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Abstract

Motivation: Accurate prediction of residue–residue distances is important for protein structure prediction. We devel-
oped several protein distance predictors based on a deep learning distance prediction method and blindly tested
them in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The prediction method uses deep re-
sidual neural networks with the channel-wise attention mechanism to classify the distance between every two resi-
dues into multiple distance intervals. The input features for the deep learning method include co-evolutionary fea-
tures as well as other sequence-based features derived from multiple sequence alignments (MSAs). Three
alignment methods are used with multiple protein sequence/profile databases to generate MSAs for input feature
generation. Based on different configurations and training strategies of the deep learning method, five MULTICOM
distance predictors were created to participate in the CASP14 experiment.

Results: Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is ranked 5th out of
30 automated CASP14 distance prediction servers in terms of precision of top L/5 long-range contact predictions [i.e.
classifying distances between two residues into two categories: in contact (<8 Angstrom) and not in contact other-
wise] and performs better than the best CASP13 distance prediction method. The best performing MULTICOM pre-
dictor is also ranked 6th among automated server predictors in classifying inter-residue distances into 10 distance
intervals defined by CASP14 according to the precision of distance classification. The results show that the quality
and depth of MSAs depend on alignment methods and sequence databases and have a significant impact on the ac-
curacy of distance prediction. Using larger training datasets and multiple complementary features improves predic-
tion accuracy. However, the number of effective sequences in MSAs is only a weak indicator of the quality of MSAs
and the accuracy of predicted distance maps. In contrast, there is a strong correlation between the accuracy of con-
tact/distance predictions and the average probability of the predicted contacts, which can therefore be more effect-
ively used to estimate the confidence of distance predictions and select predicted distance maps.

Availability and implementation: The software package, source code and data of DeepDist2 are freely available at
https://github.com/multicom-toolbox/deepdist and https://zenodo.org/record/4712084#.YIIM13VKhQM.

Contact: chengji@missouri.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Accurate prediction of inter-residue distances (or its simplified rep-
resentation—inter-residue contacts) is critical for template-free (ab
initio) tertiary structure prediction, i.e. predicting the structure of a
protein without using any known structure as templates
(Kryshtafovych et al., 2019). The predicted inter-residue distances
can be translated into tertiary structures by off-shelf tools such as
trRosetta (Yang et al., 2020), CONFOLD2 (Adhikari and Cheng,

2018) built on top of CNS (Brünger et al., 1998) and DMPfold
(Greener et al., 2019). In the 2018 CASP13 experiment, the top-
ranked methods (Hou et al., 2019; Kandathil et al., 2019; Senior et
al., 2020; Xu and Wang, 2019; Zheng et al., 2019) all used distance
or contact predictions to guide template-free (FM) structure model-
ing to achieve significant success. Since then, the inter-residue dis-
tance prediction has become a focal point of protein structure
prediction.
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In the last several years, the advances in protein distance/contact
prediction were mostly driven by two technologies: the residue–resi-
due co-evolutionary analysis (Ekeberg et al., 2013; Kamisetty et al.,
2013; Seemayer et al., 2014) for generating informative features for
prediction and various deep learning methods (Goodfellow et al.,
2013; He et al., 2016) for effectively extracting protein distance/con-
tact patterns from the features. Since classifying the distances be-
tween residues into multiple distance intervals (commonly called
distance prediction) can provide more detailed information about
residue–residue distances than classifying them into two binary cate-
gories—in contact or not in contact (commonly called contact pre-
diction), recent methods such as AlphaFold and RaptorX focused on
the distance prediction. The multi-classification or binary classifica-
tion of distances produces a multi-class or binary-class distance
probability map. Most recently, some methods such as DeepDist
(Wu et al., 2020, 2021) were developed to predict real-value inter-
residue distances using deep learning regression methods, in addition
to classifying the distances into multiple distance intervals.
Moreover, the attention mechanism that can pick up relevant signals
anywhere in the input features was also applied to predict protein
contacts and explain the predictions (Chen et al., 2021). In the
CASP14 experiment, the attention mechanism was also used by
AlphaFold2, tFold and our MULTICOM distance predictors to im-
prove distance/structure prediction.

In this work, we describe the design and implementation of our
MULTICOM distance predictors based on our DeepDist2 distance
prediction method and analyze their results and performance in
CASP14. Following the CASP14 norm, the analysis is focused on
hard template-free modeling (FM) target domains instead of tem-
plate-based modeling (TBM) domains that have recognizable known
template structures in the Protein Data Bank (PDB) (Berman et al.,
2000). The FM/TBM domains that might have very weak templates
that cannot be recognized by existing sequence alignment methods
are also used in the evaluation.

2 Materials and methods

The overall pipeline of the MULTICOM distance predictors based
on our latest deep learning method—DeepDist2 is shown in Figure
1. Three methods are used to generate multiple sequence alignments
(MSAs) for a target protein in parallel, including our in-house
tool—DeepAln (Wu et al., 2020 2021), DeepMSA (Zhang et al.,
2020) and HHblits (Remmert et al., 2011). DeepAln and DeepMSA
are also used in the original DeepDist method. In CASP14,
MULTICOM predictors added the HHblits search against the Big
Fantastic Database (BFD) (Steinegger et al., 2019) (denoted as
HHblits_BFD) to generate MSAs when the number sequences in
MSAs generated by DeepAln and DeepMSA was less than 10 L (L:
sequence length).

Each MSA is used to produce multiple co-evolutionary features
such as covariance matrix (Jones and Kandathil, 2018), precision
matrix (Li et al., 2019) and pseudolikelihood maximization matrix
(Seemayer et al., 2014). The quality of the co-evolutionary features
depends on the depth of MSA (i.e. the number of sequences) as well
as the quality of the MSA (e.g. the proportion of true homologous
sequences in MSA). For instance, when the number of effective
sequences (Neff) in an MSA is too small, the co-evolutionary scores
tend to be noisy and less informative (Wu et al., 2020a,b). To com-
plement the co-evolutionary features, the non-coevolutionary fea-
tures such as position-specific scoring matrix (PSSM) generated by
PSI-BLAST (Bhagwat and Aravind, 2007) and secondary structures
predicted by PSIPRED (Jones, 1999) are also used.

Different kinds of co-evolutionary features are combined with
non-co-evolutionary features to generate the four sets of features
(COV_Set, PRE_Set, PLM_Set and OTHER_Set; see details in
Section 2.2). Each of four sets of features derived from the same
MSA is used by a deep residual network with a channel-wise atten-
tion mechanism to predict a distance map. The average of the four
predicted distance maps is the predicted distance map for the MSA.
Different from DeepDist that uses four different deep architectures

for different sets of features, DeepDist2 uses the same network
architecture for all the feature sets. For most CASP14 targets, the
distance maps predicted from the features generated from DeepAln’s
MSA and DeepMSA’s MSA were averaged as the final prediction.
When the number of sequences in the combination of MSAs gener-
ated by DeepAln and DeepMSA was less than 10 L, the distance
map predicted from the MSA of HHblits_BFD was averaged with
the distance maps predicted from MSAs of DeepAln and DeepMSA
as the final prediction.

Based on the same protocol above, four automated MULTI
COM distance predictors MULTICOM-CONSTRUCT, MULTI
COM-AI, MULTICOM -DIST, MULTICOM-HYBRID were
trained with different labelings of distance intervals.
MULTICOM-DEEP used the average of the four predictors as its
prediction. The distance intervals (or bins) of MULTICOM-
CONSTRUCT are 0–4 Å, 4–6 Å, 6–8 Å, . . ., 18–20 Å and >20 Å.
MULTICOM-DIST uses 42 bins, i.e. dividing 2 to 22 Å into 40
bins with a bin size of 0.5 Å, plus 0–2 Å bin and >22 Å bin.
MULTICOM-HYBRID shares the same distance segmentation
strategy as MULTICOM-DIST, except that it starts with an inter-
val 0–3.5 Å and its last interval is set to >19 Å. MULTICOM-AI
has 37 equally spaced intervals of 0.5 Å between 0 and 20 Å and
the >20 Å interval. Though the predicted multi-class distance pre-
diction maps of the five predictors are based on the different dis-
tance intervals, they are converted into the 10-bin classification
maps required by CASP14. The 10 bins defined CASP14 are bin1:
d�4Å, bin2: 4<d�6Å, bin3: 6<d�8Å, . . ., bin10: >20Å,
which are the same as MULTICOM-CONSTRUCT.

Fig. 1. The overall pipeline of the MULTICOM distance predictors based on

DeepDist2. The two data flows (branches) applied to all the targets are connected

by the black solid line, while the optional flow (branch) is connected by the red dot-

ted line, which is only invoked when the MSAs are produced by DeepMSA and

DeepAln are not sufficiently deep. Each flow (branch) produces four sets of features

(COV_Set, PRE_Set, PLM_Set and OTHER_Set; see details in Section 2.2), each of

which is used as input for a deep network to predict a distance map. The four dis-

tance maps predicted from the four sets of features of each branch are averaged as

the predicted distance map of the branch. The final prediction is the average of the

predicted distance maps of the first two or all the three branches
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2.1 Deep residual neural networks with channel-wise

attention mechanism for inter-residue distance

prediction
The architecture of the deep residual network with the attention
mechanism is shown in Supplementary Figure S1. The input features
(a tensor of L * L * N dimension; L: sequence length; N: number of
channels) are first fed into an instance normalization layer (Ulyanov
et al., 2016), followed by a convolutional layer and a Maxout layer
(Goodfellow et al., 2013). The convolutional layer reduces the num-
ber of channels to 128 and then the Maxout layer halves it to 64.

Following the Maxout layer are 20 residual blocks with the same
input and output dimension of 64. Each residual block starts with a
normalization block (called RCIN) that includes three different
kinds of normalization layers and one ReLU (Nair and Hinton,
2010) activation function. The three normalization layers of RCIN
are row normalization layer (RN), column normalization layer (CN)
(Mao et al., 2020) and instance normalization (IN) layer. The out-
put of the three normalization layers is concatenated as input for a
ReLU activation function. Through this operation, the information
in multiple directions can be effectively integrated to better capture
contacts/distances between residues. The RCIN block is followed by
a convolutional layer, an RCIN block, three convolutional layers,
an RCIN block and a convolutional layer. The final part of the re-
sidual block is the squeeze-and-excitation block (SE) (Hu et al.,
2018), which is a channel-wise attention method popular in the
computer vision field. This block has good adaptability and can be
embedded into different deep network architectures. It has two
parts: one is the squeeze operation that can collect the global infor-
mation between all the feature channels and another is the excita-
tion operation that can boost the impact of relevant features by two
fully connected layers with the ReLU activation function. The SE
block recalibrates the feature channels through learning so that the
network can assign more attention to more essential feature chan-
nels. We apply a softmax activation to classify inter-residue distan-
ces between residues into multiple intervals (bins), i.e. predict the
probability distribution of inter-residue distances.

2.2 Multiple sequence alignments and input features
DeepAln and DeepMSA use HHblits and jackhmmer to search sev-
eral protein sequence datasets to generate MSAs (Wu et al.,
2020a,b). During the CASP14 experiment, all the databases [i.e.
UniRef90 (2020-04) (Mirdita et al., 2017), Uniclust30 (2020-03),
Metaclust50 (2018-06) (Steinegger and Söding, 2018) and
Myg_UniRef100] used for MSA generation were updated to their
latest version. The BFD used by HHblits search was released by
March 2019.

The residue–residue co-evolutionary features including covari-
ance matrix (COV), precision matrix (PRE) and pseudolikelihood
maximization matrix (PLM) calculated from MSAs are two-dimen-
sional (2D) features with multiple channels, and have a dimension
of L�L�441. PSSM generated from PSI-BLAST search against
UniRef90 is also a useful feature. Other features like the Pearson’s
correlation between columns of PSSM, the co-evolutionary contact
scores produced by CCMpred, the Shannon entropy sum, mean con-
tact potential, normalized mutual information and mutual informa-
tion from DNCON2 are generated. These features are combined to
generate four sets of features as follows. (i) COV_Set includes COV,
PSSM, Pearson correlation and CCMpred contact scores; (ii)
PLM_Set contains PLM, PSSM and Pearson’s correlation; (iii)
PRE_Set has PRE, PSSM and entropy scores (joint entropy, Shannon
entropy sum) and (iv) OTHER_Set has PSSM, CCMpred contact
scores, Pearson correlation, solvent accessibility, mean contact po-
tential, normalized mutual information and mutual information.

2.3 Datasets and evaluation metrics
11 234 proteins used by RaptorX (Xu and Wang, 2019) were
employed to train the MULTICOM distance predictors. The pro-
teins may have a single domain or multiple domains. The sequence
identity between any two proteins in the dataset is less than 25%.

Also, the proteins in the training dataset have less than 25% se-
quence identity with the proteins in the three test datasets: 43
CASP13 FM and FM/TBM domains, 37 CASP12 FM domains and
268 CAMEO targets (released between August 31, 2018 and August
24, 2019). The predictors were trained and internally tested on the
test datasets before they were blindly tested in CASP14 from May to
July 2020.

The evaluation of the MULTICOM distance predictors is based
on 37 hard FM and FM/TBM domains of CASP14 (i.e. 23 FM
domains and 14 FM/TBM domains). To be consistent with the ana-
lysis of CASP14, the evaluation is carried out at the domain-level.
The distance predictions are evaluated by three metrics: (i) the preci-
sion of top L/5, L/2 or L long-range contact prediction after the
multi-class distance predictions are converted to binary contact pre-
dictions at 8 Å threshold (L: sequence length), (ii) mean absolute
error (MAE) between predicted distances and true distances and (iii)
the average precision, recall and F-measure of multi-classification of
distances between long-range residue pairs over 10 distance bins.

Two residues are considered in contact if the distance between
their b-carbon atoms (a-carbon for the glycine amino acid) is less
than 8 Å. A contact map can be obtained by summing up the prob-
ability values of the intervals within 0–8 Å in a predicted multi-clas-
sification distance map. We use ConEVA (Adhikari et al., 2016) to
calculate the precision of predicted contacts. The CASP14’s assess-
ment results at https://predictioncenter.org/casp14/rrc_avrg_results.
cgi are also used. A contact is considered long-range contact if the
sequence separation between the two residues is �24 residues, me-
dium-range if the sequence separation is within [12, 23] and short-
range if the sequence separation is within [6, 11]. In this study, the
evaluation is mostly focused on long-range residue–residue contact/
distance predictions according to the CASP norm.

The real-value distance between two residues is estimated as the
sum of the mean distance of each interval times the predicted prob-
ability of the interval (i.e. the weighted average). Because large dis-
tances contribute little to tertiary structure prediction, only
predicted distances less than 16 Å are used for the MAE evaluation.
The standard deviation of the MAE is also calculated. When the
MAE is close, a smaller standard deviation is preferred.

For the multi-classification prediction, we apply the precision
(denoted as Precision_m), recall (denoted as Recall_m) to evaluate
the multi-classification of distances between long-range residue
pairs. The precision and recall of each distance bin for a target are
calculated first. The precision and recall of multiple distance bins is
the arithmetic average of precision and recall of each bin over all the
bins (see the detailed formula of Precision_m and Recall_m in
Supplementary Document). Therefore, the final precision and recall
(Precision_m and Recall_m) can evaluate the accuracy of the overall
performance of multi-classification of distances for a target. We
only calculate the precision and recall of the multi-classification pre-
diction of the distances between long-range residue–residue pairs.
The F1-measure is the geometric mean of Precision_m and
Recall_m.

3 Results

3.1 Overall performance of distance prediction in

CASP14
In this study, we only compare CASP14 server predictors, excluding
CASP14 human predictors that had more prediction time and could
use some server predictions as input. The performance of the top 20
out of 30 CASP14 automated server predictors on 37 FM and FM/
TBM domains in terms of precision of top L/5 long-range contact
predictions (called top L/5 precision) is shown in Supplementary
Table S1. The top L/2 precision of the predictors is also reported in
the table. The result was compiled from the evaluation data at the
CSAP website after excluding human distance predictors. Our best
server predictor MULITCOM-CONSTRUCT has a top L/5 preci-
sion of 64.99% and is ranked no. 5 after TripletRes from Zhang
Group and three tFold servers (tFold-CaT, tFold-IDT and tFold)
from tFold Group. Other MULTICOM predictors are also ranked
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among the top 20. Moreover, the top L/5 (or L/2) precision of the
MULTICOM predictors is higher than RaptorX—the best contact
predictor in CASP13, showing that multiple predictors including
ours in the CASP14 experiment improve over the best CASP13 con-
tact predictor.

Among the 30 server predictors, 19 of them submitted multi-
class distance predictions, while the rest only submitted binary con-
tact predictions. Three of the 19 groups missed some FM and/or
FM/TBM targets. Supplementary Table S2 reports the precision
(Precision_m), recall (Recall_m) and F1-measure of multi-classifica-
tion distance prediction of the 16 predictors that submitted predic-
tions for all 37 FM and FM/TBM domains. Our best server
predictor MULTICOM-DEEP is ranked no.6 after two tFold servers
(tFold, tFold-CaT), TripletRes from Zhang group and two servers
(FoldX and TOWER) from Microsoft in terms of Precision_m.

The detailed results of the MULTICOM distance predictors (pre-
cision of top L/5, L/2, L long-range contact predictions, the mean
absolute error and standard deviation of long-range distance predic-
tions, and the precision_m and recall_m of multi-classification of
distances) on 37 FM and FM/TBM domains are reported in
Supplementary Table S3. The MULTICOM distance predictors
have similar performance. MULTICOM-CONSTRUCT performs
best in terms of contact precision, MULTICOM-AI has the lowest
MAE, and MULTICOM-DEEP has the highest multi-classification
precision.

3.2 Comparison of different MSAs for distance

prediction
The performance of deep learning distance predictors depends on
the quality of the input features, particularly the most important co-
evolutionary features whose quality is largely determined by the
depth and quality of MSAs (Wu et al., 2020a,b).

The depth of an MSA is usually measured by the number of ef-
fective sequences (Neff) in the MSA. It is calculated using the for-
mula Neff ¼

PN
i¼1

1
Simi

, where N denotes the number of sequences in
the MSA and Simi the sum of the identity between Sequence i and all
the sequences in the MSA. Higher similarity (Simi), lower weight
Sequence i contributes to the count of Neff.

Here, we use the performance of MULTICOM-CONSTRUCT
with three kinds of MSAs on the 37 FM and FM/TBM domains to
compare their performance in distance prediction. Supplementary
Table S4 shows the performance of the long-range distance predic-
tion of MULTICOM-CONSTRUCT with MSAs of DeepAln,
DeepMSA and HHblits_BFD according to multiple metrics, includ-
ing Top L/2 and Top L precisions of long-range contact predictions,
mean absolute error of long-range predicted distances < 16 Å

(MAE_16) and their standard deviation (STD_16), the accuracy and
recall of multi-classification of distances (Precision_m and
Recall_m). HHblits_BFD performs best among the three according
to all the metrics, DeepMSA works better than DeepAln. For in-
stance, the top L/2 precision of HHbits_BFD is 51.33%, higher than
DeepMSA’s 46.18% and DeepAln’s 43.87%. The reason is that the
BFD database (released in April 2019) contains the hidden Markov
model (HMM) profiles for the proteins in both UniProt and the
metagenomics databases, which enables HHblits to generate high-
quality alignments with the sequences in the databases. In contrast,
DeepMSA or DeepAln uses HHblits to search the HMM profiles in
UniProt and Jackhmmer to the sequences in the metagenomics data-
base. Because Jackhammer’s alignment quality and sensitivity are
lower than HHblits, even though DeepMSA and DeepAln search a
target against a newer version of UniProt and metagenomics data-
bases than the BFD database, the quality gain of HHblits search on
the BFD still outweighs the increase of the size of databases used by
DeepMSA and DeepAln, leading to the better distance predictions
with HHblits_BFD.

To further quantitatively analyze the impact of different MSA
generation pipelines on the performance of the distance prediction,
we study the relationship between the accuracy of distance predic-
tion and the logarithm of the number of effective sequences (Neff) in
the MSAs generated by DeepAln, DeepMSA and HHblits_BFD in

Supplementary Figure S2. Because our automatic domain parsing
did not predict domains accurately in some cases during CASP14
where the predicted domain boundaries were different from the
ground truth, here we only analyze the 31 full-length hard targets in
which the 37 FM and FM/TBM domains are located. The Neff and
prediction accuracy are calculated on the 31 full-length hard targets.

The correlation coefficients between top L/2 precision and the
common logarithm of Neff for DeepAln and DeepMSA are 0.417
and 0.462, respectively. The correlation between the two is not very
strong, mainly because some targets have a large Neff but low pre-
diction accuracy due to the existence of the false-positive sequences
in their MSAs. 10 (or 9) out of 31 hard targets that have a Neff > 10
for DeepAln (or DeepMSA) have the precision of < 50%.
Interestingly, the correlation coefficient between the top L/2 preci-
sion and the common logarithm Neff is 0.357 for the HHblits_BFD
on all the 31 hard targets, which is even lower than DeepAln and
DeepMSA. The correlation coefficients between the precision of the
multi-class classification of distances and the logarithm of Neff are
0.373, 0.414 and 0.295 for DeepAln, DeepMSA and HHblits_BFD,
respectively, which is lower than the correlation for the binary con-
tact prediction. The correlation coefficients between the MAE of
multi-classification of distances and the common logarithm Neff are
-0.488, -0.546 and -0.370 for the DeepAln, DeepMSA and BFD, re-
spectively. These results show that there is only a weak correlation
between Neff and the accuracy of distance predictions for the three
MSA generation pipelines (DeepAln, DeepMSA, Hblits_BFD), while
the correlation is weakest for HHblits_BFD that generates the MSAs
of the best quality.

Therefore, we conclude that both the quality and depth of MSAs
impact the accuracy of distance predictions, and the depth measured
by Neff is only a weak indicator of the accuracy of distance predic-
tion. Indeed, some CASP14 targets (e.g. T1093) have deep MSAs
with a large Neff but get a low distance prediction accuracy.
Different from the depth of MSAs that can be measured by a single
quantity—Neff, the quality of MSA depends on alignment accuracy,
and relationships between sequences (homologous or not) in MSA
are hard to quantify.

3.3 The strong correlation between distance prediction

accuracy and predicted probability scores and its

application to select/combine predicted distance maps
According to the analysis above, different MSAs generated by differ-
ent methods may work well on different sets of targets. Therefore,
there is a need to find good metrics to select or combine MSAs or
distance maps to improve prediction. However, since Neff of MSAs
has only a weak correlation with the accuracy of distance/contact
prediction, it cannot accurately select MSAs or predicted distance
maps. In order to find better metrics to select MSAs and predicted
distance maps, we calculate the correlation between the precision of
top L/2 long-range contact predictions and the average probability
of the top L/2 contact predictions (Fig. 2) as follows. The multi-class
distance predictions for a target are converted into binary contact
probability predictions by summing up the probabilities of all the
bins falling in the interval [0, 8 Å] as contact probability at 8 Å

threshold. Top L/2 long-range contact predictions with highest
probabilities are selected, and their probabilities are averaged. The
correlation between the average probability of top L/2 long-range
contact predictions and the precision of top L/2 long-range contact
predictions is then calculated. The correlation between the average
probability of top L/2 long-range contact predictions and other met-
rics (e.g. the precision of multi-class distance prediction, and the
mean absolute error of the real-value distance prediction) can be cal-
culated in the same way. The correlation between the precision of
top L/2 long-range contact predictions and their average contact
probability is 0.819. Moreover, the average probability also has a
relatively strong correlation with the precision of multi-class classifi-
cation of distances (correlation ¼ 0.654) and the mean absolute
error of the real-value distance prediction (correlation ¼ -0.790).
The precision of top L/2 long-range contact predictions, the preci-
sion of multi-class distance prediction, the mean absolute error of

Improving deep learning-based protein distance prediction in CASP14 3193

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab355#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab355#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab355#supplementary-data


the real-value distance prediction and the average probability of top
L/2 long-range contact predictions for 31 hard targets and their cor-
relation coefficients are reported in Supplementary Table S5. These
correlations are much stronger than that between Neff and contact/
distance prediction accuracy.

The relatively strong correlation between the predicted contact
probabilities and the accuracy of predicted distance maps provides a
better approach to select distance maps predicted from different
MSAs than Neff. To analyze the effectiveness of this approach for
improving distance/contact predictions, we compare it with two
approaches of combining MSAs or predicted distance maps:
Combine_MSA_Map and Average_Map. Combine_MSA_Map
merges the three MSAs generated by DeepAln, DeepMSA and
HHblits_BFD into one MSA file and uses CD-HIT (Li and Godzik,
2006)) and HH-filter to do two rounds of redundancy filtering to
generate a final MSA for MUlTICOM-CONSTRUCT to predict a
distance map. Average_Map simply calculates the average of the dis-
tance maps predicted from the three MSAs as the final distance map
prediction. We use Probability_Map to denote the approach of
selecting a distance map whose corresponding/converted contact
map has the highest average probability of top L/2 longe-range con-
tact predictions from the three distance maps predicted from the
three MSAs. Finally, Optimal_Map represents the ideal approach of
always selecting the most accurate distance map in terms of evalu-
ation metric (top L/2 precision, top L precision, Precision_m,
Recall_m and MAE_16) from the three maps predicted from the
three MSAs, which is the upper limit that any distance map combin-
ation or selection methods can reach.

Supplementary Table S6 reports the distance prediction results
of using these approaches to select or combine the distance maps
predicted from the three kinds of MSAs. Probability_Map works
better than both Average_Map and Combine_MSA_Map in terms
of almost all metrics and its performance is even close to
Optimal_Map, indicating that the probability of top predicted con-
tacts is a good metric to select distance maps predicted from differ-
ent MSAs to improve distance prediction. In order to assess the
significance of the difference in the performance of the three
approaches, we apply the paired t-test compare their mean absolute
errors (MAE) on the 31 hard targets in Supplementary Table S7.
The P-value between Probability_Map and Average_Map is 0.0129
(i.e. < 0.05), indicating that Probability_Map performs significantly
better than Average_Map in terms of MAE. However, the P-value
between Probability_Map and Combine_MSA_Map is 0.0942 (i.e.
>0.05), indicating that there is no significant difference in their
MAEs. We further use the paired t-test to compare the precisions of
their top L/2 long-range contact predictions and get the P-value of

0.0242 (<0.05), showing that Probability_Map performs signifi-
cantly better than Combine_MSA in terms of this metric.

It is worth noting that Combine_MSA_Map performs worse
than always selecting the distance maps predicted from the
HHblits_BFD MSAs that work better than the MSAs of DeepAln
and DeepMSA on average. The reason is that a simple combination
of the MSAs from HHblits_BFD, DeepAln and DeepMSA may
introduce some noise (i.e. false positive—non-homologous sequen-
ces) into MSA, even though there are more sequences in the com-
bined MSAs (higher depth).

3.4 Comparison of different feature sets on distance

prediction
Each of the MULTICOM distance predictors uses four different sets
of features derived from an MSA to predict distance maps and then
average them as the final prediction from the MSA to improve the
accuracy and stability of prediction. Supplementary Table S8 sum-
marizes the distance prediction performance of four different feature
sets using MULTICOM-CONSTRUCT with HHblits_BFD align-
ments on 37 FM and FM/TBM domains in comparison with the en-
semble approach of averaging the four predicted distance maps from
the four sets of features as the prediction. The ensemble approach
performs better than using each feature set alone in terms of all
evaluation metrics. Its mean precision of top L/2 long-range contacts
is 50.18%, which is 3.33, 3.34, 3.47 and 6.19 percentage points
higher than COV_set, PLM_set, PRE_set and OTHER_set, respect-
ively. The mean absolute error of the ensemble approach is 3.95 Å,
lower than all the four feature sets. Also, the precision of the multi-
class classification is 33.55%, higher than each feature set.

Although the average performance of the ensemble approach is
better, it does not perform best on every individual target.
Supplementary Figure S3 compares the max long-range top L/2 con-
tact precision (diamond shape), average long-range top L/2 contact
precision of four feature sets (square shape) and the long-range top
L/2 contact precision of the ensemble approach (triangle shape). The
results of the ensemble are not as good as the results of the best sin-
gle feature set, especially for the target T1040-D1, T1047s1-D1,
T1049-D1, T1082-D1 and T1096-D2 which are marked by red
arrows. The gaps between the max precision of four feature sets and
the precision of the ensemble approach on these targets are all
greater than 8%, suggesting that there is still some room for improv-
ing the combination of features.

As a special case, Supplementary Figure S4 illustrates the top L/2
long-range contacts of T1047s1-D1 predicted by the ensemble ap-
proach and from the PRE_Set in comparison with the true contacts.
The ensemble approach predicted more false positives marked in the
eclipse than the PRE_Set.

After CASP14, we tried to ensemble the distance prediction of
multiple deep learning models trained on a single feature set and
found that the integration of the results of multiple models can im-
prove the stability and accuracy of the prediction. Supplementary
Supplementary Table S9 shows the comparison of a single deep
learning model and the ensemble of four deep learning models that
were trained on the COV_set and based on the approach similar to
MULTICOM_CONSTRUCT. The performance of the ensemble of
the four deep learning models using COV_set on CASP14 37 FM
and FM/TBM domains is better than the single model in terms of all
the evaluation metrics. The same phenomenon is also observed for
the other three feature sets. Moreover, the ensemble of the four
ensembles of the four feature sets obtains the long-range top L/2
contact prediction precision of 51.80%, the mean absolute error of
2.687 Å, and the multi-classification precision of 34.17%, which is
better than the ensemble of four single deep learning models trained
on the four feature sets (i.e. 50.18%, 3.949 Å and 33.55% in
Supplementary Table S8).

3.5 Impact of the size of the training dataset on

prediction accuracy
We investigated the impact of the size of training datasets on the ac-
curacy of protein distance prediction using the deep learning model

Fig. 2. A plot of precisions of top L/2 long-range contact predictions against the

average probabilities of the top L/2 predicted contacts. MULTICOM-

CONSTRUCT with HHblits_BFD alignments were used to predict the distance

maps
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of MULTICOM-CONSTRUCT on CASP14 37 FM and FM/TBM
domains. MULTICOM-CONSTRUCT was trained on two datasets
of different sizes. Dataset_1 introduced in DeepDist1 has 6463 pro-
teins. Dataset_2 has 11034 proteins. The precision of top L/2 long-
range contact predictions for the deep learning model trained on
Dataset_2 is 50.18%, nearly 3% percentage point higher than on
Dataset_1. A target-to-target comparison of mean absolute error
(MAE) on 37 domains for the two models is shown in
Supplementary Figure S5. On almost all the domains, the model
trained on Dataset_2 has a lower MAE than that on Dataset_1. In
some cases, such as T1038-D2, the difference is substantial.

The comparison between the distance maps predicted by the
deep learning models trained on Dataset_1 and Dataset_2 and the
true distance map of T1038-D2 is illustrated in Supplementary
Figure S6. The distance map predicted by the model trained on
Dataset_2 is very similar to the true distance map, but the distance
map predicted by the model trained on Dataset_1 is very different.

3.6 The study of good and bad CASP14 cases
The MULTICOM distance predictors performed very well on
T1052-D3. The average precision of top L/2 long-range contact pre-
dictions of MULTICOM predictors is close to 100%, while the aver-
age top L/2 precision of all CASP14 server predictors is 58.13%.
T1052 is a multi-domain protein that has 832 amino acids, Neff of
the MSA of the full-length T1052 is less than 15. The domain pars-
ing program of MULTICOM predictors was able to identify a hard
modeling region [590, 688] covering the range ([589, 668]) of the
third domain of the target (T01052-D3) well. The sequence of the
region was used to search against the sequence databases to build
deeper MSAs to predict distance maps for the region. The distance
maps predicted for the regions were combined with the full-length
distance maps as in DeepDist (Wu et al., 2020a,b). This domain-
based distance map prediction substantially increased the quality of
the distance prediction for T1052-D3.

Figure 3 compares the domain-based distance map prediction
and the full-length distance map prediction made by MULTICOM-
CONSTRUCT with the true distance map of T1052-D3. The do-
main-based distance map prediction is much better and clearer than
the full-length distance map prediction for T1052-D3. The results
show that good domain parsing can improve the quality of MSAs
and therefore the quality of distance prediction.

Usually, the poor prediction of protein distances is due to a lack
of effective homologous sequences in MSAs (e.g. lower Neff on
T1029, T1033, T1043, T1064) to generate good input features. The
deep learning predictors cannot effectively extract distance patterns
from them. However, in some cases, even though MSAs have high
Neff, the accuracy of the distance prediction is still very low. For in-
stance, the Neff of the MSAs generated by DeepAln for T1093 is
689.36 and that generated by DeepMSA is 425.12, which are high
values. However, all of the MULTICOM predictors got 0% top L/2
contact prediction precision, even the domain of the target can be

reasonably identified. Figure 4 compares the distance maps pre-
dicted by four different approaches with the ground truth: (i) the dis-
tance map predicted from MSAs generated from DeepAln and
DeepMSA with the predicted domain information (our original
CASP14 submission, denoted as Original_dm), (ii) the distance map
predicted from MSA generated by HHblits_BFD without utilizing
the domain information (denoted as BFD_full), (iii) the distance
map predicted from MSA generated by HHblits_BFD with the pre-
dicted domain information (denoted as BFD_dm). All these four dis-
tance maps above were predicted by MULTICOM-CONSTRUCT
to ensure consistency.

It can be seen that although MSAs generated by DeepAln and
DeepMSA have a lot of sequences, most of them are false-positive
positives leading to the prediction of many false-positive contact
predictions (Fig. 4A). In Figure 4B, the distance map predicted from
the HHblits_BFD MSA without using predicted domain information
is somewhat better, indicating that HHblits_BFD MSA (Neff ¼
133.0) has the better quality than MSAs of DeepAln and DeepMSA.
If the predicted domain information is used, the distance prediction
predicted from HHblits_BFD MSA is further improved in Figure
4C, even though the Neff of the HHblits_BFD MSA for the domain
is only 15, which is much lower than MSAs of DeepAln and
DeepMSA. The long-range top L/2 contact prediction precision, the
MAE of long-range distance prediction less than 16 Å, and the preci-
sion of multi-classification of distances using the different
approaches for this domain are reported in Supplementary Table
S10. This case shows the quality of MSAs is important for distance
prediction, and Neff is not always a good indicator of the quality of
MSAs when there are false positives in MSAs.

4 Conclusion and future work

We developed several deep learning distance predictors and rigor-
ously benchmarked them in CASP14. The predictors performed rea-
sonably well in the highly competitive CASP14 experiment. The
results demonstrate that MSAs generated from different alignment
methods on different databases for distance prediction have different

Fig. 3. Comparison of the domain-based distance prediction and the full-length dis-

tance prediction with true distance map of T1052-D3. In the subfigure on the left,

the upper triangle denotes the domain-based distance prediction and the lower tri-

angle the true distance map. In the figure on the right, the upper triangle denotes the

full-length distance prediction, and the lower triangle the true distance map. The

patterns in the domain-based distance prediction map are much clear and closer to

the true distance map than the full-length distance prediction map

Fig. 4. (A) The distanced map predicted from MSAs generated by DeepAln and

DeepMSA with predicted domain information (upper triangle) versus the true dis-

tance map (lower triangle). (B) The distance map predicted from the HHblits_BFD

MSA without domain information (upper triangle) versus true distance map (lower

triangle). (C) The predicted distance map from the HHblits_BFD MSA with pre-

dicted domain information (upper triangle) versus the true distance map (lower

triangle)
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quality. The MSAs generated by HHblits on the BFD database lead
to the most accurate distance prediction, but different MSAs are still
complementary and can be combined to improve distance predic-
tion. However, the number of effective sequences of MSAs has only
a weak correlation with the quality of MSA and therefore is not a
strong indicator of the quality of MSAs and the accuracy of the dis-
tance maps predicted from them because of the frequent existence of
false positives (non-homolgous sequences) in some deep MSAs con-
taining a lot of sequences. In contrast, the predicted probabilities of
top long-range contact predictions have a strong correlation with
the accuracy of distance map predictions, and therefore is a better
metric to select or combine predicted distance maps to improve dis-
tance prediction. Moreover, we show that the distance maps pre-
dicted from different features generated from the same MSA are also
complementary and can be integrated to improve prediction accur-
acy. Finally, using larger training datasets to train deep learning
models, ensembling multiple deep learning models or applying do-
main predictions to MSA generation of some multi-domain targets
can also improve the accuracy of the distance prediction.
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