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Abstract
Quantitative Structure-Activity Relationship (QSAR) models are critical in various areas of drug discovery, for example in

lead optimisation and virtual screening. Recently, the need for models that are not only predictive but also interpretable has

been highlighted. In this paper, a new methodology is proposed to build interpretable QSAR models by combining

elements of network analysis and piecewise linear regression. The algorithm presented, modSAR, splits data using a two-

step procedure. First, compounds associated with a common target are represented as a network in terms of their structural

similarity, revealing modules of similar chemical properties. Second, each module is subdivided into subsets (regions),

each of which is modelled by an independent linear equation. Comparative analysis of QSAR models across five data sets

of protein inhibitors obtained from ChEMBL is reported and it is shown that modSAR offers similar predictive accuracy to

popular algorithms, such as Random Forest and Support Vector Machine. Moreover, we show that models built by

modSAR are interpretatable, capable of evaluating the applicability domain of the compounds and serve well tasks such as

virtual screening and the development of new drug leads.

Keywords QSAR regression � Piecewise linear regression � Mathematical programming � Mixed integer programming

Introduction

Quantitative Structure-Activity Relationship (QSAR)

methods employ the molecular properties of chemical

compounds to model biological activity against a target [1].

Such drug discovery can draw hypotheses from data,

facilitate understanding of drug action mechanisms, allow

virtual screening for molecules that have not yet been

tested against a target of interest [2], optimise strategies for

developing new drugs from a series of potentially suit-

able compounds [3] or re-purpose existing medicines to

different treatments [4]. QSAR models involve

representation of each input compound as a set of numer-

ical values (descriptors), before an algorithm is applied to

predict the biological activity of each compound against a

target on the basis of patterns identified in the data.

Algorithms used for QSAR models range in terms of

interpretability. Traditional methods such as linear regres-

sion [5] are mathematically descriptive, result in models

that provide insight to prediction through appropriate rules

and thereby can reveal the most informative molecular

properties in the dataset. In other methods (for example,

ensemble methods Random Forest [6] and Extreme Gra-

dient Boosting [7], the modern architectures of artificial

neural networks in Deep Learning [8], or in consensus of

various machine learning techniques [9]), higher prediction

accuracy is achieved at the expense of model inter-

pretability. In this later case, it is difficult or even impos-

sible to trace a relation between molecular descriptors and

biological activity in a mechanistically descriptive or

interpretable means [10].

Piecewise linear regression algorithms applied in QSAR

studies are mathematically descriptive, generate inter-

pretable models in the form of a numerical estimate for the

contribution of a descriptor in the activity of target binding,

and have been shown to yield competitive predictive per-

formance in various QSAR datasets [11, 12]. Such
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methodologies rely on identification of optimal splits of the

data into subgroups (regions) through a molecular

descriptor in the data set, and return a linear equation for

each of the regions identified to link molecular descriptors

to the biological activity of samples in that region. How-

ever, this process may result in groups of molecules with

rather dissimilar structures, hindering the search for new

chemical compounds. Therefore, aiming to represent

groupings of molecules as part of the modelling process,

we propose a hybrid methodology that represents mole-

cules as a network according to chemical similarity, groups

molecules in modules of similar structure through network

community detection and then performs piecewise linear

regression in each module.

Network analysis constitutes a well-established compo-

nent of several fields of research in engineering, social

sciences, ecology, as well as biological science [13–18].

Recently, molecular networks (or chemical space net-

works) have gained attention in the drug discovery com-

munity [19], for example in identifying previously

unknown drug side effects, mechanisms of action of drugs

and also as a visual aid to elucidate structure-activity

relationships [20–23]. Cluster analysis of these networks

can reveal strategies for repositioning existing drugs to

different diseases [24] or the existence of activity cliffs

[19].

In this article, an algorithm is presented (modSAR)

where a molecular network of protein inhibitors is used and

clusters of compounds with similar properties are identified

as an integral part of the modelling process. Then, the

algorithm employs a mixed integer programming model

that determines the optimal split of each cluster into

appropriate regions [12]. This way, the algorithm exposes a

modular organisation of chemical compounds that is not

only useful for an exploratory analysis of the data, but also

in turn represents a predictive QSAR model that offers a

descriptive basis for searching and designing appropriate

chemical compounds, as illustrated in the following

sections.

Methods

The modSAR algorithm

A new method, modSAR, is presented to build QSAR

models employing the network representation of chemical

compound similarity (Fig. 1). Unlike other studies where a

clustering technique is used to partition the data before a

QSAR model is constructed [1], module detection is an

integral part of modSAR. To create the network, a binary

representation of the molecules is obtained with the

Extended Connectivity Fingerprint 4 (ECFP4) fingerprint

technique (Fig. 1a). The Tanimoto coefficient (Tc) is then

used to measure the similarity between molecules (Fig. 1b)

and an optimal threshold is applied so that only pairs of

molecules with a significant similarity are represented

(Fig. 1c). Once the network is created, modSAR applies

A B C
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Fig. 1 Steps involved in modSAR algorithm
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community detection to indicate clusters of molecules with

similar chemical structure (Fig. 1d). Finally, each com-

munity is in turn used as input to a combinatorial optimi-

sation model for piecewise linear regression, where a

feature is determined to best separate the data into regions

(Fig. 1e) and linear equations are identified to predict the

outcome variable in each region (Fig. 1f) [12].

Overall, input molecules are subdivided according to

their chemical similarity, before the development of linear

equations to describe the biological activity of subgroups

via combinatorial optimisation, which can describe the

relationship between molecular descriptors and biological

activity. Each of the steps in this strategy—network cre-

ation, SAR modelling and predictions of biological activity

for new molecules—are described in the sections below.

Data

Five data sets were obtained from the ChEMBL database,

using the same endpoints used to benchmark algorithms in

[25] and [12]. Each data set contains a list of chemical

compounds along with their respective IC50 value against a

common target [26]. To perform regression analysis, the

log value of IC50 is more frequently used and is defined as

pIC50 ¼ � log10ðIC50Þ (PCHEMBL_VALUE column in

ChEMBL). An updated list of the chemical compounds for

each dataset was downloaded from ChEMBL. Compounds

with dubious measurements (DATA_VALIDITY_COM-

MENT column in ChEMBL) were removed. In cases of

multiple entries for a compound, if relevant activities

showed standard deviation greater than 1, sdIC50
[ 1,

compounds were removed from the data set, otherwise one

entry for the compound was kept with activity equal to the

median of the multiple entries.

The Java Chemistry Development Kit (CDK) version

1.5.13 [27] and its R interface [28] was used to calculate

1D and 2D molecular descriptors for the compounds,

providing 200? numerical values to describe each struc-

ture (Fig. 1a). These features were processed and scaled

from 0 to 1 following the procedure described in Tsiliki

et al. 2015 [29]. Finally, highly correlated descriptors and

those with a near zero variance in their distributions were

removed from the data set using the R package caret [30].

A description of data sets after preprocessing is given in

Table 1.

Network construction and SAR modelling

To represent molecules as a network, a metric of similarity

between chemical compounds is required. A common

strategy is to represent each molecule as a fingerprint, i.e. a

sequence of binary digits, and apply the Tanimoto coeffi-

cient (Tc) [31], which reflects the degree of similarity

between compound pairs as a numerical value between 0

and 1 (Fig. 1b). Among the most common fingerprint

techniques, the class of Extended Connectivity Fingerprint

(ECP) [32] was chosen, where the molecule is represented

as a graph and for any given atom both the bonds in that

atom and the bonds in its vicinity are used to generate a set

of numerical values. Once every atom in the graph has

been characterised in this way, a hash function is applied to

convert all numerical values to a vector of binary numbers.

Here, one of the most popular configurations of this type of

fingerprint technique (ECFP4) is applied, where the

neighbourhood of up to four degrees of separation of each

atom is considered and the size of the binary string is fixed

to 1024 bits (Fig. 1a).

After calculating the similarity between compounds, a

threshold is defined so that only structures with a signifi-

cant similarity are linked in the network. There is no

consensus on the most appropriate threshold, as the selec-

tion of the value depends on the application and on the

fingerprint used [33]. For networks built with ECFP4, ta ¼
0:30 is typically applied so as to represent remote structural

similarity [22, 34] and values around 0.50 or 0.60 are

reported in the literature in cases where the most similar

compounds are linked [35, 36]. The threshold value can

also be set to achieve a desired edge density on the network

[23].

Recently, Zahoránszky-K}ohalmi et al. [37] have

demonstrated that an optimal threshold value, t�a can be

found and corresponds to a peak in the average clustering

coefficient (ACC) of the network. When ta ¼ 0, all nodes

are connected to each other and the network has maximum

ACC (ACC ¼ 1). However, by continually increasing the

threshold value, ACC tends to decline initially, until

increasing again to a peak generally in the interval

Table 1 Data sets used in this

study
Data Set Biological endpoint Source Samples Descriptors

hDHFR Human dihydrofolate reductase CHEMBL202 542 76

rDHFR Rat dihydrofolate reductase CHEMBL2363 875 80

CHRM3 Human muscarinic acetylcholine receptor M3 CHEMBL245 588 87

NPYR1 Human neuropeptide Y receptor type 1 CHEMBL4777 354 70

NPYR2 Human neuropeptide Y receptor type 2 CHEMBL4018 374 67
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0:20\ta\0:40. ACC declines with higher threshold values

and, although some other value peaks may be observed,

none of them leads to a higher ACC than the initial one.

The authors have also observed that the most coherent

groupings of molecules, as detected by a community

detection algorithm, were found when threshold values

were close to the initial peak. In our study, similar effect

was obtained for ACC and therefore the methodology by

Zahoránszky-K}ohalmi et al. was used to define the network

threshold for each dataset (Fig. 1c).

After construction of the molecular similarity graph,

modSAR detects modules of chemical compounds with

similar structure using the Louvain method [38], a fast

community detection algorithm that optimises the modu-

larity metric, Q, in complex networks [39] (Fig. 1d). In the

following step, each of the modules detected are used as

input to the Optimal Piecewise Linear Regression Algo-

rithm with Regularisation (OPLRAreg) [12], so as to

generate separate QSAR models for each community.

OPLRAreg splits molecules within each community into

subgroups, in this case defined as regions. Here, each

molecule is represented by molecular descriptors, numeri-

cal values representing characteristic structures of the

compounds, such as the amount of fragments and specific

functional groups found in the molecule, as well as

experimental measures such as logP or even abstract

attributes extracted from the graph of the chemical com-

pound itself. Through the use of these descriptors, OPL-

RAreg identifies the one that best separates the molecules

into regions, before each region is modelled by an optimal

linear equation (Fig. 1e, f).

In cases of increased heterogeneity in the dataset, the

community detection step may reveal communities con-

sisting of a single member molecule. Such singleton

modules can sometimes be considered as structural outliers

and removed from QSAR models [1], however here sin-

gletons are included, as they do not interfere with predic-

tion arising via other modules.

Prediction of new samples

After training, modSAR proceeds by choosing which of the

various QSAR sub-models to use to predict the activity of a

new molecule that was not part of the training set. To

determine the neighbourhood of a test sample stest, the

similarity of stest to all samples in the trained graph is

calculated and the module where stest can be allocated is

determined according to one of possible three cases: (i) In

the simplest case, where the test sample has many con-

nections to trained data, stest is assigned to the module to

which it has more connections above the threshold ta. (ii) If

the test sample is connected to multiple modules, stest is

assigned to the module corresponding to the largest

average similarity. (iii) In cases where the test sample does

not have any neighbours in the graph, stest is assigned to the

module of its most similar compound in the graph. Note,

however, that predictions in this last case may not be

reliable, since stest is dissimilar to samples in the trained

data and it can be considered to be outside the applicability

domain (AD) of the QSAR model.

Implementation details and algorithm validation

The validation scheme used in this study is illustrated in

Fig. 2 and is aligned with state of the art QSAR model

validation procedures [1, 29]. Data sets are initially split

randomly, 75% of each data set is used for model building

while remaining 25% is used only as external validation

set. The subset used for model building (75%) is again

divided into 10 training and test folds repeated 10 times, as

per function createMultiFolds from caret package [30] .

We note that the optimal threshold value t�a is identified

using only samples in the model building set (75%), the

external set is not used while training the algorithm. This

threshold is then used to construct the networks at every

training fold.

Sensitivity analysis for the regularisation parameter k
was performed ( k 2 f0:005; 0:05; 0:10g) and a value of

0.005 was used in all examples. Therefore, through this

cross-validation strategy, each algorithm produces 100

different QSAR models constructed from different subsets

of data. Of these, the model that had the smallest mean

absolute error (MAE) is selected and used to predict bio-

logical activity of samples in the external validation set

(25%). This procedure of model selection was repeated five

times for each data set. Molecular descriptors and ECFP4

fingerprints were computed using Chemistry Development

Kit (CDK) [27] implemented in the R package rcdk [28]. A

list with the molecular descriptors used in this study can be

seen in the Supplementary Material. The algorithm and the

cross-validation procedure was implemented in Python

while mathematical programming models in OPLRAreg

were developed with Pyomo version 5.2 [40] and solved

with CPLEX MIP solver [41].

Results and discussion

In this section, we discuss the details of QSAR models

produced by modSAR. We illustrate the properties of

networks captured by the method along with the regression

models generated for each module in the network. A

description of the overall performance in internal valida-

tion and external validation sets of the examples is pre-

sented, followed by a discussion about the robustness of
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modules found during cross-validation. Comprehensive

comparison with state of the art machine learning algo-

rithms is also discussed.

Network properties

Optimal threshold values for each data set were determined

following the methodology in Zahoránszky-K}ohalmi et al.

[37]. In a preliminary analysis, 100 networks were built by

varying threshold values from ta ¼ 0 to ta ¼ 1 in incre-

ments of 0.01 for each data set, in which we observed the

peak in average clustering coefficient (ACC) as described

in that study. Optimal threshold values (t�a) were found

within the interval t�a 2 ½0:20; 0:40� and the corresponding

networks showed a modular structure, with a average

clustering coefficients over 0.60 and high modularity val-

ues Q[ 0:50. The relationship between thresholds and

average clustering coefficient for each data set in this

preliminary analysis can be seen on Fig. S1.

Following the validation procedure represented in

Fig. 2, optimal thresholds were identified using only the

subsample of data designated for model building at every

data split. Table 2 shows the average optimal threshold

values for each data set, which varied only slightly, as well

as the average clustering coefficient and number of mod-

ules and singletons in the networks created by modSAR.

Networks of NPYR inhibitors had the lowest threshold

values and the greatest number of singleton nodes com-

pared to the other data sets while DHFR data sets had

larger thresholds, fewer meaningful modules and much less

singletons. The presence of many singletons in the network

indicate that many compounds are not similar to any other

chemicals in the data set above the threshold value t�a and

are therefore disconnected from the networks, indicating

that NPYR data sets are more heterogeneous than DHFR

examples selected in this study.

Note that modSAR models take this heterogeneity into

account during the training stage of the algorithm. Because

each singleton is in a module of its own, no molecular

descriptor information is used and the QSAR model of this

compound is simply given by its activity value. If modSAR

is used to predict the activity of a very similar molecule,

the algorithm will return the same IC50 value of the

singleton.

Output of modSAR models

Here, we illustrate the application of modSAR in building a

QSAR model for hDHFR inhibitors, and discuss the

interpretation of the model in its entirety and the efficacy of

the method for drug discovery. In this example, the optimal

threshold value for hDHFR data set was t�a ¼ 0:29 and

therefore all pairs of molecules with a similarity above this

threshold are connected in the network. In Fig. 3, the

Fig. 2 Validation

scheme adopted in this study
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network for this dataset and the seven large modules as

identified by modSAR at the first clustering level are

shown. To facilitate understanding of this initial grouping,

we show the most representative compound in each mod-

ule, determined as the one with the largest number of

neighbours. The fragments highlighted in red indicate the

maximum common substructure (MCS) shared by all

compounds in the module.

The networks were drawn using force-directed graph

visualisation algorithm Fruchterman Reingold [42], so

compounds with similar sub-structures tend to be posi-

tioned close together in the network layout. In this type of

network visualisation, similar modules also tend to be

clustered together. For example, modules m02 and m03 are

interconnected by many links and this high connectivity

reflects their similar representative structures. However,

each module has a unique MCS and closer inspection of the

modules would reveal that compounds are more similar to

other nodes in the same cluster than to those in neigh-

bouring modules. These properties of network clusters can

Fig. 3 Visualisation of the hDHFR network. Edges represent compounds with similarity above the threshold value t�a ¼ 0:29. A representative

compound and the maximum common substructure (in red) for each module is indicated

Table 2 Network properties of network models averaged across all five data splits

Data set Optimal threshold (t�a) Avg. clustering coefficient Number of main modules Number of singletons

NPYR1 0:25ð�0:02Þ 0:64ð�0:01Þ 13:60ð�3:78Þ 32:00ð�14:28Þ
NPYR2 0:26ð�0:01Þ 0:69ð�0:02Þ 10:40ð�2:70Þ 25:80ð�9:83Þ
CHRM3 0:31ð�0:00Þ 0:73ð�0:01Þ 16:60ð�1:67Þ 23:80ð�3:03Þ
hDHFR 0:35ð�0:01Þ 0:75ð�0:01Þ 11:40ð�0:55Þ 5:60ð�1:34Þ
rDHFR 0:38ð�0:01Þ 0:64ð�0:00Þ 8:40ð�1:67Þ 2:20ð�0:84Þ
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guide a computer-aided search for promising compounds,

e.g. through scaffold hopping analysis using the core of

each module to search for new molecules that are either

more potent or capable of improving ADMET profile [43].

It is also noted that granularity of clustering can be chan-

ged, in cases where the compound similarity in modules

needs to be adjusted [44].

At the second level of clustering, combinatorial opti-

misation through OPLRAreg is used to identify a single

molecular descriptor optimal in subdividing each module

into regions. Initially, the algorithm finds two subdivisions

of the data, in order to fit an optimal relation between the

descriptors and the predicted variable (pIC50) and then

iteratively increases the number of divisions until there is

no improvement in the fitting error [12]. Table 3 shows the

optimal regions, decision rules and equations associated

with the major modules in Fig. 3.

Table 3 also includes graphs to show the distribution of

the descriptor that generates the regions in each module,

coloured according to the region in which the samples lie.

Note that the molecular descriptors vary substantially from

equation to equation since the algorithm also incorporates

an implicit selection of variables. Among attributes (more

than 200) calculated for each molecule in the data set, the

optimisation and regularisation process employed in the

OPLRAreg algorithm generates a minimum set of features

to build the regression model. These descriptors range from

those representing distances between specific atoms (e.g.

MDEN11, the average distance between primary nitrogen

atoms) to counts of specific fragments (e.g. Kier Hall

descriptors khs� �) or features representing molecular

lipophilicity, such as the Manhold method for logP esti-

mation (MLogP). We note that in the case of whole-

molecule descriptors, direct interpretation and even more

so targeted molecule de novo design can be challenging.

The characteristics of these optimal descriptors might

also serve to support better targeting in QSAR studies. For

example, in the case of hDHFR inhibitors if one is inter-

ested in studying potent molecules with the common core

identified in module m05 and greater logP, one can focus

and screen samples within region 05. The equation predicts

that potency in this group of molecules is positively asso-

ciated with the increase in average distance between sec-

ondary and tertiary carbons (MDEC.23), the number of

occurrences of a fragment identified by khs.aaS descriptor

(SMARTS: [S,sD2H0](:*):*) as well as the number of

atoms in the largest aliphatic chain (nAtomLAC). Such

insight can pave the way for investigating the characteris-

tics of molecules in this region of molecular space further.

It is important to note that if the piecewise linear

regression step was applied directly to the entire data set,

without the initial clustering step, the biological activity

could be predicted with reasonable prediction accuracy

[12]. However, by adding a first level of clustering, mod-

SAR yields more descriptive and informative clusters since

it finds patterns in the data that are linked to compound

structural similarity. For example, applying piecewise lin-

ear regression directly to the hDHFR data set without the

community detection step, compounds are separated into

two regions depending on whether the molecule contains a

fragment identified by the molecular descriptor khs� ssS,

region 01 and region 02, respectively (Fig. 4). Compounds

in the same group do not share structural similarity other

than the fragment indicated and even the MCS of each

module is rather non descriptive. Comparing Figs. 4 to 3, it

is observed that in the former case the most representative

molecule is less meaningful as modules members are

diverse and contain dissimilar molecular structures.

Overall performance and comparative results

The performance of modSAR across the external validation

set is summarised in Table 4, where mean absolute error

(MAE) and standard deviation (SD) of prediction errors are

represented for each of the five datasets, as per the vali-

dation procedure described in ‘‘Methods’’ section. The

table separates the results of samples inside the applica-

bility domain (AD) from those outside AD. In terms of

predictive performance, the predictions made by modSAR

in the external validation set were close to �0:60 log units

for NPYR1, NPYR2 and rDHFR data sets and � �0:70 log

units for CHRM3 and hDHFR.

As expected, there is a lot of variation when predicting

compounds that are not well represented in the trained

graph (outside AD) since those samples are not within the

threshold value of the samples used during cross-validation

in the training stage. If a sample is outside AD, modSAR is

still able to predict the biological activity with the model of

its nearest neighbour but the prediction is less reliable, as

described in ‘‘Prediction of new samples’’ section. Indeed,

predictions of samples outside AD showed larger errors in

CHRM3, rDHFR and reached an mean absolute error as

high as 3.20 log units in hDHFR, an error 5 times higher

compared to samples that fall within the applicability

domain for that data set. However, predictions made out-

side of AD for NYPR1 and NYPR2 data sets were not as

discrepant. Similar to predictions within the applicability

domain, the absolute mean error (MAE) for these two

datasets was below 0.6 in most cases, with an equally low

standard deviation compared to the other data sets.

Results of the internal cross-validation can be seen in

Table S2. The accuracy of predictions in the internal val-

idation set is similar to those seen in Table 4

(MAE � 0:60� 0:70), but the average fit error of in the

training set is much smaller for data sets NYPR1 and

NYPR2 (MAE � 0:24� 0:26) which, in combination with

Journal of Computer-Aided Molecular Design (2019) 33:831–844 837

123



Ta
bl
e
3

E
q
u
at
io
n
s
an
d
b
re
ak
p
o
in
ts

id
en
ti
fi
ed

b
y
th
e
al
g
o
ri
th
m

fo
r
m
o
d
u
le
s
in
d
ic
at
ed

in
F
ig
.
3

M
o
d
u
le

R
eg
io
n

R
u
le

E
q
u
at
io
n

D
es
cr
ip
to
r
d
is
tr
ib
u
ti
o
n

m
0
1

0
1

M
D
E
N
.1
1
�
0
:0
9
7

p
IC

5
0
¼

�
0
:2
4
C
1
S
P
3
�

1
:3
1
F
M
F
þ
0
:6
4
L
ip
in
sk
iF
ai
lu
re
s

�
1
:9
8
M
D
E
N
.2
2
�

0
:6
5
S
C
H
.5

�
1
:2
8
k
h
s.
aa
O
þ
1
:3
8
k
h
s.
aa
S

þ
0
:8
4
k
h
s.
sC

l
�

0
:2
6
k
h
s.
ss
S
�

0
:2
6
k
h
s.
ss
sN

�
1
:4
7
k
h
s.
ts
C

þ
2
:6
5
tp
sa
E
ff
ic
ie
n
cy
.1

þ
5
:1
9

020406080

0.
0

0.
1

0.
2

M
D

E
N

.1
1

0
2

M
D
E
N
.1
1
[

0
:0
9
7

p
IC

5
0
¼

�
0
:7
2
A
T
S
m
1
þ

0
:3
0
C
2
S
P
2

�
0
:2
9
L
ip
in
sk
iF
ai
lu
re
s
�

0
:4
1
M
D
E
N
.2
2

�
0
:8
9
S
C
H
.5

�
2
:6
4
k
h
s.
aa
O

þ
1
:7
2
k
h
s.
sC

l

�
6
:9
5
k
h
s.
ss
C
H
2
�

1
:5
7
k
h
s.
ss
S
þ

0
:0
7
k
h
s.
ss
sN

þ
9
:7
8

m
0
2

0
1

k
h
s.
ss
C
H
2
�
1
:1
3

p
IC

5
0
¼

�
0
:6
2
M
D
E
C
.1
2
þ

1
:8
7
V
C
.5

þ
0
:4
4
k
h
s.
aa
aC

�
1
:6
5
k
h
s.
ss
S
�

1
:7
1
k
h
s.
ss
sN

þ
1
:1
0
k
h
s.
ss
ss
C
þ
7
:6
6

0204060

1
2

3
4

5

kh
s.s

sC
H2

0
2

k
h
s.
ss
C
H
2
[

1
:1
3

p
IC

5
0
¼

þ
0
:2
1
F
M
F
�

0
:5
3
k
h
s.
ss
O

þ
0
:0
3
k
h
s.
ss
sN

þ
7
:2
3
k
h
s.
ss
ss
C

þ
5
:9
6

m
0
3

0
1

k
h
s.
ss
sN

�
0
:9
8

p
IC

5
0
¼

þ
1
:6
3
L
ip
in
sk
iF
ai
lu
re
s
�

0
:6
1
M
D
E
C
.1
2
þ
0
:2
7
M
D
E
C
.3
3

�
2
:5
5
M
D
E
N
.2
2
�

0
:5
0
S
C
H
.5
þ
0
:4
4
k
h
s.
aa
C
H
þ
0
:0
7
k
h
s.
aa
S

þ
0
:0
5
k
h
s.
aa
aC

þ
0
:2
9
n
A
to
m
P
þ
6
:4
1

010203040

0
1

2

kh
s.

ss
N

0
2

k
h
s.
ss
sN

[
0
:9
8

p
IC

5
0
¼

�
3
:6
2
C
1
S
P
3
þ
2
:1
3
L
ip
in
sk
iF
ai
lu
re
s

þ
1
:0
3
M
D
E
C
.1
2
�

0
:9
6
M
D
E
C
.3
3

�
8
:0
3
M
D
E
N
.2
2
þ
2
:2
4
k
h
s.
sC

l
þ
7
:8
8
n
A
to
m
P
þ
4
:8
1

m
0
4

0
1

C
1
S
P
3
�
2
:8
5

p
IC

5
0
¼

þ
0
:2
2
C
3
S
P
3
þ
1
:5
6
M
D
E
C
.1
2
þ
0
:3
0
M
D
E
C
.2
3

þ
1
:2
7
M
D
E
N
.2
2
�

0
:0
5
M
D
E
O
.2
2
þ
0
:1
2
k
h
s.
aa
N

þ
1
:2
1
k
h
s.
aa
aC

þ
4
:9
7
k
h
s.
ss
C
H
2
�

0
:0
9
k
h
s.
ts
C
þ
5
:1
8

01020

0
2

4
6

C
1S

P3

0
2

C
1
S
P
3
[

2
:8
5

p
IC

5
0
¼

�
0
:7
5
C
3
S
P
2
�

1
:8
0
M
D
E
C
.1
2

þ
0
:6
9
M
D
E
O
.2
2
þ
0
:6
4
k
h
s.
ss
C
H
2
þ
7
:4
0

m
0
5

0
1

M
L
o
g
P
�
0
:4
6

p
IC

5
0
¼

þ
6
:2
5

567

2.
0

2.
2

2.
4

2.
6

2.
8

D
es

cr
ip

to
r 

Va
lu

e

pIC50

M
Lo

gP

0
2

0
:4
6
�
M
L
o
g
P
�
0
:9
6

p
IC

5
0
¼

þ
0
:4
0
A
T
S
m
1
�

0
:3
1
F
M
F
�

1
:1
3
L
ip
in
sk
iF
ai
lu
re
s

þ
1
:0
0
k
h
s.
aa
S
þ
0
:0
2
k
h
s.
sC

l
þ
1
:3
3
k
h
s.
ss
sN

þ
3
:7
7
n
A
to
m
L
A
C
þ
4
:8
2

0
3

0
:9
6
�
M
L
o
g
P
�
1
:1
3

p
IC

5
0
¼

�
1
:8
7
M
D
E
N
.1
1
þ
0
:5
3
k
h
s.
aa
S
þ
5
:5
5

0
4

1
:1
3
�
M
L
o
g
P
�
1
:2
9

p
IC

5
0
¼

�
0
:1
2
n
A
to
m
L
A
C
þ
4
:5
2

0
5

M
L
o
g
P
[

1
:2
9

p
IC

5
0
¼

þ
0
:4
9
M
D
E
C
.2
3
þ
0
:1
2
k
h
s.
aa
S

þ
0
:4
1
n
A
to
m
L
A
C
þ
5
:2
5

838 Journal of Computer-Aided Molecular Design (2019) 33:831–844

123



the results described above, might suggest that these

datasets are less heterogeneous and easier to model.

Results obtained through modSAR were compared to

regression without the prior stage of community detection

(OPLRAreg) [12], as well as popular algorithms (Random

Forest [45] and SVM Radial) implemented in the caret

package [30]. Figures 5, 6, 7 depict the distribution of

absolute prediction errors in the external set of all five data

sets. Only predictions made for samples inside the appli-

cability domain, as obtained by modSAR, are shown in the

plots. The vertical line indicates the median absolute error

while the shaded coloured area depicts interquartile range

of predictions made by the algorithms and gives an intu-

ition about the error dispersion of the compared algo-

rithms. As an example, most compounds in the NYPR1

data set are predicted by OPLRAreg within 0.14 to 0.44

log units of accuracy while most predictions made by

modSAR vary a little less and range from 0.14 to 0.77 log

units (Fig. 5a).

In fact, modSAR predictions had less variability than

OPLRAreg in all five examples of this study and the pre-

dictions were even closer to the traditional machine

learning methods. Median values and interquartile ranges

in modSAR predictions were very similar to Random

Forest and Support Vector Machine. This again underlines

the advantages of a more transparent model like modSAR

compared to black-box methods. The proposed method

allows investigating the characteristics of the QSAR model

directly, without the need for a post-hoc interpretation step.

Presence of activity cliffs

The impact of activity cliffs in QSAR models with mod-

SAR was investigated. Activity cliffs are discontinuities in

structure-activity relationships, whereby molecules with

similar structures have a large variation in activity

response [36]. Activity cliffs can be measured numerically

and molecules classified as ‘‘high’’, ‘‘intermediate’’ or

‘‘low’’ depending on their activity discontinuity [22]. If a
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molecule is labelled ‘‘high’’ in activity cliff (AC), most of

its neighbours, although structurally similar, have an

unexpectedly large difference in biological activity and

conversely a low AC implies variance in activity within the

neighbourhood of a molecule that is more easily explained

by their structural dissimilarity. The proportion of activity

cliff classes in these networks is large, as Table 5 shows

that more than half of the samples in all examples are

classified as either intermediate or high in terms of AC.

Activity cliffs are not necessarily distributed evenly

across the network. Figure 8, for example, displays the

network of NPYR1 inhibitors where each disconnected

component corresponds to a module and nodes are

coloured according to their discontinuity class. Singletons

are represented as grey in the picture since activity cliffs

are not defined for these samples. Note that some modules

contain most samples in medium or high discontinuity

regions. Here,it is noted that the use of modSAR on these

modules is able to identify the structural characteristics or

molecular descriptors that best explain these

discontinuities.

Despite the difficulties of modelling molecules in high

discontinuity regions, the modSAR algorithm also exhib-

ited better results in this regard when compared to OPL-

RAreg. Table 6 shows the average reduction in mean

absolute error (MAE) and in the standard deviation (SD) of

Table 4 Average performance

of modSAR in the external set

(MAE � SD)

Data split Data set

NPYR1 NPYR2 CHRM3 hDHFR rDHFR

Within applicability domain

1 0:64ð�0:63Þ 0:46ð�0:42Þ 0:69ð�0:55Þ 0:78ð�0:62Þ 0:56ð�0:53Þ
2 0:60ð�0:71Þ 0:48ð�0:37Þ 0:63ð�0:54Þ 0:78ð�0:81Þ 0:58ð�0:52Þ
3 0:56ð�0:60Þ 0:62ð�0:60Þ 0:65ð�0:57Þ 0:69ð�0:71Þ 0:54ð�0:56Þ
4 0:55ð�0:62Þ 0:56ð�0:50Þ 0:63ð�0:59Þ 0:71ð�0:62Þ 0:58ð�0:60Þ
5 0:74ð�0:80Þ 0:62ð�0:54Þ 0:61ð�0:56Þ 0:73ð�0:60Þ 0:57ð�0:55Þ

Outside applicability domain

1 0:50ð�0:58Þ 0:25ð�0:26Þ 0:62ð�0:48Þ 0:45ð�0:00Þ –

2 0:38ð�0:52Þ 0:70ð�0:32Þ 1:94ð�0:78Þ 3:20ð�0:99Þ –

3 0:17ð�0:12Þ 0:39ð�0:39Þ 1:32ð�1:18Þ 0:71ð�0:49Þ –

4 0:27ð�0:20Þ 0:78ð�1:41Þ 1:08ð�1:02Þ 0:45ð�0:00Þ 0:92ð�0:68Þ
5 0:60ð�0:76Þ 0:54ð�0:68Þ 1:30ð�0:92Þ 1:20ð�0:75Þ 0:58ð�0:00Þ

Fig. 5 Predictive performance of algorithms for NPYR data sets
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absolute errors (shown inside brackets) for external set

predictions. MAE was smaller for samples in intermediate

and low discontinuity class in almost all data sets. MAE is

also 33%, 24% and 10% smaller for high AC samples in

NPYR1, hDHFR and rDHFR data sets, respectively.

modSAR shows improvement in SD in all data sets, which

means that the dispersion of errors of all cases was reduced,

even those with a modest MAE reduction. Notably,

CHRM3 was the only data set for which modSAR made a

worse prediction for high AC samples, with 6:40% average

increase in MAE, however, the error dispersion was

improved considerably, with a reduction of 42:64% in SD.

Outlook

We illustrate a possible application of modSAR as a flex-

ible and interpretable methodology towards de novo

molecular design [46–48]. Typically, de novo algorithms

are evolutionary algorithms that combine fragments and

functional groups and follow certain imposed constraints to

propose structures that maximise biological activity

[49, 50]. Any predictive and validated QSAR model can be

used to score the activity of these artificial compounds, but

modSAR could have a more important role in de novo

design as it could be used to generate additional constraints

for these algorithms. This concept is illustrated below.

Suppose one is interested in finding more potent inhi-

bitors in the search space around module m06 and region

Fig. 6 Predictive performance of algorithms for DHFR data sets

Table 5 Proportion of activity cliff classes in the QSAR data sets

studied

Dataset Discontinuity class

High (%) Interm. (%) Low (%)

NPYR1 22.65 35.54 41.81

NPYR2 21.73 33.23 45.05

CHRM3 21.15 30.66 48.20

rDHFR 21.32 34.24 44.44

hDHFR 25.86 28.39 45.75

Fig. 7 Predictive performance of algorithms for CHRM3 data set
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03 of Figure 3. The maximum common substructure, along

with the breakpoints, equations and the neighbourhood of

m06 molecules could be combined to provide the following

constraints to a de novo technique for new hDHFR inhi-

bitors, as follows.

Neighbourhood constraint: new chemical entities should

be within the applicability domain of module m03. A

new molecule is only considered feasible if its similarity

to at least one of the compounds in the module is above

the threshold t�a ¼ 0:29,

Breakpoint constraint: new molecules must satisfy the

region 03 division rule, khs.aaCH[ 4:18. That is, there

must be at least five aliphatic carbon atoms to satisfy the

criterion represented by the khs.aaCH descriptor, as

illustrated in Figure S2.

Equation constraint: the correlates identified by the

equation in Region 03 could be used in the design

process. For example, the distance between tertiary

carbons (MDEC.33) and the count of khs.aaNH and

khs.aaaC fragments should be maximised. Similarly, if

there were any negative coefficients in the equation, this

variable should be minimised in the optimisation

process.

Similar constraints could be obtained for all other modules

in the network and the combined set of rules could provide

a targeted set of optimisation constraints for de novo

design. These constraints could potentially reduce the

search space of current algorithms, facilitating the gener-

ation of synthetically produced new compounds.

Conclusions

We have shown that the use of network representation in

QSAR studies can improve its effectiveness. The method

proposed in this paper, modSAR, uses community detec-

tion to identify groups of similar molecules before a

combinatorial optimisation step can construct predictive

and interpretable QSAR models. Visualisation of such

models along with the analysis of the common core of

molecules in the modules allow for a quick grasp on

Table 6 Reduction in MAE and

SD of errors by modSAR

compared to OPLRAreg per

discontinuity class

Dataset Discontinuity class

High (%) Interm. (%) Low (%)

NPYR1 - 32.87 (- 44.88) - 8.06 (- 32.44) - 14.44 (- 8.61)

NPYR2 0.32 (- 14.04) - 1.61 (- 25.81) - 8.57 (- 6.62)

CHRM3 6.40 (- 42.64) - 14.53 (- 46.56) - 14.72 (- 26.57)

hDHFR - 23.70 (- 35.19) - 0.08 (- 3.71) 0.12 (- 3.93)

rDHFR - 10.23 (- 38.30) - 8.31 (- 26.62) - 33.28 (- 44.10)

Fig. 8 Activity cliffs in NPYR1

network
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heterogeneity that may lie in the data set and facilitates

understanding of the characteristics in chemical space.

The analysis described here showed that singletons will

generally represent a diverse set of molecules and might

indicate a less explored part of chemical space, therefore

pointing towards new directions for promising drugs or

probe candidates. Dense modules, on the other hand, rep-

resent groups of molecules where usually a common core

can be identified. An automatic workflow such as modSAR

can improve the discovery of these subgroups and help to

conceptualise these complex relationships more easily.

modSAR facilitates the identification of groups of

molecules with activity cliffs, with the potential to help

medicinal chemists identify new promising paths for drug

discovery more easily. The algorithm could also be used to

generate constraints for de novo drug design, contributing

to lead optimisation of promising compounds.

Predictions in the external set were not affected when a

minimum number of neighbours was enforced and network

properties only changed in data sets that had a large

number of singletons. The advantage of this approach lies

in the reduced number of modules, which might facilitate

the visualisation of network modules but at the cost of

generating ‘‘artificial’’ links between non-similar com-

pounds. This trade-off should be taken into account when

developing a new model and the requirement for the

number of neighbours should probably be driven by the

needs of specific QSAR projects. In future work, exploring

the impact of other network construction techniques, with

different fingerprints and similarity metrics, can be inves-

tigated in terms of improving performance.

Other immediate extensions of the current work would

be to study selectivity, instead of activity of compounds. It

might be possible to identify modules with identifying

fragments, substructures or descriptors that help to explain

why certain compounds have more affinity for a specific

receptor, say NPYR2, than others, e.g. NPYR1. modSAR

could also be used to study selectivity of compounds for

drug targets in specific organisms. One possible application

would be to study the activity of inhibitors of DHFR in

other organisms (e.g. Candida albicans) compared to the

human and rat models.

Future work is planned to address criteria for the

selection of descriptors in the application of OPRAreg in

QSAR studies. In specific, detailed analysis on the impact

of particular descriptors (in terms of correlation or other

criteria) can be incorporated in the computational proce-

dure to indicate the robustness of prediction and individual

feature contributions. Future work can also extend the use

of community detection into the realm of consensus clus-

tering, where multiple layers of networks can be used so as

to produce clusters that generalise better from a subsample

to a full data set [51–53].
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