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Simple Summary: EBV infection represents a distinct subtype in gastric cancer, so determining
infection status is important in guiding treatment decisions. Currently, EBV infection in gastric
cancer is most often determined using PCR and in situ hybridization, which requires multiple steps
and nucleic acid preservation. On the other hand, histopathology images are widely available and
included in the course of diagnosis for patients. Thus, our development of an approach to determine
EBV status from these histopathology images could save costs and time associated with making EBV
diagnoses for gastric cancer patients or independently validate the results from traditional methods.
Additionally, our model’s predictions are able to classify patients into EBV infection categories that
are significantly correlated with prognosis. This may serve to better inform clinicians’ decisions in
prescribing immunotherapy, as both EBV infection status and prognosis are critical factors in whether
immunotherapy is effective or worth the costs and side effects.

Abstract: EBV infection occurs in around 10% of gastric cancer cases and represents a distinct
subtype, characterized by a unique mutation profile, hypermethylation, and overexpression of
PD-L1. Moreover, EBV positive gastric cancer tends to have higher immune infiltration and a better
prognosis. EBV infection status in gastric cancer is most commonly determined using PCR and in situ
hybridization, but such a method requires good nucleic acid preservation. Detection of EBV status
with histopathology images may complement PCR and in situ hybridization as a first step of EBV
infection assessment. Here, we developed a deep learning-based algorithm to directly predict EBV
infection in gastric cancer from H&E stained histopathology slides. Our model can not only predict
EBV infection in gastric cancers from tumor regions but also from normal regions with potential
changes induced by adjacent EBV+ regions within each H&E slide. Furthermore, in cohorts with
zero EBV abundances, a significant difference of immune infiltration between high and low EBV
score samples was observed, consistent with the immune infiltration difference observed between
EBV positive and negative samples. Therefore, we hypothesized that our model’s prediction of
EBV infection is partially driven by the spatial information of immune cell composition, which was
supported by mostly positive local correlations between the EBV score and immune infiltration in
both tumor and normal regions across all H&E slides. Finally, EBV scores calculated from our model
were found to be significantly associated with prognosis. This framework can be readily applied to
develop interpretable models for prediction of virus infection across cancers.
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1. Introduction

Gastric cancer is the third leading cause of cancer-related death worldwide [1].
Epstein–Barr Virus (EBV) infection has been implicated in gastric cancer development.
Around 10% of gastric cancers are associated with EBV infection, which represents a
distinct subtype [2]. When compared with EBV negative gastric cancers, EBV positive
gastric cancers display distinctive genetic and epigenetic tumorigenic profiles. EBV positive
gastric cancers exhibit a distinct somatic mutation pattern, including prevalent PIK3CA
mutations and rare TP53 mutations [3,4]. Epigenetically, EBV positive gastric cancers are
characterized by intensive DNA hypermethylation [5]. In addition, high expression levels
of programmed death ligands 1 (PD-L1) and PD-L2 are observed among EBV positive
gastric cancers [3,6].

Histologically, EBV positive gastric cancers appear to be poorly differentiated, with
abundant immune infiltration in their tumor microenvironment in comparison to EBV
negative cancers [3,7]. Indeed, specific immune cells such as B and T lymphocytes are
significantly higher in EBV positive gastric cancers and are associated with better overall
survival rates [8]. With high expressions of immune checkpoint proteins such as PD-L1,
EBV positive gastric cancers are considered to be promising candidates for immunother-
apy. Past studies show that EBV positive patients have good response rates to anti-PD-1
therapy [9], as well as a longer progression free survival time after anti-PD-1 therapy [10].
Additionally, targeting therapies against VEGF receptors have been performed for EBV
positive patients, and some of them have shown promising results [11]. Taken together,
these results suggest great clinical importance for detecting EBV positive gastric cancers, as
well as exploring immune infiltration in conjunction with EBV for a more complete picture
of the tumor microenvironment.

EBV positive gastric cancer was initially detected by the presentation of EBV DNA
through polymerase chain reaction [12]. To date, in situ hybridization of EBV-encoded small
RNA is the standard method for detecting EBV infection in gastric cancer samples [13].
Both of these methods cannot provide EBV status results in a single diagnostic step and
require well-preserved nucleic acids in samples. Meanwhile, deep learning has shown
great promise in analyzing medical images, including H&E histology slides, which can be
obtained right through diagnosis. Recent studies have demonstrated that deep learning
can accurately detect genetic variants, copy number alteration, and molecular subtypes in
H&E slides [14,15]. A recent study even utilized deep learning to accurately predict HPV
infection in oropharyngeal squamous cell carcinoma with an AUC around 0.8 [16].

In this study, we developed a deep learning-based algorithm that predicts EBV in-
fection status from H&E slides. We explored the efficacy of our model in predicting EBV
infection on tumor regions and on normal regions in each H&E slide. Interestingly, we
observed the heterogeneity of our model’s predictions on different regions of the same
whole-slide image. In addition, we investigated the correlation of immune infiltration
levels with the predicted EBV score, specifically in patient cohorts with low and even zero
EBV abundance, which led us to hypothesize that our model’s prediction is at least par-
tially driven by spatial immune cell composition. This hypothesis was tested by exploring
the local spatial correlations between the EBV score and immune infiltration per tile in
the whole slide. Finally, we examined the prognostic utility of EBV scores and observed
favorable prognosis in high score patients.

2. Materials and Methods
2.1. Patient Cohorts

Diagnostic slides of gastric cancer patients from The Cancer Genome Atlas (TCGA) project
were downloaded from the Genomic Data Commons Portal (https://portal.gdc.cancer.gov/
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(accessed on 15 March 2021)). EBV abundance of these patients, represented by numbers
of virus-supporting reads per hundred million reads processed (RPHM) from RNA-seq
data, were obtained from a previous publication [17]. Taken together, 400 diagnostic slides
from 375 patients were included in this study. Out of the 375 patients, 241 patients have
EBV abundance information available. Specifically, out of the 241 patients, 24 patients
with EBV abundance over 100 were considered as EBV+, while 98 patients with both zero
EBV abundance and HHV5 abundance were considered as EBV−. EBV− patients were
required to have zero HHV5, a virus from the same family as EBV, to prevent potentially
confounding HHV5 effects. The remaining 119 patients formed a leave-out set that is
characterized by low but non-zero EBV or zero EBV but non-zero HHV5 (Figure S1). This
leave-out set was considered as EBV status unclear and was not used to train or test the
EBV prediction model.

2.2. Image Preprocessing

All 400 diagnostic slides were in SVS format at either 20× or 40× magnification. Slides
with a magnification of 40× were first resized to 20×. Then, these slides were tessellated
into square tiles of 512 × 512 pixels, approximately 250 × 250 µm, using OpenSlide [18].
Tiles with insufficient length or width at slide boundaries were dismissed. Additionally,
tiles with more than 50% background, defined as RGB values over 220, were disregarded.
To avoid potential impacts of stain intensity variance across H&E slides, all tiles were later
color-normalized using the Macenko method [19].

2.3. Model Training

Our model architecture was based on Resnet18 [20], with the last layer modified.
After modification, the last layer contained two or three nodes, each representing one of
the three classes (tumor, dense normal and loss normal) or one of the two classes (EBV+
and EBV−). Pre-trained weights on the ImageNet database were downloaded. As a first
step, we trained a model to distinguish tumor and normal tiles from TCGA gastric cancer
slides. Specifically, this tumor vs. normal model was trained on an annotated dataset
of 11,977 tiles from gastrointestinal cancer patients [21]. In this dataset, each tile was
annotated according to 3 categories: tumor, dense and loose normal tissue. The tiles were
randomly divided into training, validation, and test sets at a ratio of 0.7:0.15:0.15. Image
augmentations including random reflection and translation within 5 pixels horizontally
and vertically were applied to these tiles before feeding them into the model with a batch
size of 64. Adam optimizer was used to update weights under learning rate of 5 × 10−6

and L2-regularization of 1 × 10−5. When loss on the validation set stops decreasing for
10 epochs, we stop training and evaluate the model on the test set. We achieved an overall
accuracy at 0.9989, with per class accuracy at 0.9983 for each category (Figure S2), where
per class accuracy was calculated as percentage of correctly predicted samples in a specific
class and overall accuracy was calculated as percentage of correctly predicted samples in
all classes.

Using the tumor vs. normal model, all tiles from the TCGA gastric cancer cohort were
then divided into tumor and normal tiles. Specifically, normal tiles are those predicted to
be either dense or loose normal tissues. Tumor tiles from EBV+ and EBV− samples, as
previously described, were first divided into training and external test sets in a ratio of
0.7:0.3 on sample level (patient level). According to patient’s EBV status, the EBV status
of each tile was assigned. To address imbalance problems, random downsampling of
EBV− tiles was performed to match EBV+ tiles’ sample size in the training set. All tiles in
the training set were further divided into training, validation and internal test sets with
a ratio of 0.85:0.125:0.025 on the tile level (Figure S1). For simplicity, “external test set” is
henceforth referred to as “test set”, unless otherwise stated. With a batch size of 256, the
same image augmentation strategies were applied before feeding the tiles into the Resnet18
model [20]. Similarly, we used Adam optimizer to update weights under learning rate
of 1 × 10−6 and L2-regularization of 5 × 10−4. In addition, to prevent overfitting, only
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weights after the last block, including the last block, were trained instead of the full model
as before. When loss on the validation set stops decreasing for 5 epochs, we stop training.
Since adjacent normal tissues can receive signals from tumor tissues and exhibit altered
pathways [22], the same training procedure was performed on normal tiles to examine if
our model can also capture potential changes in normal tissues induced by EBV+ tumor
tissues. All model training and tuning procedures were implemented using python with
PyTorch framework [23].

For EBV models trained on either tumor (tEBV model) or normal (nEBV model) tiles,
a sample-level EBV score is calculated by the proportion of predicted EBV+ tiles across
all tumor or normal tiles from each sample. Area under the curve (AUC) of the receiver
operating characteristic was used to evaluate model performance on test sets. Specifically,
slides with too few normal tiles (fewer than 10) or with handwriting on normal regions
were considered as low quality and discarded for evaluation and downstream analysis of
the nEBV model.

2.4. Sampl-Level Immune Infiltration

The lymphocyte levels for each sample were estimated by analysis of corresponding
H&E slides from a previous study [24]. An algorithm called BASE, which uses rank-based
methods to examine the expression of immune cell-specific genes, was applied to calcu-
late immune infiltration scores for specific immune cell subtypes [25]. Corresponding
expression profiles, level 3 processed TCGA RNA-seq data for gastric cancer, were down-
loaded from FireBrowse (http://firebrowse.org (accessed on 15 March 2021)). Six major
immune cell subtypes were focused, including Memory B cells, naïve B cells, CD4+ T cells,
CD8+ T cells, NK cells and monocytes.

2.5. Tile-Level Immune Infiltration

Tumor-infiltrating lymphocyte (TIL) maps for TCGA gastric cancer patients were
downloaded from a previous publication through The Cancer Imaging Archive (TCIA)
portal [26–28]. These TIL maps were also calculated from H&E slides. On these maps,
lymphocyte infiltration was indicated by the color red. Tile position information was
mapped to TIL maps. Each tile corresponds to a square of about 5 × 5 pixels or a square of
about 2.5 × 2.5 pixels depending on the scale of TIL maps. Because pixels are not divisible,
in practice, we calculated the pixel coordinates of a tile’s four vertices and rounded them
to integers. Tile-level immune infiltration was then represented by the proportion of red
pixels among all pixels belonging to the tile.

2.6. Statistical Analysis

Wilcoxon test was used to quantify tile- and sample-level EBV score or immune
infiltration difference between 2 groups. Gene Ontology enrichment analysis of gene sets
was performed with function “enrichGO” from R package “clusterProfiler” [29]. Pearson
correlation was used to quantify local correlations between immune infiltration and EBV
score per slide. Specifically, tiles from some slides correspond to about 2.5 × 2.5 pixels in
TIL maps, rounding edge length to 2 or 3 pixels will result in large errors in estimation of
tile-level immune infiltrations. Therefore, these slides, as well as slides with insufficient
normal tiles or handwriting, were dismissed for correlation tests on normal regions.

2.7. Survival Analysis

Progression free survival times were obtained from a previous publication [24]. R pack-
ages “survival” and “survminer” were used in the survival analysis. Specifically, R func-
tions “survfit” and “ggsurvplot” were used to generate Kaplan–Meier plots. The difference
between survival curves was compared through the “survdiff” function. Corresponding
p values were calculated through log-rank tests. Univariate and multivariate Cox regression
models were built for EBV scores with “coxph” function. Confounding variables including
lymphocyte level, age, sex and tumor stage were adjusted with multivariate Cox regression

http://firebrowse.org
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model. Specifically, we considered patients over 65 years old as old, stage I–II as low stage
and III–IV as high stage.

3. Results
3.1. A Deep-Learning-Based Framework for Classifying EBV+ versus EBV− Gastric Tumors

We developed a convolutional neural network architecture based on Resnet18 [20] to
classify EBV+ and EBV− gastric tumors. To start with, a tumor vs. normal model was first
trained to detect tumor tiles from H&E slides. Then, an EBV model was trained on tumor
tiles with 250 × 250 µm and generated EBV scores for each tile. A sample-level EBV score
was calculated by dividing the number of predicted EBV+ tiles (EBV score > 0.5) by the
sample’s total tumor tiles. Since adjacent normal tissues can receive signals from tumor
tissues and exhibit altered pathways [22], a model was also trained on normal tiles in the
same way (Figure 1A). The AUC from the sample-level EBV score was used to evaluate
model performance.
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Figure 1. Schematic design of the study: (A) Deep-learning-based pipeline for predicting EBV status.
The tumor vs. normal model (TN model) was first applied to distinguish tumor and normal tiles,
and EBV models were then trained on tumor and normal tiles separately to predict EBV status.
(B) Downstream analysis of models predicting EBV scores. (1) Comparing immune infiltration
between samples with high and low EBV scores led us to hypothesize that our model was at least
partially influenced by regional immune infiltration. (2) To test this hypothesis, we examined local
correlations between EBV scores and immune infiltration. In spite of high correlations, our model
outperformed predictions based solely on immune infiltrations. (3) Besides, our model can provide
additional prognostic values compared to EBV status and immune infiltration.

Since previous studies reported significant high immune infiltration in EBV+ sam-
ples [7], we extend the comparison of immune infiltration to cohorts with low EBV abun-
dance (0~100 RPHM) and to cohorts with zero EBV abundance. Considering the similar
significant differences observed, we hypothesized that the EBV model prediction was at
least partially driven by spatial immune cell composition. To test this hypothesis, the
correlation between the immune infiltration and EBV scores of the tiles in each slide were
examined. In addition, we evaluated the prognostic utility of EBV models and found that
higher EBV scores predict better survival (Figure 1B).
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3.2. The EBV Model Accurately Predicts EBV+ Status

Having trained the EBV model on tumor tiles (tEBV model), we then applied it to
a test set of samples it had never seen before. As shown, tiles from EBV+ samples had
significantly higher EBV scores than those from EBV− samples (p < 1 × 10−314, Figure 2A).
We next calculated a sample-level EBV score as the proportion of tiles with EBV score
over 0.5 out of total tumor tiles. Consistently, EBV+ samples also had significantly higher
EBV scores than EBV− samples (p = 0.003, Figure 2B). To evaluate model performance,
we applied the sample-level EBV scores to discriminate EBV+ versus EBV− samples and
achieved an AUC of 0.85 (Figure 2C). Since adjacent normal tissues can receive signals
from tumor tissues and exhibit altered pathways [22], we further trained the EBV model on
normal tiles (nEBV model) to examine whether EBV infection in tumor tissues can induce
changes within adjacent normal tissues that can be captured by our model. Similarly,
normal tiles from EBV+ samples showed significant higher EBV scores to those from
EBV− samples (p < 1 × 10−314, Figure 2D). As a result, EBV+ samples scored higher than
EBV− samples (p = 0.02, Figure 2E), resulting in an AUC of 0.81 for distinguishing EBV+
samples (Figure 2F). We next applied the two EBV models to the leave-out set, which had
samples with low EBV abundance. Specifically, samples with an EBV score over 0.5 were
considered as high score samples, while the rest were low score samples. Using tEBV
model, we found that high score samples were present in 20 of the 119 (17%) leave-out
samples, consistent with 4 of the 29 (14%) EBV− samples in the test set (Figure S3A).
Similar results were observed using the nEBV model, with 17 high scores in 103 (17%)
leave-out samples and 3 high scores in 24 (12%) EBV− samples in the test set (Figure S3B).
Taken together, Figure S3C showed the EBV scores from both models across the whole
cohort. Most samples fell in the lower left and upper right, suggesting a high consistency
between the tEBV model and the nEBV model. Some samples fell in the upper left and
lower right, indicating inconsistent predictions between the two models for these samples.
Figure 2G visualizes model performance in both tumor and normal regions for two EBV+
and two EBV− representative slides. As shown, tiles from EBV+ slides tend to have higher
EBV scores compared to those from EBV− slides.
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Figure 2. Performance of the model for predicting EBV status: (A,B) EBV scores calculated by the model applied to
tumor tiles (tEBV model) distinguish EBV+ from EBV− on both tile level (A) and sample level (B). (C) Receiver Operating
Characteristic (ROC) for classifying EBV+ and EBV− samples based on tEBV scores. (D,E) EBV scores derived from normal
tiles (nEBV scores) distinguish EBV+ from EBV− on tile (D) and sample level (E). (F) Receiver Operating Characteristic
(ROC) for classifying EBV+ and EBV− samples based on nEBV scores. (G) The first row shows 2 EBV+ and 2 EBV− gastric
cancer H&E slides. The model prediction in tumor and normal regions is shown in the second and third rows, with grey
indicating remaining tissues. p values are calculated from two-sided Wilcoxon rank-sum test.
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3.3. Association of EBV Status with Immunological Features

Previous studies reported high immune infiltrations in EBV+ samples [7], which
was confirmed in our analysis by the higher levels of lymphocytes in 24 EBV+ samples
compared to 98 EBV− samples (p = 0.008, Figure 3A). The lymphocyte levels were es-
timated at the sample level by analysis of corresponding H&E slides from a previous
study [24]. Then, we examined infiltration of specific immune cell subtypes between EBV+
and EBV− samples. Using a previously developed algorithm [25] based on expression
data, we determined the levels of six major immune cell subtypes: naïve B cells, memory
B cells, CD4+ T cells, CD8+ T cells, Natural killer cells and monocytes. We found that the
infiltrations of CD4+ T cells, monocytes and Natural killer cells were significantly higher
in EBV+ samples, while the infiltration of naïve B cells was significantly higher in EBV−
samples (Figure 3B).

Next, we extended our analysis to comparisons of high and low score samples in co-
horts with low or zero EBV abundance. Specifically, since these cohorts from the leave-out
set contained samples with zero EBV but some HHV5, a virus homolog of EBV, we first
examined potential impacts of HHV5 on immune infiltration and EBV scores. To avoid
EBV infection’s impact, only samples with zero EBV abundance from the entire cohort were
kept for this analysis. We observed low and non-significant correlation coefficients between
HHV5 abundance and lymphocyte infiltration (R = −0.096, Figure S4A), indicating that
HHV5 does not significantly affect lymphocyte infiltration. Furthermore, HHV5 abun-
dance was poorly correlated with the EBV scores from both the tEBV model (R = −0.018,
Figure S4B) and the nEBV model (R = 0.042, Figure S4C). Based on this result, we extracted
86 samples with low (<100 RPHM) but non-zero EBV abundance regardless of HHV5 in
the leave-out set and applied the tEBV and nEBV models on them to compare immune in-
filtration between high and low score samples. We considered EBV scores above 0.5 as high
scores for both the tEBV model and the nEBV model. Using the tEBV model, 16 high score
and 70 low score samples were identified. High score samples were found to have higher
lymphocyte infiltrations with a more significant p value (p = 3 × 10−4, Figure 3C), which is
expected because EBV+ has higher lymphocyte infiltration than EBV-. Consistently, high
infiltration of CD4+ T cell, monocyte, and Natural killer cell were observed in high score
samples, whereas low infiltration of naïve B cells was observed (Figure 3D). A significant
increase in CD8 T cell and memory B cells in low score samples was also observed, even
though their infiltration was comparable between EBV+ and EBV− samples. Similarly,
using the nEBV model, an even more significant higher lymphocyte level was observed in
12 high score samples compared to 61 low score samples, after excluding samples with low
quality normal tiles (p = 8 × 10−5, Figure 3E). Consistent with the tEBV model, significant
differences in the six major immune cell subtypes, except for monocytes, between high and
low score samples were validated (Figure 3F). Although not significant, the same trend
was observed for monocytes.

Having shown immune infiltration difference between high and low score samples
with low (but not zero) EBV abundance, we then compared immune infiltration difference
between high and low score samples with zero EBV abundance. Specifically, samples from
the training set were excluded because training forced the model itself to fit towards correct
EBV status, rather than immune infiltration. We utilized 29 EBV− samples from the test set,
but because of the small sample size, and since HHV5 did not affect immune infiltration
nor EBV score, we also combined 33 samples with zero EBV abundance from the leave-out
set with the test set. We first applied tEBV model, resulting in 8 high score and 54 low
score samples. As expected, the high score samples were highly infiltrated by lymphocytes
compared to the low score samples (p = 0.04, Figure 4A). In terms of the six immune cell
subtypes, CD4 T cells were found to be present at high levels in high score samples as
in our previous results (Figure 4B). The same trend was observed for monocytes, but it
did not reach significance threshold. Similarly, after excluding samples with low quality
normal tiles, we applied our nEBV model and identified 8 high and 45 low score samples.
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Consistently, high score samples showed high levels of lymphocytes, as well as CD4 T cells
and monocytes (Figure 4C,D).
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Figure 3. Association of EBV status with immune infiltration: (A) Differential lymphocyte infiltrations
between EBV+ and EBV− samples. (B) Differential infiltrations of CD4+ T cells, monocytes, Natural
killer cells and naïve B cells between EBV+ and EBV− samples. (C,D) Infiltration of lymphocytes
(C) and six major immune subtypes (D) in tumor regions for high and low tEBV score samples with
low EBV abundance. (E,F) Infiltration of lymphocytes (E) and six major immune subtypes (F) in
normal regions for high and low nEBV score samples with low EBV abundance. tEBV or nEBV scores
above 0.5 are considered as high scores. p values are calculated from one-sided (A,C,E) or two-sided
(B,D,F) Wilcoxon rank-sum test.
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Figure 4. Association of EBV scores with immune infiltration: (A,B) Infiltration of lymphocyte (A) and six major immune
cell subtypes (B) in tumor regions for high and low tEBV score samples with zero EBV abundance. (C,D) Infiltration of
lymphocyte (C) and six major immune cell subtypes (D) in normal regions for high and low nEBV score samples with zero
EBV abundance. (E) Correlation of expression of immune-related genes with tEBV score, nEBV score and EBV abundance
over the entire cohort. (F,G) Enriched gene ontologies for positively (F) and negatively (G) correlated genes. p values are
calculated from one-sided (A,C) or two-sided (B,D) Wilcoxon rank-sum test.

In addition, we examined the correlations of 73 immune-related genes to EBV score
and EBV abundance within the entire cohort. This gene list included 70 major immunos-
timulatory and suppressor genes, as well as 3 genes (CXCL9, CXCL10, CXCL11) [3] known
to be overexpressed in EBV+ that are used as positive controls. As shown in Figure 4E,
the majority of genes (51 out of 73) showed positive correlations with EBV abundance.
When both EBV models were applied, similar results were observed, with 53 out of 73
and 38 out of 73 genes correlated positively with EBV scores from the tEBV model and
the nEBV model, respectively. Specifically, immune checkpoint genes CD274 and IDO1,
as well as CXCL9, CXCL10 and CXCL11, were strongly positively correlated with EBV
score and abundance. To better understand the role these genes played in the difference
between EBV+ and EBV−, we performed Gene Ontology enrichment analyses of both
positively and negatively correlated gene sets. In practice, we considered genes with
correlation coefficients above 0.1 for tEBV score, nEBV score, and EBV abundance as pos-
itively correlated genes and those below −0.1 as negatively correlated genes. In total,
19 positively and 6 negatively correlated genes were identified. As shown, positively
correlated genes were enriched on biological processes related to immune cell activation
(Figure 4F), while negatively correlated genes were enriched on biological processes related
to immune cell proliferation (Figure 4G). We further expanded the 73 immune-related
genes to include all available 20,501 genes. To avoid too-large gene sets, we changed the
threshold from ±0.1 to ±0.2 and identified 379 positively and 843 negatively correlated
genes. Positively correlated genes were found to be enriched for interferon-gamma-related
processes (Figure S5A), while negatively correlated genes were found to be enriched for
development and molecular transport processes (Figure S5B).
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3.4. The EBV Model Prediction Is Partially Driven by Regional Immune Infiltration in H&E Slides

Having shown different immune infiltration between high and low score samples
in cohorts of patients with low or zero EBV abundance, we hypothesized that regional
immune infiltration in H&E slides was contributing to the EBV model prediction. To test
this hypothesis, we first visually compared model prediction results with tumor-infiltrating
lymphocyte (TIL) maps, which were derived from a trained deep learning algorithm to
distinguish lymphocyte-infiltrated patches based on a previous study [26–28]. As shown
in Figure 5A, the heat maps of the EBV scores in both normal and tumor regions from
some slides were found to be matched extremely well with the corresponding TIL maps.
Taking a slide as an example (Figure 5B), we further quantified the correlation of regional
immune infiltration with EBV scores in both tumor and normal regions. Specifically, we
mapped tiles’ positions to the corresponding TIL map and calculated tile-level immune
infiltration, represented by lymphocyte-infiltrated area divided by tile area. Furthermore,
tile-level immune infiltrations were categorized into 10 levels, corresponding to the ratio of
lymphocyte pixels to total number of pixels in the area: level 1 would be tiles with a ratio
of 0~0.1, level 2 would be 0.1~0.2, and up to level 10, which would be 0.9~1. As shown,
tiles with higher immune infiltrations had higher EBV scores, resulting in high correlation
coefficients in both tumor (R = 0.54, Figure 5C) and normal regions (R = 0.48, Figure 5D).
We then extended our analyses to all H&E slides. After excluding low quality slides, we
found high correlations between immune infiltration and EBV scores from both tumor and
normal regions across slides, with positive correlations in 213 out of 227 tumor regions
(Figure 5E) and in 182 out of 197 normal regions (Figure 5F). According to EBV abundance,
we next stratified the H&E slides into 3 categories: 25 EBV+ (>100 RPHM), 116 EBV−
(0 RPHM) and 86 low EBV abundance (0~100 RPHM). Among EBV+ slides, 21 out of 25
and 21 out of 21 slides were observed with positive correlations for tumor (Figure 5G) and
normal regions (Figure 5H), respectively. These results were further validated in EBV−
slides, with 113 out of 116 slides and 94 out of 101 slides exhibiting positive correlations in
tumor (Figure 5I) and normal regions (Figure 5J). Similar results were found for slides with
low EBV abundance: 79 out of 86 and 67 out of 75 slides had positive correlations in their
tumor (Figure S6A) and normal regions (Figure S6B).

Since the EBV score is highly correlated with immune infiltration, we next exam-
ined whether immune infiltration in tumor or normal regions could predict EBV status.
Specifically, given that HHV5 do not affect immune infiltration nor EBV score, we consid-
ered samples with zero EBV abundance as EBV− here regardless of HHV5, resulting in
24 EBV+ samples and 131 EBV− samples. We first calculated immune infiltration in the
tumor region for each sample based on the lymphocyte-infiltrated area in the tumor region
divided by the total tumor area according to TIL maps. As a result, we achieved an AUC
of 0.75 with immune infiltration in tumor regions, lower than that from the tEBV model
(AUC = 0.85, Figure 5K). Similar results were observed for immune infiltrations in normal
regions, indicated by an AUC of 0.78 versus 0.81 from the nEBV model (Figure 5L). Taken
together, the prediction ability of the EBV model is at least partially but not fully explained
by immune infiltrations.

3.5. EBV Score Is Associated with Patient Prognosis

Having shown that our model is partially driven by regional immune infiltrations,
we next examined whether our model could provide additional prognostic value beyond
immune infiltration and EBV status. To start with, we compared survival differences among
patients with EBV+ (>100 RPHM), unclear (0~100 RPHM) and EBV− (0 RPHM) status.
As shown in Figure 6A, all three groups of patients showed comparable progression-free
survival rates. Next, we examined how immune infiltration affects progression free survival.
After dichotomizing the patients into high and low lymphocyte-infiltrating groups based
on their median value, we observed no significant survival differences between the two
groups (Figure 6B). Additionally, we calculated EBV scores for each sample by applying
the EBV models. After excluding training samples, patients with high scores were found
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to have significantly longer progression-free survival compared to those with low scores
using both the tEBV (p = 0.03, Figure 6C) and nEBV (p = 0.04, Figure 6D) models. After
considering established clinical variables including lymphocytes, age, sex and tumor stage,
the association of the EBV score with prognosis remained significant in the multivariate
Cox regression model. Patients with high EBV scores have a 55% or 61% lower risk of
progression than those with low scores using the tEBV (Figure 6E) or nEBV (Figure 6F)
model, respectively.
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regression model.

4. Discussion

EBV+ gastric cancers represent a distinct subtype with favorable prognosis and high
immune infiltration, making them ideal immunotherapy candidates [7]. Indeed, several
studies report high overall response rates of EBV+ gastric cancer patients receiving immune
checkpoint inhibitor therapy [9]. In this study, we developed a deep learning framework
based on H&E slides to calculate an EBV score. Our model was proved to be accurate
in both tumor and normal regions within each slide. Furthermore, we found our model
could be partly interpreted by regional immune infiltration and could provide additional
prognostic values beyond EBV status and immune infiltration.

In recent years, deep learning has emerged as a powerful tool for medical image
analysis. With the development of image processing techniques, deep learning methods are
beginning to show increasing advantages over humans in various fields such as denoising,
feature extraction and dimensionality reduction of medical images [30]. Previous studies
have achieved high performance with deep learning methods for tumor diagnosis based on
radiomics data [31]. Furthermore, many studies have successfully applied deep learning
frameworks in predicting somatic mutations, pathway deficiencies and even viral infections
using histological slides [14–16,32]. However, deep learning methods are mostly used as
a black box. Most studies lack a clear interpretation of their deep learning methods. It is
unclear what features deep learning models are capturing for prediction despite their high
performance. In this study, we examined correlations between the model predictions and
the infiltration of regional immune cells. There were positive correlations for the majority
of slides even after stratifying by EBV abundance. Therefore, our model can be explained
at least partly by regional immune infiltration within slides. Similarly, it is also likely that
models in previous studies that successfully predicted somatic mutations as well as other
molecular alterations captured information of regional immune infiltration for prediction.
Indeed, the mutations of genes with high predictive accuracy such as TP53, STK11 and
EGFR are often associated with high immune infiltration [33]. Additionally, the number of
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lymphocytes in each slide detected using deep learning methods was recently successfully
used to predict the mutations of a number of genes, such as FGFR3 and TP53 [34].

Our model detected morphometric feature changes caused by EBV infection, including
immune infiltration, rather than EBV genome. Interestingly, we found both tEBV and nEBV
scores were more prognostic compared to EBV status and immune infiltrations. A possible
reason is that the EBV model also capture other features such as immune cell subtypes in
addition to local immune infiltrations. Due to the heterogeneous nature of immune cells in
the tumor microenvironment, in addition to tumor-killing cells (e.g., CD8+ T cells), there
are also immune cells (e.g., T regulatory cells) that can help tumors escape from immune
surveillance. Therefore, considering cell subtypes may give our model higher prognostic
values compared to overall immune infiltration.

Compared to traditional molecular techniques for detecting EBV, our method has the
following advantages. (1) Our model is much faster than traditional techniques. In situ
hybridization usually takes 2–3 days. After training, our model only requires a few minutes
to tessellate a slide and make predictions. (2) Molecular techniques usually require good
preservation of nucleic acids in slides, which can be degraded in tissue fixation, staining,
etc. Our model directly works on H&E slides regardless of the preservation of nucleic acid,
thereby expanding the range of samples available for testing.

While we provided a promising method for detecting EBV infection status, there
are some limitations to this study. First, the number of EBV+ samples in TCGA datasets
is limited. Due to data availability, we have not validated our models in independent
datasets. Further validation of the model’s performance in independent gastric cancer
datasets will be needed. Second, TIL maps are binary-colored, with red indicating highly
lymphocyte-infiltrated regions. If lymphocyte counts are taken into consideration, there
should be a much higher correlation between immune infiltration and EBV score.

5. Conclusions

In summary, we developed a deep learning-based algorithm to predict EBV status
directly from H&E slides. Compared to traditional molecular techniques, our method
is more efficient and economical. Our model is interpretable by regional infiltrating
lymphocytes and can provide additional prognostic utilities. The results of this study may
be extended in the future to develop more precise and interpretable models and to help
predict patient responses to immunotherapy.
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