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Abstract
Much of the gain in malaria control, in terms of regional achievements in
restricting geographical spread and reducing malaria cases and deaths,
can be attributed to large-scale deployment of antimalarial drugs,
insecticide-treated bed nets, and early diagnostics. However, despite
impressive progress, control efforts have stalled because of logistics,
unsustainable delivery, or short-term effectiveness of existing interventions
or a combination of these reasons. A highly efficacious malaria vaccine as
an additional tool would go a long way, but success in the development of
this important intervention remains elusive. Moreover, most of the vaccine
candidate antigens that were investigated in early-stage clinical trials,
selected partly because of their immunogenicity and abundance during
natural malaria infection, were polymorphic or structurally complex or both.
Likewise, we have a limited understanding of immune mechanisms that
confer protection. We reflect on some considerable technological and
scientific progress that has been achieved and the lessons learned.
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Introduction
Plasmodium protozoan parasites P. falciparum, P. vivax, P. ovale 
(P. ovale curtisi and P. ovale wallikeri), P. malariae, and P. knowlesi 
can infect humans. P. falciparum is responsible for the major-
ity of malaria-attributable deaths, and the global malaria burden 
is borne disproportionally by children in sub-Saharan Africa1.  
Malaria symptoms range from severe headaches, chills, joint 
pain, and fever-like symptoms to red blood cell dysregulation and 
lysis that can lead to severe anemia, sequestration of infected red  
blood cells, or occlusion. Occlusion can lead to cerebral malaria 
or complications associated with placental malaria, including  
adverse birth outcomes with long-term sequelae or death.

Vaccines for malaria aim to either eliminate/prevent infection (for 
example, in the liver or blood or they interrupt transmission in  
mosquitoes) or control/limit parasite growth/multiplication and 
duration of infection2. Approaches to malaria vaccine development 
have ranged from traditional (live-attenuated or killed) to subunit 
(single-antigen recombinant proteins that target the various stages 
in the parasite life cycle) vaccines to newer approaches targeting the 
inclusion of only defined antigenic regions or critical epitopes2–4. 
The struggle continues to develop a vaccine to protect people from 
this disease.

Burden and current interventions
More than 90% of the sub-Saharan Africa population live in 
malaria-endemic areas1,5. In Africa, 99.7% of estimated malaria 
cases are due to P. falciparum1. Outside of Africa, P. vivax accounts 
for most of the disease burden: 73% in the World Health Organi-
zation (WHO) Region of the Americas and 53% in the WHO  
Southeast Asia Region1. P. vivax burden is difficult to assess as 
infections can cause relapse months or years after initial infection 
because of the persistence of hypnozoites in hepatocytes. Other  
species represent a small proportion globally. P. ovale and  
P. malariae are common sympatric species in malaria-endemic 
regions6,7. Data on the global burden of P. knowlesi, a zoonotic 
parasite, are much less known. Nevertheless, this species has  
been reported to cause severe human malaria and is important for 
certain populations in Indonesia, the Philippines, Cambodia, South 
Thailand, South Myanmar, and South Vietnam8–10.

The WHO World Malaria Report1 and high-resolution maps for 
P. falciparum5 and P. vivax11 capture the considerable progress 
in reducing malaria burden and the stall in the rates of decline in 
recent years. In a handful of developed countries, control efforts 
were aided greatly by successful economic development, improved 
health-care systems, and urbanization5. But in resource-poor  
settings, gains achieved are noted as fragile, relying on a limited  
number of interventions: insecticide-treated bed nets, indoor 
residual spraying, artemisinin combination therapy, intermittent 
preventive treatment, and increased access to diagnostic testing12. 
Moreover, bottlenecks and gaps for optimal coverage exist because 
of less sensitive tools and infection/disease management; for  
example, pregnant women are possible reservoirs that sustain 
malaria transmission, and pyrimethamine is contraindicated in the 
first trimester13,14. The campaign for increased annual funding, from 
US $2.7 billion to US $6.4 billion, for investments that aimed to  
meet a 40% reduction in malaria incidence and mortality rates 

remains challenging15. For vector control, four commonly used  
insecticide classes are already in widespread use in Africa, the 
Americas, Southeast Asia, the Eastern Mediterranean, and the 
Western Pacific, raising warning bells for a possible emergence of 
insecticide resistance12. The same is true for antimalarial drugs. At 
present, there are only three major/broad categories of available  
antimalarials. Poor quality, incomplete treatment, and misuse 
(including continued use of artemisinin-based monotherapy)  
could result to development and spread of drug-resistant parasites. 
Fortunately, to date, no evidence for substantial drug resistance  
has been documented16–18. However, the Global Technical Strategy 
for Malaria 2016–2030 milestones15, to reduce malaria incidence 
and mortality by at least 40% in 2020, cannot be attained with  
current tools.

Malaria vaccines
By experience, vaccines are among the most successful and  
cost-effective public health tools. Millions of lives have been  
saved and a substantial reduction in morbidity has been associated  
with vaccine scale-up implementation against other diseases.  
A case in point would be the recent vaccine implementation 
of meningococcal vaccine in sub-Saharan Africa19. A malaria  
vaccine, if implemented through the routine/existing immunization  
delivery programmes, such as the Expanded Programme on  
Immunization (EPI), could have more reaching coverage logisti-
cally and improved compliance (compared with traditional anti-
malarial prophylaxis) and would help close the gap left by other 
control measures. However, considerations for inclusion to the EPI 
also need validation in field trials. Co-administration of a candi-
date tuberculosis vaccine, MVA85A, with EPI vaccines resulted in  
lowered tuberculosis-specific immunogenicity20. On the other  
hand, with the pre-erythrocytic malaria vaccine—chimpanzee  
adenovirus 63 and modified vaccinia virus Ankara encoding  
multiple epitope string thrombospondin-related adhesion protein 
(ChAd63 MVA ME-TRAP)—antibody responses to EPI vaccines 
were not altered in a phase Ib trial21. Both studies underscore the 
importance of optimal schedules and timing of immunizations  
for testing in clinical trials as well as for actual vaccine  
implementation.

A number of vaccines in the malaria pipeline have similar  
challenges/limitations due in part to the complex biology and life 
cycle of Plasmodium and the immunological interplay between  
the parasite and host. At the same time, every malaria infection 
can be considered unique in terms of antigenic repertoire and  
host, frequency of exposure, age, access to treatment, and presence  
of co-morbidities. Three recent reviews summarize vaccines now 
in development2–4. RTS,S (registered as Mosquirix), based on the 
circumsporozoite protein, is thus far the only vaccine that has  
progressed beyond phase 3 and is now in a WHO-recommended 
and -sponsored pilot implementation program complement-
ing a GlaxoSmithKline-sponsored phase 4 trial2. RTS,S is a  
pre-erythrocytic vaccine directed at the sporozoite stage or at 
the infected hepatocyte. The vaccine, in theory, should prevent  
blood-stage infection but, in reality, proved to be “leaky”22. The 
pilot implementation of RTS,S aims (a) to address whether the  
protection demonstrated in the 5- to 17-month old multicenter  
phase 3 trial can be replicated in the context of routine health  
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systems with a four-dose schedule and to evaluate (b) the excess 
risk of febrile seizures observed within 7 days after a vaccine dose, 
(c) the number of meningitis cases, (d) the number of cerebral  
malaria cases in the malaria vaccine group compared with the  
control, and (e) the imbalance of mortality among girls who 
received the vaccine23. The Joint Technical Expert Group (JTEG) 
on malaria vaccines also recommended monitoring the emergence 
of vaccine resistance strains and testing of alternative schedules  
and other strategies to improve the efficacy of RTS,S. The 
JTEG noted that, if safety concerns are resolved and favorable  
implementation data become available, the WHO can recommend 
country-wide introduction. Projection for RTS,S shows that if it is 
implemented in all 43 malaria-endemic countries in sub-Saharan 
Africa, 123 million (95% prediction interval, 117 to 129 million) 
malaria episodes over the first 10 years could be averted24.

Indeed, the RTS,S experience is a learning curve for all other 
malaria vaccines in the pipeline. Of note, the concern about a  
possible negative effect on overall female mortality may indeed 
be valid and needs careful consideration since this finding was  
observed in both age groups25 and in a number of vaccines26,27. 
Similar obstacles and lessons provide much hope, rather than pes-
simism, as we move forward in addressing some key challenges.

Polymorphism
As in other vaccine candidates, polymorphism abrogates antigen 
recognition. On the other hand, conserved important epitopes are 
generally poorly immunogenic. In RTS,S, the dominant epitope 
recognized by antibodies—(NANP)n from the circumsporozoite  
protein (CSP)—is totally conserved in P. falciparum but the  
T-cell (as well as B-cell) epitopes are known to be polymorphic2,3. 
A number of other vaccine candidates did not show much promise  
after efficacy trials suggested strain-specific protection2–4. In fact, 
the lack of success in developing subunit blood-stage vaccine  
candidates and lack of cross-stage immunity were among the  
driving factors to develop whole parasite vaccines (WPVs). WPV 
supposes that no individual parasite protein can be sufficient  
to induce strain-transcending immunity and that, aside from  
antibodies, B and T cells also play a role. WPVs aimed to maximize 
antigen breadth, although, whether irradiated parasites, geneti-
cally attenuated parasites, chemically attenuated parasites or killed 
parasites, the vaccine pathway represents a significant challenge  
because of difficulties in vaccine manufacture and specific  
regulatory issues28. So far, clinical trials have shown that WPVs  
are well tolerated in terms of reactogenicity2. The presence 
of extraneous (possible toxins, pathogens, and contaminants)  
materials not essential for the generation of protective immune 
response as well as concerns on vaccine route, dose, and regimen 
are being addressed2,3,28.

Other innovations in antigen discovery have now come up 
with an extensive list of potential antigens from genomic-, pro-
teomic-, and transcriptomic-based approaches29–32. Similar to 
vaccine development against viral infections such as human 
immunodeficiency virus and influenza, structure-guided vaccine 
design is currently tapped to identify protective/functional and  
non-functional epitopes in antigen–antibody complexes33–36. With 
difficulties for representative in vitro models, structure-guided 

vaccine design has also been used to inform the development  
of at least the most promising vaccine candidate for P. vivax, the  
Pv Duffy-binding protein37,38.

These innovations have, likewise, pushed antigen delivery plat-
forms. Since subunit vaccines based on soluble recombinant 
proteins are often poorly immunogenic, the use of virus cap-
sid-like particle vaccine platforms is beginning in the malaria  
field39,40. Virus-like particles (VLPs), when overexpressed, spon-
taneously self-assemble into particles that are highly immuno-
genic because of their structural resemblance to original live  
viruses39–43. A direct comparison of three VLP platforms for a trans-
mission-blocking vaccine44 showed that high quantity and quality 
of antibodies with minimal reactogenicity could be achieved.

Poor understanding of vaccine-induced immune 
response
To date, we still have a considerable lack of understanding in 
the immunological mechanisms that provide protection against 
malaria, including what immune responses are induced in people 
who are protected and in people who are not. Immune correlates of  
protection are known to exist for successful vaccines. This  
knowledge can permit licensure of new vaccine formulations or 
extension of vaccine indications to new populations on the basis 
of immunogenicity endpoints45,46. In some cases, evaluations 
are restricted to antibody titers and a few basic T-cell analyses: 
cytokine-ELISpot or interferon-gamma, interleukin-2 (IL-2), or 
tumor necrosis factor-alpha (TNFα) readouts or a combination of 
these. Hepatitis B vaccine testing was simplified when it was shown 
that hepatitis B S antigen antibodies of more than 10 mIU/mL were 
surrogate markers of protection47,48. Interestingly, a recent study 
also showed the utility of T-cell (TNFα, IL-10, or IL-6) responses 
32 years after vaccination despite the absence of detectable  
anti-hepatitis B antibodies49. The cellular responses provided 
insight on how to evaluate long-term immunity; even under natural 
exposure, no breakthrough hepatitis B virus (HBV) infection was 
recorded49, suggesting that the immune response can be boosted to 
prevent acute illness and chronic HBV infection.

In malaria, antibody titers and T-cell responses showed limited  
correlation and have largely failed to predict vaccine efficacy 
(VE) or down-select vaccine formulations prior to late-stage, large  
trials50. In RTS,S, antibody titer concentrations of 121 enzyme-
linked immunosorbent assay units per milliliter (95% confidence 
interval [CI] 98–153) prevented 50% of infection, but no thresh-
old level for protection was found in the phase 3 trial51. Further 
review of previous trials also showed that a modification of dose 
and schedule improved vaccine protection: 62% of volunteers 
(10/16) given the full dose at the standard 0-, 1-, 2-month regimen 
were protected 3 weeks after the last vaccination, whereas 86% of  
volunteers (26/30) were protected when the third dose occurred  
6 months after the second and the dose was reduced to one fifth  
of the original dose (known as fractional dosing52). With a frac-
tional dose, titers of anti-NANP antibody were similar to subjects  
vaccinated using standard regimen, and it was speculated that  
the altered dosing had an effect on antibody avidity, somatic hyper-
mutation, and isotype switching52,53. The roles of CD4+  T-cell  
responses have been suggested but remained inconsistent54,55, 

Page 4 of 9

F1000Research 2020, 9(F1000 Faculty Rev):296 Last updated: 29 APR 2020



although it cannot be denied that protection is indeed mediated 
by complex immune functions. The inability to maintain high  
antibody titer after vaccination also needs in-depth studies51.  
Waning or duration of immunity remains an important ques-
tion as current vaccine candidates still have to demonstrate an 
acceptable duration of protection so that frequent revaccination is  
not necessary.

Besides antibody responses, CD4 and T cells have also been  
implicated in the WPV, PfSPZ56. The absence of a T-cell response 
in 6- to 11-month-old vaccinees was interpreted to mean that 
there will be no protection for this age group by using the current 
PfSPZ immunization regimen (three doses at 8-week intervals). For  
blood-stage vaccine GMZ2/alum, a phase 2 efficacy trial showed 
higher VE in children 3 to 4 years old (VE = 20%, 95% CI 4–33%) 
than in children 1 to 2 years old (VE = 14%, 95% CI 3.6–23%)57. 
It was concluded that, compared with toddlers, the older children 
have antibodies that were more functionally competent in terms of 
avidity and IgG subclass profile. Acquired background immunity  
to malaria would have helped the older cohort.

There is general agreement that effective assessment of induced 
immune response needs unbiased, comprehensive profiling  
together with mathematical modelling/computational analyses. 
Such methods can capture the overall picture/combination effects  
of multiple immune responses45,58,59. Robust screening assays 
to assess protective potential or detect non-direct inhibitory or 
neutralizing activity of antibodies or assays that capture anti-
body-complement interactions and their consequences to parasite  
function and viability are most important considerations. For 
meningococcal vaccines, the availability of the serum bactericidal 
antibody assay, which measures complement-mediated killing via 
functional antibody concentrations, has proven to be a valuable 
tool60.

Controlled human malaria infection
The licensing by US Food and Drug Administration of a live, 
oral cholera vaccine (Vaxchora) for use in travelers on the basis 
of controlled human infection model in volunteers 18 to 64 years 
of age raised hopes that a malaria vaccine for travelers could also 
utilize human challenge data and pass along the same regulatory 
approach for licensure61,62. Clearly, controlled human malaria  
infection (CHMI) is a powerful tool (a) to provide early-stage  
proof-of-concept efficacy for vaccine candidates and (b) to address 
the limitation of preclinical testing in mice and non-human  
primates to predict immune response and to study mechanisms of 
protective immunity63,64. Because this experimental model allows 
some homogeneity/control of parasitemia within and between  
treatment arms, a major advantage is the relatively small sample 
size required for the evaluation of VE. The model is also ideally 
useful to advance field trials of transmission-blocking vaccines65. 
In addition, it is less restrictive to have access to blood samples for 
antibody and T-cell work, allowing in-depth studies.

So far, only RTS,S55, chemoattenuated P. falciparum sporozoite 
vaccine66, whole parasite immunization under chloroquine drug 
cover67, and whole sporozoite radiation-attenuated vaccines68 
were able to induce sterile immunity in a significant proportion of 

human volunteers. CHMI was used by RTS,S to test for various 
formulations, adjuvants, and vaccine timings52,55,64. The P. vivax 
CHMI model has been used successfully to test the efficacy of  
radiation-attenuated sporozoites administered by mosquito bite69.

CHMI has been harnessed to identify the range and specificities  
of antibody responses and antigen targets70 as well as down-select 
other vaccine candidates71. Currently, five challenge strains are 
available for CHMI use72–75. This is important, as it is necessary 
to address the regulatory concern of strain-transcending protective 
efficacy or cross-strain protection. All strains so far show global 
geographic differences in genetic variation72,73,75; however, how  
representative they are of the overall diversity of P. falciparum 
field population remains to be seen. Efforts are ongoing to increase 
familiarity on the restrictions and challenges of CHMI models to 
regulators to determine the feasibility to accept these trials as part 
of the regulatory package for licensure63,64,76,77.

Low-level parasite infection and immune tolerance
Low-level parasite infection confuse diagnostics/detection or 
attribution of symptom/fever to malaria and raise the question 
of how the chronic nature of malaria infection (persistent para-
site infection) amplifies or down-regulates immune response. 
B-cell hypo-responsiveness as a result of meningococcal and 
polysaccharide vaccines has been reported78. Many clinical trials 
suggest that pre-existing immunity induced immune toler-
ance, resulting in lower immunogenicity and efficacy in African 
adults and malaria-exposed children79–82. The picture becomes 
more complicated when host genetics, access to treatment, 
and co-infection are considered. Performing studies to assess 
these confounding/contributory variables in vaccine trials are  
needed.

Vaccine efficacy in clinical trials
Endpoints and assessment methods to measure VE in clinical trials  
also lack clear consensus. In malaria-endemic areas, the rate of 
acquisition of natural immunity will vary between individuals; 
even within a country, malaria parasite transmission differs per 
site depending on climate/season and breeding sites. These factors 
affect the clinical trial design, surveillance methods, follow-up,  
and size of cohort. With RTS,S, during clinical trials, VE was  
evaluated by measuring time to first infection since natural infection 
is present in malaria-endemic areas and there is no control of time 
or amount of exposure to malaria in the different subjects. However, 
the WHO/JTEG specifically requested that all vaccine efficacies 
be reported against all episodes of the outcome (not only first or  
only episode) to better reflect the public health contribution of 
the vaccine. And what about boosting? Boosting through natural 
infection appears to be an important contributor in reducing the 
multiplicity of malaria episodes, especially for the blood-stage  
vaccine, SE3683. Of note, not all infections are clinically impor-
tant (or manifest as clinical symptoms) and this complicates  
predictions for exposure, risk, and protective efficacy.

Vaccines aimed against malaria sporozoites might lead to a  
delayed acquisition of natural immunity, resulting in increased 
risk of malaria when the protection afforded by vaccination has 
waned compared with individuals who did not receive the vaccine.  
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This was observed in other malaria interventions such as weekly 
malaria chemoprophylaxis and use of insecticide-treated bed 
nets. The phenomenon has been termed rebound malaria84,85. An  
additional three years of follow-up showed that RTS,S/AS01 
vaccination might lead to periods of increased risk to uncom-
plicated malaria when vaccine-induced protection has waned85.  
This observation is in line with the previous phase 2 study car-
ried out in Kenya, where the initial protection provided by three  
RTS,S/AS01 doses was offset by rebound after five years in 
areas with higher-than-average exposure to malaria parasites86. 
Three-year extension of the phase 3 trial in Nanoro, Burkina Faso  
showed an increase in clinical malaria incidence in the RTS,S  
vaccinees when the children were older. Nevertheless, the  
rebound was not outweighed by the initial benefit and there 
was no increased risk for severe malaria or a shift toward  
cerebral malaria85.

Novel adjunctive tools
Another important question that research would want to address 
is how to achieve and maintain stronger and longer-lasting VE 
through the use of adjuvants or optimal dose/delivery meth-
ods or both. An appropriate adjuvant will greatly increase the 
immunogenicity of a vaccine58,87–90. Vaccine adjuvants have been 
tapped to target innate immune responses, activate the Toll-like 
receptor signaling pathway, and expand the antibody repertoire 
against the malaria parasite. Studies for novel and more effec-
tive human-compatible adjuvant to improve vaccine response are  
ongoing.

Summary and Conclusions
Efforts to come up with efficacious malaria vaccine continue 
despite challenges. As new approaches (use of structural epitopes 
for antigen selection; development of novel vectors, adjuvants,  

and delivery methods; altered vaccine schedules and dosages;  
utilization of new tools) lend themselves to malaria research, 
a cooperative global effort should also be established to allow  
various vaccine candidates in the developmental pipeline to 
be compared side by side in proof-of-concept clinical tri-
als to overcome most of the financial challenge in investing in  
large-scale good manufacturing practice (GMP) production, phase 
III and IV studies. It has become generally accepted that likely 
combinations of effective vaccines that complement each other 
will be used, and a successful vaccine must be able to induce 
both humoral and T-cell responses. But the efficacy of each vac-
cine component needs to be evaluated, or a hit-and-miss approach 
will entail extensive investment. The burden of developing a 
malaria vaccine is currently spread to only a few partners reluc-
tant to invest as more candidates are discovered and innova-
tions are made in delivery, yet there are knowledge gaps in the 
candidates’ mechanism/correlates of protection and undefined  
regulatory pathway(s). A collaborative effort is especially impor-
tant to be initiated from the scientific community given that  
primary target groups are those in low- and middle-income coun-
tries. Finally, as illustrated above, most available data come 
from studies of P. falciparum, and studies on P. vivax are also  
needed to help advance vaccines that will contribute to malaria 
elimination.
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