

length were discarded. The paired clean readswere assembled into full-length antibody sequences according to overlapping regions

by PANDAseq v2.11 (Masella et al., 2012). Following assembling, the sequences over 300 nucleotides were annotated by IgBlast

v1.17.1 (Ye et al., 2013), using reference V(D)J sequences downloaded from the IMGT database (http://www.imgt.org/) (Lefranc

et al., 2005). NGS-derived sequences containing CDR3 and without stop codons or out-of-frame IGH/LJ or frameshift were retained

for further analysis. As described by He et al. (He et al., 2014), the full-length read was also excluded if its V-gene alignment was less

than 250 bp. After the processes above, featureswere carried out fromantibody NGSdata, such as the distributions of V(D)J germline

genes, germline divergence or degree of somatic hypermutation (SHM), and CDR3 loop length.

Clonotype definition
The sequences at different time points were grouped into specific clonotypes, with thresholds of the same V and J gene, the same

CDR3 length, and CDR3 amino acid sequences of 80% identity between each other (Yan et al., 2021). To quantify the overall clonality

of the repertories, we used the following formula of Shannon index:

Shannonexpa = 1� �PS
i = 1pilog2pi

log2S

where pi is the cell frequency of clonotype i in the antibody repertoire, and S is the total number of clonotypes.

Tracing of lineage antibody
Annotated antibody sequences were subjected to compared to template antibody sequences at both the nucleotide level and the

amino acid level using the needleall software with Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). Here, seven re-

ported neutralizing antibodies (P2C-1F11, P2B-2F6, P2C-1A3, P2C-1C10, P2B-2G4, P2A-1A8, and P2A-1A10) previously isolated

from P#2 were used as reference (Ju et al., 2020). The sequences with amino acid identity cutoff 90% and similar CDR3 length

(±1 amino acid) were clustering into the evolutionarily related to the template lineage antibodies.

Synthesis, expression and purification of monoclonal antibodies
After iterative phylogenetic analysis of the deduplicated sequences, manually selected sequences were used as group representa-

tives for antibody synthesis and functional characterization. Gene sequences of manually selected monoclonal antibodies (mAbs)

and published mAbs downloaded from the National Center of Biotechnology Information (NCBI) were synthesized and cloned

into the human full-length IgG1 expression vectors (Sangon Biotech). For the published mAbs, their protein data bank (PDB) codes

were P2C-1F11 (7CDI) (Ge et al., 2021), 4A8 (7C2L) (Chi et al., 2020), CC40.8 (7SJS) (Zhou et al., 2022), REGN10987 (6XDG) and

REGN10933 (6XDG) (Hansen et al., 2020), and VRC01 (4LST) (Zhou et al., 2013), respectively. Paired heavy and light chains were

co-transfected into 293F cells, and antibodies were purified from cell supernatants five days later using protein A columns according

to the manufacturer’s instructions (Senhui Microsphere Technology). Purified mAbs were quantified using a NanoDrop spectropho-

tometer and stored at 4�C.
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Enzyme-linked immunosorbent assay (ELISA)
ELISA was performed to characterize the binding capacity of representative mAbs to WT SARS-CoV-2 spike or NP protein. Firstly,

the SARS-CoV-2 protein (2 mg/mL) was coated into 96-well plates at 4�C overnight. Washed with PBST buffer, the plates were

blocked with 5% skim milk and 2% bovine albumin in PBS at room temperature (RT) for 1 h. Then, the tested mAbs (10 mg/mL)

were added to the plates and incubated at 37�C for 1 h. After washing again, HRP conjugated goat anti-human IgG antibodies

(ZSGB-BIO) were added and incubated at 37�C for 1 h. Finally, TMB substrate (Sangon Biotech) was added and incubated at RT

for 20 min and the reaction was stopped by 2M H2SO4. The readout was detected at a wavelength of 450 nm. In addition, the repre-

sentative mAbs were also tested against the spike proteins of seven human coronaviruses, including SARS-CoV-2, SARS-CoV,

MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-229E, and HCoV-NL63, as well as the different functional domains of SARS-CoV-

2-spike (S1, RBD, NTD, and S2). All proteins used here were purchased from Sino Biological.

SARS-CoV-2 neutralizing assays
After HEK-293T cells inoculated in the T75 flask grew to the appropriate density, they were co-transfected with SARS-CoV-2 (WT or

mutant strain) spike expression plasmid and Env-deficient HIV-1 backbone vector (pNL4-3.Luc.R-E�) (Ju et al., 2022). After 2 days,

the supernatant was collected, centrifuged, filtered to obtain pseudovirus and stored at�80�C. The continuously dilutedmonoclonal

antibody was co-incubated with an equal-volume of pseudovirus at 37�C for 1 h and then added to the prepared 96-well plate con-

taining HEK-293T-hACE2 cells. After 48 h post-incubation, remove the culturemedium and add 100 mL bright-Lite Luciferase reagent

to the medium. Leave the medium at room temperature for 2 min and then remove 90 uL into 96-well white test plate. The Luciferase

activity was measured by using VarioskanTM LUX Multimode Microplate Reader. Half-maximal inhibitory concentrations (IC50) were

calculated using GraphPad Prism 8.0 software by log (inhibitor) vs. normalized response - Variable slope (four parameters) model.

Antibody-dependent cellular cytotoxicity (ADCC)
ADCC activity was assessed with a Bio-Lite Luciferase assay. The antibody was evaluated by incubating the serially diluted anti-

bodies with an equal volume of target cells (293F expressing SARS-CoV-2 spike) at 37�C for 1 h. The target cells-antibody mixture

was then transferred to an all-white 96-well cell culture plate, and Jurkat-FcgRIIIa-V158 Effector Cells were subsequently added to

the plates. 18 h post-incubation, 110 mL of the Bright-Lite Luciferase reagent (VazymeBiotech) was added to the plates. After a 2-min

shock incubation at RT, the cell plates were measured by luminescence using the VarioskanTMLUX multimode microplate reader

(Thermo Fisher Scientific).

Binding analysis by surface plasmon resonance (SPR)
The binding of mAbs to theWT SARS-CoV-2 RBD protein were evaluated using the Biacore 8K system (GE Healthcare). Briefly, RBD

protein (Sino Biological) was covalently coated on the flow cell of the CM5 sensor chips with 10 mM sodium acetate buffer (pH 5.0),

while the uncoated and blocked flow cell served as a control. HBS-EP buffer (10 mMHEPES pH 7.4, 150 mMNaCl, 3 mM EDTA, and

0.05% Tween-20) was used at a flow rate of 30 mL/min. Serially diluted antibodies were injected respectively for 60 s, and the data

were fitted to a 1:1 bindingmodel using Biacore Evaluation software (GEHealthcare). Eachmeasurement was performed in duplicate

to generate the average affinity constant.

Multiple sequence alignment and structural analysis
Multiple sequence alignment (MSA) was calculated using MEGA 10.2.6 with the ClustalW algorithm (Kumar et al., 2008). To identify

the ‘‘hotspot’’ residues critical to P2C-1F11 lineage development, the crystal structures of the SARS-CoV-2 RBD with P2C-1F11,

P22A-1D1 or P5A-3C8 Fab complex were downloaded and reanalyzed from the PDB under accession number 7CDI, 7CHS, and

7CHP, respectively (Zhang et al., 2021). Here, 4.5 Å was used as the maximal cut-off value for the intermolecular interactions. Illus-

trations of structural models were made using PyMOL Molecular Graphics System 1.5.0.4.

QUANTIFICATION AND STATISTICAL ANALYSIS

The independent experiment replicates were indicated in the figure legends. Half-maximal inhibitory concentrations (IC50) of mAbs

were calculated using GraphPad Prism 8.0 software by log (inhibitor) vs. normalized response - Variable slope (four parameters)

model. Curves for ADCC activities were fitted after log transformation of antibody concentration using GraphPad Prism 8.0 software

by non-linear regression analysis. The values of binding affinity (KD) of mAbs were calculated using Biacore Evaluation software 3.0

(GE Healthcare) by Multi-cycle kinetics/affinity model. We did not perform any statistical analysis in this study.
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