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Abstract

Excessive emotional responses to stressful events can detrimentally affect psychological functioning and mental health.
Recent studies have provided evidence that non-invasive brain stimulation (NBS) targeting the prefrontal cortex (PFC) can
affect the regulation of stress-related emotional responses. However, the reliability and effect sizes have not been
systematically analyzed. In the present study, we reviewed and meta-analyzed the effects of repetitive transcranial
magnetic (rTMS) and transcranial direct current stimulation (tDCS) over the PFC on acute emotional stress reactivity in
healthy individuals. Forty sham-controlled single-session rTMS and tDCS studies were included. Separate random effects
models were performed to estimate the mean effect sizes of emotional reactivity. Twelve rTMS studies together showed no
evidence that rTMS over the PFC influenced emotional reactivity. Twenty-six anodal tDCS studies yielded a weak beneficial
effect on stress-related emotional reactivity (Hedges’ g =—0.16, Clgse, =[—0.33, 0.00]). These findings suggest that a single
session of NBS is insufficient to induce reliable, clinically significant effects but also provide preliminary evidence that
specific NBS methods can affect emotional reactivity. This may motivate further research into augmenting the efficacy of
NBS protocols on stress-related processes.
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Introduction

Stress is an integral part of life. It fundamentally serves to
protect from danger and adapt to challenges. The adaptive stress
response can, however, become detrimental when it is turned
on too frequently or does not properly shut off (McEwen, 1998).
Responses to stress include feelings of distress and negative
emotions. Acute stress can impair executive functions (Shields
etal, 2016) and adversely affect performance and decision-

making, such as during surgeries (Arora et al., 2010; Chrouser
et al., 2018), emergency service operations (Regehr and LeBlanc,
2017) and military operations (Orasanu and Backer, 1996; Harris
et al., 2005). Moreover, chronically elevated emotional responses
to stress increase long-term daily negative affect and the risk on
developing affective disorders (McLaughlin et al., 2010; Charles
et al., 2013; Swartz et al., 2015). Finding ways to modulate acute
emotional responses to stress, also called emotional stress reac-
tivity, is therefore relevant for daily functioning and wellbeing.
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Emotional stress reactivity is associated with multiple brain
regions, including the amygdala, hippocampus and frontal
cortical areas. The prefrontal cortex (PFC) plays an important
role in regulating acute stress responses on physiological,
behavioral and affective levels (Radley etal., 2015). Within
the PFC, the ventromedial part (VMPFC) contains the major
structural prefrontal-amygdala connections (Kim et al., 2011)
and modulates the hypothalamic-pituitary-adrenal (HPA) axis
response to stress (Diorio et al., 1993). Higher activation of the
VMPFC is associated with reduced amygdala activity, diminished
experience of negative emotions and better fear extinction
learning (Diekhof et al., 2011). The lateral parts of the PFC, the
dorsolateral PFC (DLPFC) and the ventrolateral PFC (VLPFC)
are associated with intentional or effortful emotion regulation
by employing cognitive strategies, including (re)appraisal of
emotional stimuli, response inhibition, attention regulation,
and working memory (Phillips et al., 2003; Steele and Lawrie,
2004; Wager etal., 2008; Ochsner etal, 2012; Buhle etal,
2014; Kohn et al., 2014; Etkin et al., 2015; Morawetz et al., 2017;
Langner et al., 2018). Yet, PFC structure and PFC functions are
particularly vulnerable to the effects of acute and chronic stress
(McEwen and Morrison, 2013; Arnsten, 2015; Radley et al., 2015;
Shields et al., 2016). Moreover, stress and anxiety symptoms,
characterized by exaggerated or context-inappropriate acute
emotional response to stress, are clearly related to impaired
PFC functioning (Bishop, 2007, 2009; Etkin and Wager, 2007;
Basten et al.,, 2011; Sylvester et al.,, 2012; Grupe and Nitschke,
2013; Manber Ball et al., 2013; Zilverstand et al., 2017; Via et al.,
2018). Enhancing the regulatory function of the PFC could
thus improve appropriate downregulation of stress-related
emotions.

In addition to targeting PFC functioning with pharmaco-
logical (see, e.g. Harmer et al., 2006; MacNamara et al., 2016)
and psychological treatments (see e.g. Browning et al.,, 2010;
Schweizer et al., 2013; Goldin et al., 2014; Carlisi and Robinson,
2018), non-invasive brain stimulation (NBS) may provide
another means to modulate stress reactivity. Two widely
used NBS techniques are repetitive transcranial magnetic
(r'TMS) and transcranial direct current stimulation (tDCS). With
rTMS, magnetic pulses are delivered to the scalp that can
increase or decrease neural excitability and shape synaptic
plasticity in the underlying cortical areas. An increase in neural
excitability is generally induced by high-frequency rTMS (pulse
frequency >5 Hz), whereas a decrease in neural excitability is
generally induced by low-frequency rTMS (pulse frequency 0.1-
1 Hz) (Huang et al., 2005; Fitzgerald et al., 2006; Dayan et al., 2013;
Wischnewski and Schutter, 2015; Cirillo et al., 2017). Theta burst
stimulation (TBS) is a specific form of rTMS using trains of three
50 Hz pulses repeated every 200 ms. When delivery of these
pulse trains is intermitted by 8-s pauses, neural excitability
generally increases, while neural excitability generally decreases
when the pulse trains are delivered continuously or prolonged
(Gamboa et al., 2010; Huang et al., 2005). To control for placebo
effects, active r'TMS is compared to sham rTMS, where the
rTMS coil is tilted or equipped with a magnetic shield to mimic
the clicking sounds and, to some extent, the peripheral skin
sensations without effective brain stimulation (Duecker and
Sack, 2015). With tDCS, a weak electrical current (1-2.5 mA) is
applied between two electrodes placed on the scalp that can
change cortical excitability in a polarity-dependent fashion
(Nitsche and Paulus, 2000). Anodal tDCS generally facilitates
neural excitability and plasticity, while cathodal tDCS generally
decreases neural excitability and plasticity (Liebetanz, 2002;
Dayan et al., 2013; Cirillo et al., 2017). Active tDCS is commonly
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Fig. 1. Example of simulated images of induced electric fields by an rTMS and
a tDCS montage (SimNIBS 2.1, Thielscher et al., 2015). Note the difference in
focality and magnitude of the electric fields induced by the two NBS techniques.
The depicted rTMS-induced field simulation is based on a pulse with a current
change of 40 A/ps, corresponding to 40% maximum stimulator output of a rapid
rate stimulator, from a figure-of-eight double 70 mm coil placed over the 10-
20 system electrode position F3 (left DLPFC). The depicted tDCS-induced field
simulation is based on a direct current with an intensity of 2.0 mA flowing
between a 5x7 cm anode and a 5x7 cm cathode, placed over electrode position
F3 (left DLPFC) and Fp2, respectively.

compared to sham tDCS, where the current is only ramped
up and down at the beginning of the stimulation to mimic
skin sensations without any effective stimulation of the brain
(Ambrus et al., 2012). When applied to the PFC, both rTMS and
tDCS effects also influence brain regions that are distal but
connected to the stimulated region, including contralateral
prefrontal areas and limbic regions such as the amygdala (Shafi
etal., 2012). To illustrate the rTMS- and tDCS-induced electric
field distributions over the cortical surface, Figure 1 depicts
simulated images based on two examples of NBS montages
that can be used for prefrontal NBS.

Some evidence for the effectivity of rTMS and tDCS in
modulating stress- and emotion-related processes comes from
NBS interventions that have been carried out in the area of
stress-related affective disorders. For example, applying rTMS
over the DLPFC can reduce symptoms of depression (Schutter,
2010; Berlim et al., 2013, 2014; Gaynes et al., 2014), PTSD (Boggio
et al., 2010; Berlim and Van den Eynde, 2014; Philip et al., 2016;
Ahmadizadeh and Rezaei, 2018; Kozel et al., 2018), and possibly
also generalized anxiety and panic disorder (Mantovani et al.,
2013; Diefenbach et al., 2016; Dilkov et al., 2017; Assaf et al., 2018;
Vicario et al., 2019). However, some studies showed no effects
(Prasko et al., 2007; Deppermann et al., 2014), and uncertainties
remain regarding the optimal rTMS settings, such as pulse
frequency (Yan etal, 2017) and target region (Ahmadizadeh
and Rezaei, 2018). Effects of tDCS on stress-related symptoms
have to date been investigated to a lesser extent than rTMS.
Nonetheless, there is evidence that anodal tDCS over the left
DLPFC reduces depressive symptoms (Shiozawa et al., 2014).
Moreover, two sham-controlled studies showed significantly
reduced PTSD symptoms after interventions with bilateral tDCS
over the DLPFC (Ahmadizadeh et al., 2019) or anodal tDCS over
the VMPFC during trauma exposure (van‘t Wout-Frank et al.,
2019). Further reports of tDCS effects on anxiety are summarized
by Vicario et al. (2019).

Although these effects of NBS interventions on stress-
related symptoms look promising, the evidence remains
inconclusive and leaves unclear how NBS is influencing stress-
and emotion-related processes. Therefore, NBS effects on



underlying biological and cognitive mechanisms of stress and
emotion have been further examined in many experimental
studies in healthy volunteers that investigate how acute stress-
related processes are affected directly after NBS. Such studies
showed, for example, that a single session of prefrontal NBS
does not directly change baseline mood in healthy individuals
(Remue et al., 2016a). On the other hand, some prefrontal NBS
methods, such as high-frequency rTMS and anodal tDCS to the
DLPFC, influence cognitive processes that support the regulation
of acute emotional stress reactions; applying these prefrontal
NBS methods in a single session already enhances working
memory performance (Preston et al., 2010; Brunoni et al., 2013;
Bagherzadeh et al., 2016), may adjust attentional bias to threat
(Zwanzger et al., 2009; Mondino et al., 2015) and can modulate
identification and retrieval of emotional information, response
inhibition and risky decision-making (Levasseur-Moreau and
Fecteau, 2012; Nitsche et al., 2012; Balconi, 2013; Kuo and Nitsche,
2015; Mondino et al., 2015; Bell and DeWall, 2018). Furthermore,
a recent meta-analysis showed that a single session of high-
frequency rTMS and, to a lesser extent, anodal tDCS to the
PFC attenuates activity of the autonomic nervous system
(Makovac et al., 2017), which plays an important role in the acute
physiological stress response.

Together, this suggests that prefrontal NBS could modulate
how one responds to stress. Several NBS studies on emotional
stress reactivity have already been performed, where NBS is
applied either directly before or during a stress manipulation.
Laboratory stress manipulations are typically used, such as
exposing participants to aversive visual material like arousing
pictures or movie clips with emotionally negative content.
Because aversive stimulus viewing paradigms use symbolic
representations of a stressor (e.g. pictures of mutilated bodies),
these paradigms can be considered passive stress inductions.
Other studies use psychosocial stress manipulations, such as
the Trier social stress test (TSST) (Kirschbaum et al., 1993) or
social exclusion in the Cyberball game (Williams et al., 2000).
Aversive physical or auditory stimuli can also be used to induce
stress, such as cold, heat or pain or electrical shocks and loud
noises in fear-conditioning paradigms. All these laboratory
stress manipulations increase feelings of unpleasantness and
arousal and elicit immediate stress responses at the level of the
sympathetic nervous system (Lang et al., 1993; Zadro et al., 2004;
Bernat et al., 2006; Lipp, 2006; van Stegeren et al., 2008; Boyes and
French, 2009; Gerdes et al., 2010; Sijtsema et al., 2011; Kelly et al.,
2012; Maruyama et al., 2012; Allen et al., 2014; Storm et al., 2019).
Stress responses at the level of the HPA axis can also be elicited,
particularly by psychosocial stressors (Allen et al., 2014; Helpman
et al., 2017), prolonged physical stressors (van Stegeren et al.,
2008), cognitive challenge stressors (Dickerson and Kemeny,
2004) and, to some extent, negative mood inductions ( Ottowitz
et al., 2004; Gadea et al., 2005; Root et al., 2009). Reactivity to these
stressors can be assessed on different facets. Next to behavioral
and physiological reactivity, the subjective experience of emo-
tions represents another aspect of the stress response (Denson
et al., 2009; Mauss and Robinson, 2009). Emotional experiences in
response to these stress manipulations are usually measured by
self-report on negative emotional state scales or questionnaires,
assessed during or directly after the stress manipulation.
Emotional reactivity can also be assessed by rating the perceived
emotional content of aversive stimuli used in the stress
manipulation (Lang et al., 1993). Such laboratory stressors and
emotional measurements provide a controlled environment to
assess the direct effects of NBS on subjective emotional stress
reactivity.

F. M. Smitsetal. | 25

Individual NBS studies on emotional reactivity may use
diverse NBS techniques, diverse stress manipulations and
diverse measurement methods. The findings across these
different studies could collectively demonstrate the immediate
effects of NBS on global emotional reactivity and thereby provide
insights into the usefulness of a single session of NBS in
modulating affective stress responses. Therefore, we assembled
all measurements of self-reported emotional responses to stress
after a single session of prefrontal NBS from previous studies.
This systematic review aims to provide an interim overview
and quantification of the effects of rTMS and tDCS studies with
healthy participants. Since effectiveness of rTMS and tDCS may
diverge (Brunoni and Vanderhasselt, 2014; Makovac et al., 2017)
and pulse frequency or current polarity may determine the
direction of effects, results of low- and high-frequency rTMS
and of anodal and cathodal tDCS were considered separately.
Where the sample size of studies in the analyses allowed, we
additionally examined the quantitative influence of targeted
hemisphere (left PFC vs right PFC) and type of stress (passive
stress induction, psychosocial stress or physical or auditory
stress).

Method
Literature search

The electronic databases MEDLINE, Web of Science Core Collec-
tion and Scopus were systematically searched for rTMS and tDCS
studies assessing self-reported emotional state in response to a
stress induction. We retrieved articles up to October 2019.

Our search contained the following terms: non-invasive brain/
cortical stimulation, transcranial brain stimulation, transcranial elec-
trical/direct current stimulation, repetitive transcranial magnetic stim-
ulation, theta burst stimulation, stress/stressor, threat, fear, anxiety/
anxious, emotion/emotional and aggression/aggressive. To concen-
trate on adult human studies, we added human, individuals, par-
ticipants, subjects, men, women, NOT child and NOT infant. Because
we focused on the PFC, we added prefrontal, frontal and PFC. The
exact search terms per database are provided in Supplementary
Material 1.

Literature review

The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) Statement (Moher et al., 2015) and Cochrane
Handbook (Higgins and Green, 2011) guided this quantitative
review. First, two authors (FS and EG) independently reviewed
titles and abstracts on suitability. Second, full text copies of the
remaining articles were evaluated for inclusion, and study refer-
ences were screened for further relevant articles. Discrepancies
in judgement of eligibility were resolved by consensus (FS, EG
and DS).

Eligibility criteria
Retrieved studies were selected if they fulfilled the following
criteria:

(i) The report is published in a peer-reviewed journal.

(ii) The study design includes a control condition. Eligible
control conditions are restricted to the commonly used
methods to apply sham stimulation as described in the
Introduction.

(iii) The study procedure includes a stress induction. A stress
induction was defined as any adverse or demanding
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condition that exposes participants to physical, psychoso-
cial, mental (cognitive) or emotional stress. Emotional stress
involves stimuli inducing negative stress-related emotions
such as fear, anxiety or anger. Studies with sadness-
inducing manipulations were also included because they
elicit responses that resemble other negative emotion
inductions (e.g. fear) in terms of amygdala reactivity (Phan
et al., 2002), sympathetic nervous system reactivity (Kreibig,
2010), HPA axis reactivity (Ottowitz et al., 2004; Gadea et al.,
2005) and feelings of unpleasantness and arousal (Kreibig
et al., 2007).

(iv) The study procedure includes the application of rTMS or
tDCS over the PFC, with the aim to modulate the outcome
measure.

(v) The study aims to test NBS effects on emotional responses
to a stress induction.

(vi) The study reports data of subjective negative emotional
state measured within the time frame of NBS (after)
effects, in response to the stress induction. This involves
all kinds of self-report measures of negative emotional
reactivity, including experienced negative emotions and
perceived emotional content of negative stimuli (i.e.
stimulus ratings). Stimulus ratings differ from ratings of
experienced emotions in terms of perspective or reference
(stimulus ratings are ‘world-focused’ while emotional
experience ratings are ‘self-focused’), but both ratings share
features of emotional reactivity (Lang et al., 1993; Quigley
et al., 2013).

(vii) The study participants are healthy adults (18-70 years of
age).

(viii) The study report is written in English.

Data extraction and processing

To evaluate the effect of prefrontal NBS on emotional reac-
tivity, we focused on outcomes of self-report scores of emo-
tional state questions or questionnaires. Of studies that reported
such emotional stress reactivity scores, we examined which NBS
methods were applied, which prefrontal region and hemisphere
was targeted, what type of stress was induced, which task or
context was used in the experiment, which state or trait factors
influenced the NBS effects, which NBS settings were applied
(pulse/current intensity and quantity, sham condition; tDCS,
location of reference electrode) and how and when the outcome
was measured.

For additional quantitative analyses, mean scores of emo-
tional reactivity and corresponding standard deviations for the
active NBS and sham conditions were extracted from each paper,
its Supplementary Materials or data provided by authors on
request. If these data were presented in graphs, we extracted
the numerical scores and corresponding standard deviations in
Plot Digitizer (plotdigitizer.sourceforge.net). The emotional state
scores assessed during or after NBS (final emotional state scores)
were used as the outcome variable in our analyses. If final
scores were not available, we used the change from baseline
scores instead (n =3), which theoretically addresses the same
underlying effect as the final scores in randomized controlled
studies (Higgins and Green, 2011). Higher scores corresponded
to stronger negative emotion in most studies. If a reversed
scale was used in the original study (i.e. higher scores corre-
sponded to weaker emotion), group mean values were trans-
formed to get in line with the other data by subtracting the
original group mean values from the maximum score of the
applied scale. Finally, Hedges’ g effect size (Hedges, 1981) was

calculated for each separate experiment or outcome with the
R package Metafor (Viechtbauer, 2012; R Core Team, 2019). The
correction for overestimating effect sizes in small study samples
was applied (Hedges and Olkin, 1985), resulting in a corrected
Hedges’ g (also known as Hedges’ d). Negative effect sizes fol-
lowing from these computations indicate that active NBS low-
ered negative emotional stress reactivity relative to the sham
condition.

We estimated the weighted mean effect sizes in separate
random effects models for studies using (i) high-frequency
rTMS and intermittent TBS protocols, (ii) low-frequency rTMS,
prolonged intermittent TBS and continuous TBS protocols, (iii)
anodal tDCS protocols, and (iv) cathodal tDCS protocols. The
majority of studies reported more than one experiment or
outcome of emotional reactivity. To be complete, we included all
emotional reactivity outcomes from each study. We controlled
for the dependence among effect sizes from the same study by
applying robust variance estimation (RVE) (Hedges et al., 2010;
Moeyaert et al., 2017) using the R package Robumeta (Fisher and
Tipton, 2015), Metafor (Viechtbauer, 2012) and ClubSandwich
(Pustejovsky, 2018). With RVE, a covariance matrix is estimated
for correlated effects. Weighted mean effect sizes were also
corrected for small samples of studies (Tipton, 2015). Second, we
investigated if target hemisphere (left PFC vs right PFC) and type
of stress induction (passive stress induction vs psychosocial
stress us aversive physical or auditory stress) influenced the
effect of prefrontal NBS on emotional reactivity by adding these
factors as categorical moderators to the model. The target
hemisphere for tDCS was defined as the hemisphere that was
the intended target of the original study, or, in case of a bipolar
electrode montage, the hemisphere that was targeted by the
anodal electrode. Moderator analyses were only carried out if
each subgroup in the analysis contained data from at least four
different studies.

Quality and risk of bias assessment

Methodological quality of each study was scored based on
adequate reporting, external and internal validity and possible
confounders, according to the study quality assessment tool
for interventions in health care (Downs and Black, 1998).
Additionally, risk of bias in the method and concealment of
group allocation, blinding, selective outcome reporting and other
sources of potential bias (e.g. conflicts of interest) were assessed
according to the tool of Hartling etal. (2012). We assessed
risk of publication bias by visually inspecting asymmetry
in funnel plots of effect sizes against their standard errors
for samples with at least 10 different studies. Funnel plot
asymmetry was also formally tested by an Egger’s regression
test.

Results

The systematic literature search yielded 419 studies (Figure 2).
We added 10 studies identified from the references of the
retrieved articles. After removing duplicate research, the titles
and abstracts of 424 studies were screened for eligibility. Of
these, 125 potentially relevant articles were selected for full
text evaluation, including 50 studies that fulfilled the eligibility
criteria. This final set contained 40 (80%) studies that reported
or provided on request the numerical data of emotional state
measures or emotional stimulus ratings, including 118 separate
outcomes.
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Fig. 2. PRISMA flow diagram.

Study characteristics

All included studies were performed in healthy young individ-
uals who were free from current psychiatric or neurological
conditions. The majority of studies used mixed gender samples,
except for seven exclusively female study samples and four
exclusively male study samples. Other study details can be found
in Tables 1 and 2. All stimulation-related changes in emotional
stress reactivity discussed below are described in comparison
with results from sham conditions.

rTMS

High-frequency rTMS and intermittent TBS. We identified 5 high-
frequency rTMS studies and 2 intermittent TBS studies that
reported in total 12 different outcomes on emotional stress reac-
tivity. The majority of these studies focused on the DLPFC. Two
studies found no effect of 20 Hz rTMS or intermittent TBS over
the left DLPFC on emotional responses to psychosocial stress
(Baeken et al., 2014; De Witte et al., 2020), and two other studies
found no effect of 10 Hz rTMS over the right DLPFC on ratings of
perceived emotional content (Berger et al., 2017) or experienced
negative emotion (Jansen et al., 2019) in response to aversive
pictures. Two studies did find a significant effect of NBS over the
DLPFC on emotional stress reactivity. Notzon et al. (2018), who
targeted the right DLPFC, found a decrease in perceived negative
valence and arousal of fearful face pictures after intermittent
TBS. Mobius et al. (2017), who instead targeted the left DLPFC,
found an increase in experienced sadness after watching sad
movie clips following 10 Hz rTMS. Please note that, different
from the other stress manipulations, this stress manipulation
is limited to inducing sadness. The VMPFC was targeted in
one study with 10 Hz rTMS (Guhn et al., 2014) which effectively
reduced emotional responses to fear-conditioned stimuli during
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extinction learning. For further details on stimulation param-
eters, type of stress and experimental context of each study
(Table 1).

The data from this sample of studies (k =7, n =251) showed
moderate heterogeneity (I =49.0%), and the summary analysis
estimated a weighted mean effect of g=—-0.06, Clgsy, =[—0.35,
0.24], P =0.70. Based on these few studies, this analysis showed
no significant main effect, and the low statistical power pre-
vented further analysis of potential moderators.

Low-frequency rTMS, prolonged intermittent TBS and continuous
TBS. We identified 4 low-frequency rTMS studies, 1 continuous
TBS study and 1 prolonged intermittent TBS study that reported
in total 14 different outcomes on emotional stress reactivity.
All these studies focused on the DLPFC (see Table 1 for further
study details). Three of the low-frequency rTMS studies targeting
the right or left DLPFC found no effect on perceived emotional
content of negative pictures or on biologically induced panic
(Zwanzger et al., 2007, 2014; Berger et al., 2017). The fourth low-
frequency rTMS study (Fitzgibbon et al., 2017) also showed no
group-level differences, but did find a link between a higher
aversive impact of social exclusion in the Cyberball game and
higher trait personal distress after active 1 Hz rTMS to the left
DLPFC, but not after sham rTMS. The authors interpret this
finding in terms of brain-state dependency of rTMS effects; rTMS
may have amplified emotional reactivity only in those who are
more sensitive to interpersonal stress.

Of the two studies using continuous or prolonged intermit-
tent TBS, Hurlemann et al. (2015) found no effects of left DLPFC or
left DMPFC stimulation on perceived emotional content of neg-
ative stimuli, while Keuper et al. (2018) showed that participants
perceived negative pictures as less negative and less arousing
after continuous TBS to the right DLPFC.

Together, the data from these studies (k =6, n =207) showed
low heterogeneity (12 = 14.3%). The summary analysis estimated
a weighted mean effect of g = —0.13, (Close, =[—0.42,0.16], P =0.39).
Also here, the low number of studies in this sample did not allow
further moderator analyses.

tDCS

Anodal tDCS. We identified 26 anodal tDCS studies that reported
in total 79 different outcomes on emotional stress reactivity
(see Table 2 for study details). Of the studies focusing on the
DLPFC, six studies targeting the left DLPFC (Brunoni et al., 2013;
Vierheilig et al., 2016; Baeken et al., 2018; Deldar et al., 2018; Voss
et al., 2019) or right DLPFC (Brunoni et al., 2013; Bogdanov and
Schwabe, 2016; Vierheilig et al., 2016) found no tDCS effects on
emotional stress reactivity. This number includes the study of
Baeken et al. (2018) who additionally reported no relationship
between a measure of psychosocial stress sensitivity and psy-
chosocial stress reactivity on the level of emotional experience
(Dedoncker et al., 2019). In contrast, six other studies targeting
the left DLPFC (Boggio etal., 2009; Pefia-Gémez etal., 2011,
Maeoka et al., 2012; Régo et al., 2015; Carnevali et al., 2019) or
right DLPFC (Régo et al., 2015) did find a significant decline in
emotional stress reactivity after tDCS or at least in a subset of
emotional outcomes (Plewnia et al., 2015). Hence, in half of the
studies targeting the DLPFC, anodal tDCS lowered emotional
stress reactivity, while the other half of the studies showed no
significant effects on similar outcomes. Focusing on the VLPFC,
one study found no effect of anodal tDCS to the right VLPFC on
emotional responses to threat of shock (Herrmann et al., 2018),
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Stress

Study N Target area & 3 Outcome g [CI95%]
(active sham) induciion
Boggio, 2009 23 left DLPFC —a—— Passive Discomfort -0.37[-1.53, 0.80]
Boggio, 2009 23 left DLPFC | | Passive Valence -0.36[-1.53, 0.81]
Pefia-Gomez, 2011 16 left DLPFC —a— Passive Valence -0.48[-1.40, 0.44]
Maeoka, 2012 15 left DLPFC —a— Passive Valence -0.68[~1.64, 0.27]
Brunoni, 2013 20 left DLPFC —— Passive Mood 0.33[-1.37, 2.03]
Brunoni, 2013 20 left DLPFC —— Passive Anxiety 0.25[-1.45, 1.96]
Brunoni, 2013 20 right DLPFC . Passive Mood 0.11[-1.59, 1.81]
Brunoni, 2013 20 right DLPFC | | Passive Anxiety 0.23 [-1.47, 1.93]
Feeser, 2014 2121 right DLPFC ] Passive Arousal — downregulate -1.48[-2.97, 0.02]
Feeser, 2014 2121 right DLPFC — Passive Arousal — maintain -0.70 [-2.19, 0.79]
Feeser, 2014 2121 right DLPFC e Passive Depressed mood -0.25[-1.74, 1.24]
Régo, 2015 8 8 left DLPFC  F | Passive Hostile -2.15[-5.65, 1.36]
Régo, 2015 8 left DLPFC k d Passive Sadness —1.74[-5.24, 1.77]
Régo, 2015 8 8 left DLPFC . - { Passive Arousal -0.01[-3.51, 3.50]
Régo, 2015 8 8 left DLPFC k - i Passive Valence 0.08[-3.43, 3.58]
Régo, 2015 8 8 right DLPFC | { Passive Hostile -2.00 [-5.51, 1.51]
Régo, 2015 8 8 right DLPFC I | Passive Sadness -1.39[-4.90, 2.12]
Régo, 2015 8 8 right DLPFC ; = { Passive Arousal -1.14 [-4.64, 2.37]
Régo, 2015 8 8 right DLPFC ; - ! Passive Valence -1.12[-4.63, 2.39]
Vierheilig, 2016 18 18 left DLPFC —— Passive Arousal -0.20[-1.97, 1.56]
Vierheilig, 2016 18 18 left DLPFC . Passive Negative affect -0.23[-2.00, 1.54]
Vierheilig, 2016 16 18 right DLPFC —a— Passive Arousal -0.56 [-2.32, 1.21]
Vierheilig, 2016 16 18 right DLPFC A Passive Negative affect -0.13 [-1.90, 1.63]
Vierheilig, 2016 25 23 left DLPFC —a—— Passive Anxiety -0.35[-1.16, 0.46]
Vierheilig, 2016 40 40 left DLPFC —a— Passive Negative mood 0.02[-1.01, 1.05]
Voss, 2018 40 40 left DLPFC —a— Passive Arousal 0.39[-0.64, 1.42]
Voss, 2018 3030 left DLPFC t - 1 Passive Valence — downregulate -0.14[-3.23, 2.96]
Voss, 2018 3030 left DLPFC F - | Passive Arousal — downregulate 0.02([-3.07, 3.12]
Marques, 2018 3030 right DLPFC t 1 Passive Valence — downregulate -0.10[-3.20, 3.00]
Marques, 2018 3030 right DLPFC ; = { Passive Arousal - downregulate 0.05[-3.05, 3.15]
Marques, 2018 30 30 left DLPFC k - { Passive Valence — maintain 0.10[-3.00, 3.20]
Marques, 2018 30 30 left DLPFC b & { Passive Arousal - maintain 0.05[-3.04, 3.15]
Marques, 2018 30 30 right DLPFC ; : { Passive Valence — maintain 0.11[-2.99, 3.20]
Marques, 2018 3030 right DLPFC F L i Passive Arousal — maintain 0.09 [-3.01, 3.19]
He, 2018 2321 right VLPFC | e e | Passive  Negative emotions — downregulate  -0.41[-2.09, 1.28]
He, 2018 20 20 right VLPFC e Passive  Negative emotions — downregulate  —0.70 [-2.39, 0.99]
He, 2018 23 21 right VLPFC P Passive Negative emotions — maintain 0.15[-1.53, 1.84]
He, 2018 20 20 right VLPFC . Passive Negative emotions — maintain 0.13 [-1.56, 1.81]
Marques, 2018 29 30 left VLPFC F i Passive Valence — downregulate -0.51 [-3.60, 2.59]
Marques, 2018 3030 left VLPFC F { Passive Arousal — downregulate 0.18[-2.91, 3.28]
Marques, 2018 29 30 right VLPFC t & { Passive Valence — downregulate 0.40 [-2.70, 3.50]
Marques, 2018 30 30 right VLPFC F L i Passive Arousal — downregulate -0.07 [-3.17, 3.08]
Marques, 2018 29 30 left VLPFC L - i Passive Valence — maintain -0.67 [-3.77, 2.43]
Marques, 2018 30 30 left VLPFC ; - L 1 Passive Arousal — maintain 1.04[-2.05, 4.14]
Marques, 2018 29 30 right VLPFC F - L { Passive Valence — maintain 1.833[-1.77, 4.43]
Marques, 2018 3030 right VLPFC ; Ly i Passive Arousal — mainrain -0.12[-3.22, 2.98]
Vergallito, 2018 49 47 right VLPFC —a— Passive Anger -0.02[-1.59, 1.56]
Vergallito, 2018 49 47 right VLPFC [ | Passive Anxiety -0.12[-1.69, 1.45]
Vergallito, 2018 49 47 right VLPFC —a— Passive Sadness -0.11[-1.69, 1.46]
Vergallito, 2018 49 47 right VLPFC —. Passive Fear -0.12[-1.69, 1.46]
Vergallito, 2018 49 47 right VLPFC —. Passive Disgust -0.02 [-1.59, 1.56]
Koenigs, 2009 21 VMPFC —a— Passive Anger -0.02[-1.34, 1.30]
Koenigs, 2009 21 VMPFC —— Passive Depression 0.16[-1.16, 1.48]
Wu, 2018 21 VMPFC —— Passive Arousal 0.00[-1.82, 1.32]
Abend, 2018 16 VMPFC —— Passive Emotional intensity -0.14 [-1.42, 1.15]
Abend, 2018 16 VMPFC —a— Passive Anxiety -0.30[-1.58, 0.98]
Hortensius, 2012 20 19 right DLPFC A Psychosocial Anger -0.16 [-1.36, 1.05]
Hortensius, 2012 21 19 left DLPFC —a— Psychosocial Anger -0.02[-1.22, 1.19]
Riva, 2012 1919 right VLPFC —a— Psychosocial Unpleasantness -0.94 [-1.83, -0.06]
Plewnia, 2015 14 14 left DLPFC - Psychosocial Negative affect -0.34 [-1.28, 0.60]
Bogdanov, 2016 20 20 right DLPFC — Psychosocial Depressed mood 0.25[-0.60, 1.10]
Baeken, 2018 28 left DLPFC —a— Psychosocial Anger 0.16 [-0.95, 1.27]
Baeken, 2018 28 left DLPFC —a— Psychosocial Depression 0.18[-0.93, 1.28]
Antal, 2014 20 20 right VMPFC —a— Psychosocial Anxiety -0.48 [-1.34, 0.37]
Kelley, 2015 14 16 left DLPFC ——a— Psychosocial Jealousy 0.65[-0.65, 1.96]
Kelley, 2015 1516 right DLPFC —a— Psychosocial Jealousy 0.08[-1.22, 1.39]
Carnevali, 2019 1515 left DLPFC . Psychosocial Anxiety -0.76 [-1.70, 0.18]
Deldar, 2018 20 left DLPFC —— Physical  Anxiety — during cognitive task 0.09[-1.12, 1.29]
Deldar, 2018 20 left DLPFC — . Physical Anxiety — no task 0.31[-0.89, 1.52]
Baeken, 2018 3149 right VLPFC —_—. Physical Anxiety -0.10 [-1.74, 1.54]
Baeken, 2018 3149 right VLPFC —— Physical Negative affect -0.23 [-1.87, 1.41]
Baeken, 2018 3149 right VLPFC | — —— Physical Valence -0.07 [-1.71, 1.57]
Baeken, 2018 3149 right VLPFC ——— Physical Arousal -0.12[-1.76, 1.52]
Baeken, 2018 3149 right VLPFC —_—— Physical Anxiety -0.01[-1.65, 1.63]
Abend, 2016 1514 VMPFC ——a— Physical Fear 0.55[-0.40, 1.49]
Dittert, 2018 40 27 right VMPFC P Physical Negative affect 0.24 [-1.29, 1.77]
Dittert, 2018 40 27 right VMPFC —_—— Physical Anxiety 0.23 [-1.30, 1.76]
Dittert, 2018 3726 left VMPFC —— Physical Negative affect -0.38[-1.90, 1.15]
Herrmann, 2018 37 26 left VMPFC —a— Physical Anxiety -0.44[-1.97, 1.09]
RE Model & -0.16 [-0.33, 0.00]

-6 -4 -2 0
Observed Outcome

Fig. 3. Forest plot of the separate outcomes of anodal tDCS studies. The figure additionally depicts for each study the sample sizes of active tDCS and sham tDCS
conditions (sham sample size is left blank for crossover studies), the target area for anodal stimulation, the type of stress induction in the experiment and the outcome

measure.

while two studies of anodal tDCS to the same region found
significantly weaker negative emotional experience in response
to psychosocial stress or aversive pictures (Riva et al., 2012;
Vergallito et al., 2018). The VMPFC was targeted in three studies,
of which two showed no tDCS effects on experienced emotions
after psychosocial stress or watching aversive pictures (Koenigs
et al., 2009; Antal et al., 2014). The third study did find support for
tDCS being able to significantly reduce emotional experience in

response to aversive pictures (Abend et al., 2018). Furthermore, a
number of studies found interesting indirect anodal tDCS effects
on emotional reactivity. Three studies showed that anodal tDCS
only reduced emotional reactivity when participants actively
downregulated their emotions, but not when participants main-
tained their natural emotional responses (Feeser et al., 2014; He
et al., 2018; Marques et al., 2018). The first two studies showed
these effects after placing the anode over the right DLFPC or



right VLPFC (Feeser et al., 2014; He et al., 2018), but the third
study (Marques et al., 2018) only found significant effects after
anodal stimulation of the left VLPFC with the cathode placed
on the contralateral VLPFC, but not with the reversed montage
or when the bilateral montage was placed over the DLPFC. In
addition, Chen etal. (2017) showed that anodal tDCS to the
left DLPFC reduced attention bias towards threat videos, which
was, in turn, associated with less emotional reactivity to these
videos.

With regard to location of the reference electrode, the above
described studies did not show a clear influence of cathode
location on the effect of anodal stimulation (see Table 2 for
cathode locations per study). Yet, a number of studies do show
different effects of tDCS with different montages. For example,
Dittert et al. (2018) found that bilateral VMPFC stimulation with
the anode over the left VMPFC, but not the reversed mon-
tage, enhanced fear extinction learning, i.e. reduced fear for the
conditioned stimulus when the unconditioned threat stimulus
(aversive loud scream) was no longer presented. In contrast,
Abend et al. (2016), who stimulated the VMPFC by placing the
anode over the forehead and the cathode on the back of the head,
found that tDCS inhibited fear extinction learning. Hortensius
et al. (2012), who found no group-level differences in anger after
negative social feedback, showed that a correlation between
increased anger and more aggressive behavioral responses only
appeared after bilateral DLPFC stimulation with the anode over
the left DLPFC, but not after stimulation with the reversed mon-
tage. Similarly, Kelley et al. (2015) found that bilateral DLPFC
stimulation with the anode over the left DLPFC, but not with
the anode over the right DLPFC, increased jealousy after social
exclusion in the Cyberball game.

Together, the data from these studies (k =26, n = 1284) showed
moderate heterogeneity (I*> =48.59%). The full random effects
model showed a statistically significant weighted mean effect
size of g = —0.16, Clgsy, =[—0.33,0.00], P =0.05 (Figure 3), indicating
that anodal tDCS lowers emotional stress reactivity compared to
sham tDCS. This effect was not significantly moderated by type
of stress (Q(3)=5.56, P =0.14). The moderation of the effect by
target hemisphere approached significance (Q(2) =4.95, P =0.08).
Follow-up analyses showed a very small numerical difference
between left- and right-sided effect sizes. Separate effects of
left- and right-sided prefrontal tDCS were not statistically sig-
nificant (right PFC: g =—0.23, Clese, =[—0.48, 0.03], P =0.08); left
PFC: g =—0.17, Clgsy, =[—0.41, 0.07], P =0.16). The funnel plot
of all anodal tDCS effects together did not show significant
asymmetry (see Figure 4, Egger’s regression test: t(77)=-0.02,
P =0.99).

Cathodal tDCS. We identified 7 cathodal tDCS studies that
reported in total 13 different outcomes on emotional stress
reactivity. Six of these studies found no effect on emotional
reactivity to negative pictures or videos or to psychosocial stress
after cathodal tDCS applied over the left or right DLPFC, the
right VLPFC or the VMPFC (see Table 2 for other experimental
settings) (Koenigs et al., 2009; Pena-Gémez et al., 2011; Antal
etal., 2014; Bogdanov and Schwabe, 2016; Ganho-Avila et al.,
2019; Voss etal.,, 2019). Only Riva etal. (2015), who applied
cathodal tDCS over the right VLPFC and placed the anode
over the contralateral orbitofrontal area, showed a significant
amplification of emotional reactivity to social exclusion in a
Cyberball game, which was not found when the cathode was
placed over the parietal cortex.
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Fig. 4. Funnel plot of anodal tDCS studies. Note: because two studies reported
many separate outcomes (Marques et al., 2018; Régo et al., 2015), the standard
errors of their effects were increased by the RVE correction. These effects
therefore appear at the bottom of the plot.
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Fig. 5. Methodological quality and risk of bias of the included studies.

Together, the data from these studies (k =7, n =271) showed
moderate heterogeneity (I =43.9%), and the summary analysis
estimated a mean effect of g = —0.02, Clgsy, = [—0.22,0.28], P =0.90.
As with the rTMS analyses, the low number of studies in this
sample did not allow further quantitative analyses.

Quality and risk of bias

Figure 5 presents a graphical overview of methodological quality
and risk of bias in the included studies. A common method-
ological weakness was incomplete reporting of experimental
methods or results. Risk of bias in the included studies was
strongest with regard to blinding: whether study personnel were
blind to stimulation condition was often unclear, especially in
rTMS studies where blinding procedures are more challenging
than for tDCS. Additionally, although participants were typically
randomized to conditions, many studies did not specify how
the randomization sequence was generated, how groups were
matched and if group allocation was concealed for study per-
sonnel, leaving it unclear if these studies dealt adequately with
group-related confounders.
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Discussion

Ongoing research efforts are dedicated to establish and under-
stand NBS effects on stress-related processes. Experimental evi-
dence is often derived from direct effects of single NBS ses-
sions on acute stress. However, it has not been systematically
analyzed if and how single sessions of prefrontal NBS affect
stress reactivity on the level of subjective emotion in a normal-
functioning stress system. We therefore systematically reviewed
and quantified the immediate effects of prefrontal NBS on emo-
tional stress reactivity in 40 sham-controlled healthy participant
single-session NBS studies, including 12 rTMS studies and 28
tDCS studies.

The data from these studies show that the effects of a single
session of prefrontal NBS may not be strong and stable enough to
induce clinically relevant effects on emotional stress reactivity in
all healthy individuals. On the other hand, some methods show
promising effects that are worth further investigation. Acute
effects of rTMS on emotional reactivity were investigated by rel-
atively few studies, which showed effects in different directions.
Acute effects of tDCS were more widely investigated, and quan-
titative results showed that applying anodal tDCS over the PFC
overall slightly reduced negative stress-related emotions. How-
ever, effectivity of anodal tDCS varied between studies. Follow-
up analyses suggested that the overall effect of anodal tDCS did
not significantly depend on targeted hemisphere (left or right
PFC) or on the type of stress that was induced (passive stress
induction, psychosocial stress or aversive physical or auditory
events). Several findings do suggest dependence of NBS effec-
tivity on a number of other experimental and personal factors,
including the NBS settings and the participant’s psychological
state.

In another review on prefrontal NBS, Remue et al. (2016a)
concluded that a single session of prefrontal NBS does not
affect mood. The present results, however, give an indication
that a single session of prefrontal NBS may be able to modulate
negative emotional state in response to stress, at least when
using anodal tDCS. This suggests that prefrontal NBS could affect
the emotional response to a threat or challenge rather than
affecting emotional state by itself. Hence, prefrontal NBS may
modify processes that are involved in changing the emotional
state, rather than directly affecting ‘static’ emotional experience.
Prefrontal NBS effects on emotional reactivity could be a result
of effects on processes involved in emotion regulation. This is
supported by a number of studies showing that anodal tDCS
over the PFC mainly facilitates the cognitive modulation of
emotions. For example, when participants were instructed
to up- or downregulate emotional experience, anodal tDCS
enhanced or reduced emotional reactions specifically in the
instructed direction (Feeser et al., 2014; He et al., 2018; Marques
et al., 2018). In addition, tDCS may primarily affect attentional
processes associated with the emotional experience (Chen et al.,
2017). Such results fit in with the previously proposed idea that
prefrontal NBS modulates affective symptoms by improving
the ability to self-regulate emotions through enhanced working
memory and other cognitive control processes (Schmeichel
et al., 2008; Downar et al., 2016; Lantrip et al., 2017). However,
this NBS effect on emotion regulation is not always found in
single-session NBS studies (see, e.g. the study of Jansen et al.,
2019). Conclusions about the effect of NBS on emotion regulation
are beyond the scope of the present results, and this hypothesis
should be further tested in future studies.

Of the NBS techniques considered in the present article,
rTMS and tDCS, it is relatively unexpected that rTMS shows the

most uncertain effects. rTMS and tDCS differ in their primary
neurophysiological effects, focality and other factors (Dayan
et al., 2013; Valero-Cabré et al., 2017). Clinical effects in affective
disorders such as depression are more established for rTMS
(Schutter, 2010; Berlim et al., 2013) than for tDCS (Shiozawa et al.,
2014), and effects on physiological stress reactivity are higher for
prefrontal rTMS than for prefrontal tDCS (Makovac et al., 2017).
However, fewer rTMS studies than tDCS studies on emotional
stress reactivity were available for the present analyses. Many
single-session rTMS studies were not eligible for the current
analyses because no experimental stress induction was applied
or because emotions were not measured within the time frame
of acute rTMS effects. Of the rTMS studies that did measure emo-
tional reactivity, some findings suggest that the acute outcome
of r'TMS depends on task instructions, rTMS settings or psycho-
logical state (Fitzgibbon et al., 2017; Mobius et al., 2017; Notzon
et al., 2018). Other rTMS studies did not report any significant
effects of a single rTMS session. Lack of acute rTMS effects on
emotional reactivity may also be related to timing; tDCS studies
often induced the stress or measured the emotional outcome
during stimulation, whereas in rTMS studies these procedures
usually take place after the stimulation is finished. Moreover,
although the research objectives overlapped among the rTMS
studies, the number of studies that used the same rTMS methods
was limited. The heterogeneity in applied rTMS methods raises
an issue concerning the aggregation of their results. The present
results should therefore be considered as work in progress and
indicative for the dependence of rTMS effects on various tech-
nical, contextual and task-related factors. The influence of such
factors should be further investigated before drawing definitive
conclusions about the overall effectiveness of rTMS in modulat-
ing emotional stress reactivity. On the other hand, the present
results also suggest that anodal tDCS might complement rTMS
as a technique to modulate stress-related processes. If rTMS
and tDCS would eventually yield comparable results in clinical
applications, tDCS might be preferred over rTMS for its easier
use, portability and lower costs (Priori et al., 2009; Valero-Cabré
et al., 2017).

The evidence for cathodal tDCS effects on subjective stress-
related emotions is sparse. Perhaps, cathodal tDCS has low effec-
tivity in general. Little support for significant effects of cathodal
tDCS is in line with previous findings of tDCS effects on neural
excitability (Lafon et al., 2017) and on cognitive functions (Jacob-
son et al., 2012). Yet, cathodal tDCS may affect neural excitability
and plasticity in opposing ways depending on current intensity
and stimulation time (Mosayebi Samani et al., 2019). To provide
clearer insight in cathodal tDCS, it could be interesting to inves-
tigate how these stimulation settings may moderate stimulation
effects on emotion- and stress-related processes.

With regard to the optimal target hemisphere for prefrontal
NBS, previous research showed that left-sided and right-sided
PFC stimulation can have different effects on brain networks
involved in emotion regulation and emotional state (Schutter
et al.,, 2001; Jansen et al., 2017), but our results did not demon-
strate a clear influence of target hemisphere (left PFC vs right
PFC) on NBS effects at the level of emotional stress reactivity.
This is somewhat surprising, since NBS should modulate neural
activity primarily in the target hemisphere, and the data in this
review were restricted to negative emotional states that have
been associated with asymmetric prefrontal activation. Negative
and predominantly withdrawal-related emotions, such as fear,
nervousness and sadness, are associated with greater right-
than left-sided PFC activity (Davidson, 1992; Wheeler et al., 2007;
Goodman et al., 2013; Berkman et al., 2014; Harmon-Jones and



Gable, 2018). In addition, greater right-sided PFC activity has
been linked to stronger physiological reactivity to stress (Sulli-
van and Gratton, 2002; Koslov et al., 2011; Goodman et al., 2013;
Quaedflieg et al., 2015; Zhang et al., 2018), anxiety and depres-
sion (Thibodeau et al., 2006; Eidelman-Rothman et al., 2016; Har-
mon-jones and Gable, 2018). Greater left-sided PFC activity, on
the other hand, is linked to stronger approach-related emo-
tional reactions such as enthusiasm (Carletti et al., 2009; Koslov
et al., 2011; Harmon-Jones and Gable, 2018), weaker physiological
reactivity to stress (Goodman et al., 2013) and reduced emo-
tional reactivity to PTSD symptom provocation (Meyer et al.,
2018). However, greater relative left-sided PFC activity has also
been associated with stronger feelings of anger and stronger
aggressive responses to stress (Verona et al., 2009; Hofman and
Schutter, 2012; Harmon-Jones and Gable, 2018). In line with
this latter effect of left-sided prefrontal dominance, the tDCS
studies of Hortensius et al. (2012) and Kelley et al. (2015) report
increased approach-related emotional reactivity (measured as
feelings of anger and jealousy) specifically after applying anodal
tDCS to the left PFC and cathodal tDCS to the right DLPFC, but
not when the electrode montage was reversed. However, our
quantitative results overall do not provide evidence supporting
the acute influence of tDCS or rTMS on frontal asymmetry
effects on global emotional stress reactivity. The optimal choice
of target hemisphere for NBS protocols to modulate emotional
processes may depend on other stimulation-related factors such
as pulse frequency or current polarity (see also the discussion in
Vicario et al., 2019). Regarding specific PFC targets, the overview
of included studies on emotional reactivity does not show a
clear difference between effectivity of NBS over different PFC
target regions, and the limited amount of data available per PFC
target region prevented meaningful comparisons between target
regions. Moreover, when aggregating across studies, the regional
specificity of NBS can be low because different localizing meth-
ods to target a specific region are used, the electrical field
distribution is influenced by individual anatomy, and, especially
in case of tDCS, the induced electrical field is not very focal and
depends on the electrode montage. Therefore, in the absence of
simulations or other measurements of the peak location of the
electrical field, we considered it more appropriate to collapse
the outcomes from NBS studies targeting various PFC regions.
However, targeting different PFC regions may affect different
processes and thereby have different effects on stress responses
and emotions. To determine the optimal target site for NBS
effects on stress- and emotion-related outcomes, more specific
comparisons between NBS target regions based on electrical
field distributions are needed.

We also considered differences between NBS effects on
emotional reactivity across three types of stress: passive stress
inductions, psychosocial stress and aversive physical or auditory
stress. Different types of stress can differently activate stress
systems and differently affect stress regulation strategies
(Hancock etal., 2007; Bali and Jaggi, 2015; Lea etal., 2019).
However, both rTMS and tDCS studies did not demonstrate
systematic different effects on emotional reactivity across
types of stress. It could be that the influence of prefrontal NBS
on emotional reactivity is independent of stressor category
because some (medial) PFC regions are involved in general
emotion regulation across different types of stress (Diekhof
etal., 2011). Alternatively, the variability in NBS effects on
emotional reactivity may not depend on stress sources but
on additional features of the stressor that partly determine
stress response patterns. These include the unpredictability and
uncontrollability of the stressor (Dickerson and Kemeny, 2004;
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Bali and Jaggi, 2015) and cognitive appraisals about the stressor
(Denson et al., 2009). Additionally, the type of emotion induced by
the stressor makes a difference; stress responses associated with
different types of negative emotions, like fear and sadness, show
resemblance but also differ in intensity and specific activation
patterns, such as shown for amygdala activation, sympathetic
nervous system activations and feelings of pleasantness and
arousal (Phan etal., 2002; Kreibig et al., 2007; Kreibig, 2010).
Some included emotional outcomes reported in the studies
may also be relatively specific to the stress manipulation. It
could be difficult to generalize such outcomes to emotional
stress reactivity in other situations or to stress-related clinical
symptoms. For example, NBS effects on anger after psychosocial
stress may say more about potential NBS effects on symptoms
of interpersonal distress than on symptoms of panic. However,
more research on this topic is needed to be able to zoom in
on NBS effects on emotion- or stressor-specific processes. This
review combines outcomes of different stress manipulations
to give an indication of NBS effects on global emotional
reactivity.

Our findings show preliminary evidence that prefrontal
NBS, at least with anodal tDCS, lowers acute emotional stress
reactivity. This motivates further research in the direction of
using prefrontal NBS in enhancing resilience to acute effects of
stress. Such protective effects of anodal tDCS have already been
shown for acute stress interference on cognitive performance
(Plewnia etal.,, 2015; Bogdanov and Schwabe, 2016). If the
efficacy of anodal tDCS on emotional reactivity would be further
developed, it may be used to attenuate the tendency to strongly
react with negative emotions to daily stressors (Charles et al.,
2013) and thereby reduce daily negative affect and the risk on
anxiety, chronic stress complaints and PTSD (Steinhardt and
Dolbier, 2008; Chiesa and Serretti, 2009; Galatzer-Levy et al.,
2013). Finally, although speculative, specifically targeting the PFC
might improve resilience to the detrimental results of early-life
adversity or life stress on PFC structure and function (Arnsten,
2009; Fisher et al., 2016).

However, beside acute emotional stress reactions, a second
important feature is the ‘shutoff or recovery of the stress
response once a threat has passed (McEwen, 1998). Future NBS
research should therefore continue measuring emotion for a
prolonged time after the stress induction, to provide more
insight in NBS effects in different stages of the emotional stress
response, including the recovery of emotional stress responses.

Moreover, the presently estimated effect size of single NBS
sessions in a non-clinical population is small (Cohen, 1988).
An effect size of small magnitude in healthy samples agrees
with NBS effects on working memory and autonomic nervous
system functioning (Brunoni and Vanderhasselt, 2014; Makovac
et al., 2017). This may be due to a ceiling effect of NBS outcomes
when performance on a function is already sufficient (Mottaghy
et al., 2003; Furuya et al., 2014; Benwell et al., 2015; McConathey
et al., 2017). Also, because prefrontal NBS effects show intrain-
dividual variability as well as interindividual variability, NBS
may not always affect emotional reactivity in the same man-
ner in all individuals; factors that could influence the strength
and direction of NBS effects on PFC-related processes include
baseline neural activity (Antal et al., 2007; Fertonani et al., 2014),
stress sensitivity (Pefia-Gémez et al., 2011, Fitzgibbon et al., 2017),
fatigue, task motivation and gender (Hurley and Machado, 2018).
The different NBS methods, participants and experimental con-
texts that were used in the included studies could therefore have
induced heterogeneous effects on emotional reactivity, which
may diminish the summary effect.



40 | Social Cognitive and Affective Neuroscience, 2020, Vol. 15, No. 1

Still, across studies, the present findings show a weak effect
of a single tDCS session on acute emotion stress reactivity.
This effect stimulates to further investigate how the effective-
ness of prefrontal tDCS, or NBS in general, can be augmented
in order to establish clinically significant effects on emotional
stress reactivity. The first and perhaps most obvious way to
augment effectiveness is by giving a sequence of multiple stimu-
lation sessions instead of relying on single stimulation sessions.
Sequences of multiple stimulation sessions augment NBS effects
on neurophysiology (Maeda et al., 2000; Baumer et al., 2003; Pell
etal., 2011; Monte-Silva et al., 2013; Bergmann et al., 2016) as
well as on behavior, including effects on working memory (Hill
et al., 2016) and cognitive control (Elmasry et al., 2015). Moreover,
for therapeutic use in affective disorders, a sequence of 20-30
sessions is recommended (McClintock et al., 2018).

Furthermore, the NBS sessions should be combined with a
task that activates or trains the targeted neural process. It has
been proposed that the effects of tDCS are largest in neural
networks and cognitive functions that are activated or trained
during stimulation (Martin et al., 2014; Gill et al., 2015; Mancuso
et al., 2016; Pisoni et al., 2018; Simonsmeier et al., 2018), perhaps
because synaptic activity could be a prerequisite for NBS effects
to occur (Kronberg et al., 2017). NBS effects may even be specific
to the activated neural or cognitive process during stimula-
tion. For example, prefrontal tDCS may not have one-directional
effects on attentional bias for threat, but when participants are
trained to direct attention either towards or away from threat,
tDCS specifically increases the attentional bias convergent with
the trained direction (Clarke et al., 2014; Heeren et al., 2015). Also
for other cognitive functions, combining prefrontal tDCS with
cognitive training amplifies stimulation effects (Martin et al.,
2013), resulting in cognitive benefits that can last for weeks or
months and that can transfer to non-trained cognitive skills
(Elmasry et al., 2015; Berryhill and Martin, 2018). Likewise, com-
bining prefrontal NBS with cognitive behavioral therapy (Bajbouj
and Padberg, 2014) augments treatment response in depression,
PTSD and anxiety disorders (Segrave et al., 2014; Li et al., 2016;
Kozel et al., 2018; Chalah and Ayache, 2019; van‘t Wout-Frank
et al., 2019), while prefrontal NBS in rest (i.e. NBS by itself) does
not produce lasting improvements in cognitive performance in
neuropsychiatric patients (Martin et al., 2016, 2017). This sug-
gests that NBS effects on emotion regulation processes can be
augmented by applying prefrontal NBS during cognitive practice
or cognitive therapy.

Finally, although the results of our study suggest that rais-
ing stress levels in an experiment may increase the sensitivity
of emotional measures to prefrontal NBS effects, it remains
unclear whether raising stress levels would also augment pre-
frontal NBS effects on stress- and emotion-related processes.
Some studies showed improved PTSD symptom reduction when
prefrontal NBS was combined with trauma exposure (Osuch
et al., 2009; Isserles et al., 2013; van‘t Wout-Frank et al., 2019),
suggesting that NBS can act specifically on the activated fear
memory processes. However, single-session NBS studies on fear
extinction in healthy individuals (Asthana etal., 2013; Guhn
et al., 2014; Mungee et al., 2014, 2016; van‘t Wout et al., 2016;
Dittert et al., 2018) and phobia patients (Notzon et al., 2015) have
shown null results or divergent effects of NBS. Further, the
effects of a single session of prefrontal NBS on cognitive perfor-
mance can be similar across neutral and emotionally arousing
experimental contexts (Pripfl et al., 2013; Faehling and Plew-
nia, 2016), both in depressed and healthy participants (Moreno
et al.,, 2015). Hence, single-session NBS studies do not clearly

demonstrate whether or not prefrontal NBS effectivity depends
on stress or arousal levels during NBS. In therapeutic uses of
NBS, further studies are needed to discover if stress levels influ-
ence the effects of NBS on stress reactivity and stress-related
symptomatology.

Future directions

This study presents an interim overview of the current evidence
regarding the direct effects of a number of NBS methods on
acute emotional stress reactivity. In this field of research, NBS is
often applied with the objective to simply increase or decrease
activity in a brain area in order to change stress- or emotion-
related outcomes. Yet, our findings show that NBS effects on
stress- and emotion-related processes vary. To further clarify
the possibilities and limitations of NBS with regard to emotional
stress reactivity, future research should focus on a number of
important factors.

First of all, the stress processes that are most sensitive to
prefrontal NBS should be identified. For instance, physiological
measures, including heart rate variability and cortisol responses,
appear more sensitive to the acute effects of NBS than self-
reports of emotional state (Brunoni et al., 2013; Antal et al., 2014;
Baeken et al., 2014; Feeser et al., 2014; Hurlemann et al., 2015;
Schroeder et al., 2015; Herrmann et al., 2016, 2018; Remue et al.,
2016b; Makovac et al., 2017). Possibly, the physiological stress sys-
tem mediates the effects of NBS on emotional state by lowering
bodily arousal, thereby lowering the subjective experience of
arousal (Barrett et al., 2004; Dunn et al., 2010), although the sub-
jective arousal outcomes covered in this review did not clearly
show stronger NBS effects than other outcomes. Emotional reac-
tivity based on dimensions of valence, arousal or motivational
direction also shows a stronger link to physiological stress reac-
tivity than self-report data of discrete emotions (Mauss and
Robinson, 2009). Self-reports of discrete emotions are subject to
many other influences, including emotion vocabulary (Barrett,
2004) and personality characteristics (Austin et al., 1998). On the
other hand, some argue that self-reports of discrete emotion
categories better capture emotional experiences, because they
may have more semantic value (Cowen and Keltner, 2017). Dif-
ferent measures may thus capture different aspects of emotional
experience. Yet, there are also substantial correlations between
valence and arousal ratings on one hand and self-reports of
discrete emotions on the other (Bradley and Lang, 1994; Hoff-
mann et al.,, 2012; Cowen and Keltner, 2017), suggesting that
these different measures capture similar aspects of emotion too.
For this reason, different measures of emotional experience have
been combined in the present study. To better understand how
NBS affects different aspects of emotional experience, future
studies should make more explicit distinctions between differ-
ent measures of dimensional and discrete emotional categories.
This difference between measures also demonstrates the need
to use measurement instruments that are sensitive to the effects
of NBS. For example, a single session of prefrontal NBS may have
little effect on global mood after an experiment (Remue et al.,
2016a) but could at the same time change the acute emotional
response to aversive pictures during the experiment (Feeser
et al., 2014; Régo et al., 2015; Marques et al., 2018). In addition, sub-
jective experiences of emotion (‘self-focused’ emotions) share
features with perceptions of emotional stimuli (‘world-focused’
emotions) (Quigley et al., 2013) but also refer to distinct aspects of
emotional processes. The prefrontal cortex, for example, seems
more involved in self-focused emotional reactivity (Herbert et al.,



2011), suggesting that the focus of the emotional measure may
influence sensitivity to prefrontal NBS effects. The use of insen-
sitive measurement instruments or measurement timings may
introduce heterogeneity in the outcomes and thereby obscure
the direct effects of NBS.

Second, acute NBS effects seem to depend on task or exper-
imental settings, such as task instructions (Feeser et al., 2014;
Mobius et al., 2017; He et al., 2018; Marques et al., 2018), the time
between the stress induction and measuring the emotional out-
come (Feeser et al., 2014; Régo et al., 2015; Dittert et al., 2018) and
the relationship between the emotion and the behavior that is
induced by the stressor (Hortensius et al., 2012; Kelley et al., 2015).
Future NBS research should pay attention to experimental tasks
and measurement protocols that are sensitive to the NBS effects,
especially in single-session NBS experiments that produce very
subtle effects.

Third, preferred cortical targets for NBS applications in stress
and emotion may lie beyond the PFC. For example, stimulat-
ing the dorsal anterior cingulate cortex (dACC) could enhance
emotional learning and memory for extinction of fear memories
(Marin et al., 2014; Downar et al., 2016). Yet, the dACC may lie out
of reach for tDCS and conventional rTMS and might therefore
better be targeted by techniques such as deep TMS (Zangen
et al., 2005; Roth et al., 2007; Isserles et al., 2013). In addition, the
occipital cortex (Janik et al., 2015), the parietal cortex (Schutter
et al., 2009, 2010) and the cerebellum (Schutter and van Honk,
2009; Ferrucci et al., 2012) may be suitable NBS targets to improve
emotion regulation or restore emotional perception deficits in
affective disorders (Kohler et al., 2011).

Fourth, applying rTMS in certain rhythmic patterns or using
transcranial alternate current stimulation (tACS) can induce
interaction with other components of brain function than con-
ventional rTMS and tDCS, e.g. by influencing ongoing oscillatory
activity (Paulus, 2011; Schutter, 2014; Thut et al.,, 2017). Such
techniques may provide an alternative pathway to modulate
cortical excitability (Paulus, 2011) and cognitive functions like
working memory (Albouy et al., 2018).

Finally, NBS effects are shaped by many technical (Jung et al.,
2008; Zaehle et al., 2011; Jacobson et al., 2012; Batsikadze et al.,
2013; Hoy et al., 2013; Lage et al., 2016), biological (Cheeran et al.,
2008; Ludwig et al., 2010; Fertonani et al., 2014; Teo et al., 2014;
Jannati et al., 2017; Antonenko et al., 2018), clinical (Guse et al.,
2010) and personal factors (Ridding and Ziemann, 2010; Hsu et al.,
2016; Huang et al., 2017; Valero-Cabré et al., 2017). However, the
data in the present quantitative analysis did not allow analyses
of all these factor-specific effects. Accordingly, the estimated
effect sizes in this work might not be applicable to specific
methods or populations. Future research should determine if
and how moderating factors shape the scope of prefrontal NBS
effects, particularly those moderating factors that are relevant to
stress and emotion.

Conclusion

This review and quantitative analysis presents an overview of
the direct effects of single-session prefrontal NBS on emotional
stress reactivity as investigated with various NBS methods.
These studies together do not provide evidence for a one-
directional effect of prefrontal NBS on emotional stress reactivity
in healthy individuals. However, the magnitude and direction
of NBS effects on emotional reactivity may depend on various
technical, experimental, neurobiological and mental state
factors, which prevent drawing definite conclusions about
the overall direct effects of prefrontal NBS on stress-related
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emotions. Effects of specific NBS methods demonstrate a
small beneficial effect on emotional stress reactivity of anodal
tDCS. These preliminary findings imply that prefrontal NBS
can potentially be used to facilitate resilience against the
detrimental impact of stress on cognitive functioning and
mental health, but only if this technique is further investigated
and developed.
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