
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Diego Guidolin,
University of Padua, Italy

REVIEWED BY

Patrick J. Ronan,
United States Department of Veterans
Affairs, United States
Guido Maura,
University of Genoa, Italy

*CORRESPONDENCE

Sergi Ferré
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The functional and pharmacological significance of the dopamine D4 receptor

(D4R) has remained the least well understood of all the dopamine receptor

subtypes. Even more enigmatic has been the role of the very prevalent human

DRD4 gene polymorphisms in the region that encodes the third intracellular

loop of the receptor. The most common polymorphisms encode a D4R with 4

or 7 repeats of a proline-rich sequence of 16 amino acids (D4.4R and D4.7R).

DRD4 polymorphisms have been associated with individual differences linked

to impulse control-related neuropsychiatric disorders, with the most

consistent associations established between the gene encoding D4.7R and

attention-deficit hyperactivity disorder (ADHD) and substance use disorders.

The function of D4R and its polymorphic variants is being revealed by

addressing the role of receptor heteromerization and the relatively avidity of

norepinephrine for D4R. We review the evidence conveying a significant and

differential role of D4.4R and D4.7R in the dopaminergic and noradrenergic

modulation of the frontal cortico-striatal pyramidal neuron, with implications

for the moderation of constructs of impulsivity as personality traits. This

differential role depends on their ability to confer different properties to

adrenergic a2A receptor (a2AR)-D4R heteromers and dopamine D2 receptor
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(D2R)-D4R heteromers, preferentially localized in the perisomatic region of the

frontal cortical pyramidal neuron and its striatal terminals, respectively. We also

review the evidence to support the D4R as a therapeutic target for ADHD and

other impulse-control disorders, as well as for restless legs syndrome.
KEYWORDS

dopamine D4 receptor, polymorphic variants, impulsivity, attention-deficit
hyperactivity disorder, restless legs syndrome
1 Introduction

Discovered 30 years ago, the dopamine D4 receptor (D4R)

initially drew attention due to its strong affinity for the atypical

antipsychotic clozapine, an affinity found to be significantly

higher than for the previously discovered D1, D2 and D3

receptors (D1R, D2R and D3R) (1). At the time, it was

assumed that this high affinity could underlie clozapine’s

unique clinical efficacy, which led to a very intense search for

selective D4R antagonists. Unfortunately, the newly discovered

D4R antagonists that followed were ineffective as antipsychotic

drugs in clinical trials and the interest in D4R as a target for drug

development waned [reviewed in ref. (2)].

Not only the pharmacological, but also the functional

significance of the D4R has remained the most enigmatic of all

the dopamine receptor subtypes. The human D4R gene (DRD4)

displays a high number of polymorphisms in its coding

sequence. The most extensive polymorphism is found in exon

3, a region that encodes the third intracellular loop (3IL) of the

receptor (3–5). This polymorphism comprises a variable number

of tandem repeats of a 48-base pair sequence, from 2- to 11

repeats. The most common polymorphisms contain 2, 4 or 7

repeats (with allelic frequencies of about 8%, 60% and 20%,

respectively) (4), which encode a D4R with the respective
enosine A1 and A2A
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number of repeats of a proline-rich sequence of 16 amino

acids (D4.2R, D4.4R and D4.7R) (3–5). DRD4 polymorphisms

have been associated with individual differences in impulse

control-related neuropsychiatric disorders, with the most

consistent associations found between the gene encoding D4.7R

and attention-deficit hyperactivity disorder (ADHD) (3, 6–8)

and substance use disorders (SUDs) (9). It follows that these

significant associations should provide clues about the

functional and pharmacological significance of the D4R. The

main functional and pharmacological properties of the D4R and

its different D4R polymorphic variants have been elucidated only

recently with studies addressing the role of receptor

heteromerization and the relatively avidity of norepinephrine

for D4R. This includes the role of pineal D4R in the circadian

noradrenergic modulation of melatonin synthesis and release

(10), as well as the role of D4R in the inhibitory dopaminergic

modulation of frontal cortico-striatal glutamatergic

neurotransmission (11). Here we review the evidence to

support the role of frontal cortical D4Rs in the moderation of

constructs of impulsivity as personality traits. Based on the

available evidence, we submit that the D4R should be exploited

as a therapeutic target for impulse control-related

neuropsychiatric disorders (primarily, ADHD), as well as for

restless legs syndrome (RLS).
2 The D4R-modulated frontal-
cortico-striatal neuron

D4R is highly expressed in the prefrontal cortex of mammals,

including rodents and human and non-human primates,

particularly in deep layer neurons (1, 12–14). In contrast with

other dopamine receptors (D1R, D2R and in the ventral striatum,

D3R), striatal mRNA expression of D4R is much lower (1, 12).

However, immunohistochemical studies using different

antibodies against different epitopes of the rodent and human

D4R produced incongruent results, particularly in relation to its

striatal density, indicating a lack of antibody specificity (15–19).

Further studies, using a transgenic mouse expressing a
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fluorescent protein under the transcriptional control of the

mouse dopamine D4R gene (Drd4), confirmed its predominant

expression in the deep layer neurons of the prefrontal cortex and

its lack of expression in the striatum (20). These results agreed

with those obtained using in situ hybridization studies and

indicate that striatal D4Rs are localized in striatal nerve

terminals and, most probably in the terminals from

glutamatergic neurons originated in the deep cortical layers.

In fact, significant evidence for the existence of D4Rs in the

prefrontal cortex and the striatum of rats and humans has been

obtained by radioligand binding experiments (21–25). The D4R

labeling strategies included radioligands with significant

selectivity for D4R or non-selective D2-like receptor

radioligands in the presence of the D2R-D3R antagonist

raclopride, which demonstrates a specific low affinity for the

D4R (1). The results showed a disproportionally high density of

striatal D4R binding sites when compared with the striatal

expression of D4R mRNA, in agreement with their putative

localization in cortico-striatal terminals. This was confirmed

with experiments with frontal cortex ablation, which produced a

significant reduction of striatal D4R binding sites (24).

The neocortex is composed of two major neuronal

populations: glutamatergic pyramidal (P) neurons (70-80%)

and GABAergic interneurons (20%-30%). There are several

subtypes of GABAergic interneurons which have been grouped

in three main classes, based on their transcriptional similarities

and the expression of selective markers (26, 27). The largest class

of cortical interneuron is characterized by the expression of the

calcium-binding protein parvalbumin (PV). PV neurons target

the perisomatic region of P neurons and control their spiking

output. The second class expresses the neuropeptide

somatostatin, and these neurons preferentially target the

dendritic region of P neurons. And the third class expresses

the 5-HT3a serotonin receptor, with a common subclass also

expressing the calcium binding protein calretinin and the

vasoactive intestinal peptide. These are mainly disinhibitory

neurons that preferentially target PV+ and somatostatin+

interneurons. It has been postulated that the three subclasses

of GABAergic interneurons establish a local cortical circuit that

is critically involved in working memory, by which stimulus

tuning of persistent activity arises from the concerted action of

widespread inhibition mediated by PV+ interneurons and

localized disinhibition of P neurons mediated by calretinin-

containing interneurons (27, 28). In non-human primates,

most P neurons and nearly half of the GABAergic

interneurons express D4R. Among the interneurons, D4R are

particularly expressed in PV+ interneurons (13, 14).

D4Rs are therefore positioned to exert a significant

modulatory influence on frontal cortico-striatal P neurons.

Considering the Gi-coupled D4R as mostly inhibitory, those

localized in their cortical perisomatic region and striatal

terminals should be expected to mediate an inhibitory effect of

dopamine, while those localized in PV+ GABAergic
Frontiers in Endocrinology 03
interneurons should be expected to produce disinhibition.

Nevertheless, a recent electrophysiological study on mouse

cortical slices showed that D4R activation induces a more

complex set of effects, with a direct slow decreasing effect on

the excitability of P neurons and a fast and transient increase

followed by a delayed decrease of the excitability of PV+

interneurons (29). The initial effect on PV+ interneurons

should in fact lead to an initial potent suppression of PFC

network activity and output signal. The effect of the delayed

decrease of the excitability of PV+ interneurons on P neurons

should be masked by the direct D4R-mediated decrease

excitability of P neurons. In summary, activation of frontal

cortical D4R should mostly keep a low output signal of the

PFC network (29). In addition, a recent study using a combined

optogenetic-microdialysis technique demonstrated the ability of

D4Rs localized in frontal cortico-striatal terminals to exert a

significant inhibitory role of striatal glutamate release (11).

Overall, these studies suggest that D4Rs are instrumental for

the dopamine-mediated functional inhibition of frontal

cortico-striatal neurotransmission, in agreement with the

hyperexcitability observed on frontal cortical P neurons in

D4R-deficient mice (30). However, as reviewed below, several

studies indicate a more complex picture, where D4Rs can also

directly mediate the effects of norepinephrine and indirectly

modulate the function of adrenoceptors and other dopamine

receptor subtypes by heteromerization.

3 Lessons from the pineal gland.
D4R heteromerization and D4R as a
target for norepinephrine

Apart from the frontal cortex, D4Rs are highly expressed in

the retina (31) and by the pinealocytes of the pineal gland (32),

which main function is the circadian secretion of the hormone

melatonin. This circadian control is mediated by a neuronal

circuit that includes the suprachiasmatic and paraventricular

nuclei of the hypothalamus, the intermediolateral column of the

spinal cord and the superior cervical ganglion, which sends

noradrenergic afferents to the pineal gland (33, 34). Darkness-

induced norepinephrine release in the pineal gland activates

pinealocyte Gs-coupled b1 and Gq-coupled a1B adrenergic

receptors (b1R and a1BR), which promotes the synthesis and

release of melatonin and its precursor serotonin (33, 34). Several

experimental observations indicate that D4Rs play a

fundamental role in the circadian adrenergic control of

melatonin synthesis by pinealocytes and that this role depends

on their circadian expression, their heteromerization-dependent

ability to inhibit b1R and a1BR function and their ability to bind

and be activated by norepinephrine (10, 32, 35).

D4R expression in the retina and pineal gland varies

significantly in a circadian manner, being particularly elevated

during the second half of the dark period (32). This increased
frontiersin.org
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expression is under the control of pineal b1R and a1BR and

requires thyroid hormone (32). We found evidence indicating

that D4R can form heteromers with both b1R and a1BR in

mammalian transfected cells and in rat pinealocytes, and that the

expression of b1R-D4R and a1B-D4R heteromers follows the

circadian expression of D4R, being maximal at sunrise (10). In

these heteromers, activation of D4R leads to a significant

decrease in the ability of its partner adrenoceptor to signal

(10), apparently suggesting that, in the pineal gland, dopamine

inhibits the effect of norepinephrine. However, there is no clear

evidence for a functional significant dopamine release in the

pineal gland, where the catecholaminergic input is largely

noradrenergic, the noradrenergic afferents from the superior

cervical ganglion (33, 34).

A similar situation can be found in the cerebral cortex,

particularly of rodents, which receives dense and widespread

noradrenergic innervation, whereas dopaminergic terminals are

restricted to the prefrontal cortex (36, 37). However, dopamine

receptors are expressed throughout the cortex, and their

localization exceeds that of the dopaminergic terminals (38–

41). It has therefore been suggested that dopamine is either a co-

neurotransmitter in noradrenergic neurons (42) or that there is a

long-range volume-transmission of catecholamines (43). In fact,

asynaptic varicosities represent most cortical norepinephrine

releasing sites (37). A more parsimonious mechanism is the

possibility that endogenous norepinephrine can also be an

endogenous ligand of D4R. Thus, as demonstrated with in

vitro experiments, norepinephrine binds and activates D4Rs at

submicromolar concentrations (35, 44–46), up to ten times

higher than the concentration able to activate b1R or a1BR in

pineal cell preparations or pineal tissue (47, 48). Neverthelss, the

potency of norepinephrine at activating pineal D4Rs needs to be

determined. Altogether, a very plausible mechanism by which

pineal D4Rs control melatonin synthesis and release emerges: at

the beginning of the dark period, the initial noradrenergic

activation of the pineal gland targets b1R and a1BR, favoring a

progressive increase in melatonin synthesis, but also D4R

expression; whereas at the end of the dark period, the

increased expression of D4Rs leads to the formation of b1R-
D4R and a1B-D4R heteromers, which allows norepinephrine to

preclude b1R and a1BR signaling within the heteromer, thus

dwindling melatonin synthesis and release (10).
4 The enigmatic role of DRD4
polymorphic variants. GPCR
oligomerization comes to the rescue

The question of the functional significance of the

different receptor isoforms encoded by DRD4 polymorphisms

has remained enigmatic until recently. Those include

electrophysiological and biochemical experiments in frontal
Frontiers in Endocrinology 04
cortical slices from D4R knockout mice with rescued

expression of human D4.4R and D4.7R by viral transduction

(49, 50), and immunohistochemical and in vivo optogenetic-

microdialysis experiments in D4.7R knock-in mice expressing a

humanized D4R with the 3IL of the human D4.7R (11).

Electrophysiological experiments in frontal cortical slices from

D4R knockout mice showed an increased ability of a D4R agonist

to suppress network bursts and NMDA receptor-mediated

excitatory postsynaptic currents from P neurons after viral

transduction of human D4.7R, as compared with human D4.4R

receptor cDNA (49, 50). Interestingly, biochemical experiments

in the same slice preparations revealed that these differences

correlated with a more profound D4R agonist-mediated

downregulation of NMDA receptor surface expression (i.e.,

NR1 subunit) in frontal cortical slices virally transduced with

D4.7R than with D4.4R (49). The in vivo experiments in D4.7R

knock-in mice showed a blunting of methamphetamine-induced

cortical activation and ontogenetically and methamphetamine-

induced frontal cortico-striatal glutamate release (11). In

summary, these studies showed a pronounced gain of function

of D4.7R, as compared to D4.4R, in its ability to mediate the

inhibitory influence of dopamine on frontal cortico-

striatal neurotransmission.

The next enigma to solve was the mechanism behind the

functional differences of the products of DRD4 polymorphisms.

Thus, in mammalian transfected cells, D4.2R, D4.4R and D4.7R

did not show clear pharmacological differences in response to

endogenous or exogenous ligands, although an earlier study

seemed to indicate that D4.7R signals with less efficiency than

D4.4R (51). Nevertheless, by using a functional bioluminescence

resonance energy transfer (BRET) technique, we could not find

significant differences in the ability of the D4.2R, D4.4R or D4.7R

polymorphic variants to promote dopamine-induced activation

of any of the five Gi/o protein subtypes (35). Importantly,

differences emerged when studying their ability to form

heteromers, more specifically with the Gi-coupled D2R and

a2AR, preferentially localized in the perisomatic region and

nerve terminals of prefrontal cortical P neurons, respectively

(52–54).

Apart from D4Rs, a significant proportion of frontal cortical P

neurons from layer V also express D2Rs (in monkeys, about 75%

and 55%, respectively) (14). Furthermore, in vitro experiments in

striatal slices (52) and in vivo optogenetic-microdialysis

experiments in rodents (11, 55) have provided evidence for the

presence of functional D2R and D4R receptors in cortico-striatal

glutamatergic terminals. This provides the framework for the

existence of D2R-D4R heteromers in striatal terminals and,

possibly, in the perisomatic region of P neurons. The first studies

on heteromers of the D4R polymorphic variants, based on BRET

and co-immunoprecipitation techniques in transfected mammalian

cells, suggested that the D4.7R establishes weaker intermolecular and

functional interactions with the D2R (both isoforms, D2LR and

D2SR) than the D4.4R (52, 56, 57). At the functional level, co-
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transfection of D2Rs with D4.4Rs, but not D4.7Rs, led to an increase

in MAPK signaling (52, 57), which would seem opposite to the

expected D4.7R gain of function. Nevertheless, a dependence on

heteromerization of these differences in MAPK signaling was not

clearly established. On the other hand, a more recent study using

the complemented donor acceptor bioluminescence resonance

energy transfer (CODA-RET) technique demonstrated a D4.7R

heteromerization-dependent gain of function of the D2R (53).

CODA-RET is a BRET assay that allows the measurement of

ligand-induced changes in the interaction between G protein-

coupled receptors (GPCRs) forming specific homomers or

heteromers with transducer proteins, including G proteins

(58). In the CODA-RET assay, two complementary halves of a

bioluminescent chromophore, such as Renilla Luciferase are

separately fused to two different receptor molecules putatively

able to oligomerize and a fluorescent chromophore (such as

yellow fluorescent protein) can be fused to a G protein subunit.

Ligand-induced changes in CODA-RET measurements imply,

first, a successful complementation of Renilla Luciferase and,
Frontiers in Endocrinology 05
therefore, oligomerization of the corresponding GPCR units.

Second, although CODA-RET does not provide estimates of

the degree of oligomerization, such as the affinity of the

intermolecular interactions between GPCR subunits or the

proportion of subunits forming oligomers, this technique does

allow a qualitative measure of the ability of a specific endogenous

or exogenous ligand to activate a GPCR homodimer or

heterodimer and signal through a specific G protein (58, 59).

Thus, using CODA-RET, we were able to disclose, for the first

time, a different qualitative profile of several D2-like receptor

ligands for D4.4R and D4.7R, but only when forming heteromers

with D2R or a2AR (53, 54).

Using CODA-RET, we found two possible mechanisms for

the D4.7R gain of function as mediator of an inhibition of frontal

cortico-striatal neurotransmission (Figure 1): first, a specific

increase in the potency of dopamine for the D2R-D4.7R, but

not for D2R-D4.4R heteromer, as compared with the D2R

homomer (53); second, a divergent decrease or increase in the

constitutive activity of D2R when it was forming D2R-D4.4R or
FIGURE 1

Schematic representation of cortico-striatal glutamatergic terminals and their modulatory D4.4Rs (left terminal) and D4.7Rs (right terminal), which
form heteromers with D2Rs. Heteromerization of D2R with D4.7R promotes a gain of function of the dopaminergic-mediated inhibition of
glutamate (GLU) release, as compared with heteromerization with D4.4R, since it increases the potency for dopamine (DA) and the constitutive
activity of the D2R. In addition, the population of D4.7Rs not forming heteromers with D2Rs is larger than with D4.4Rs, which increases the
potency of DA to inhibit GLU release, because of the higher affinity of DA for D4Rs versus D2Rs. The scheme is based on results obtained from
experiments in mammalian transfected cells and from in vitro and in vivo experiments in rodents (see text).
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D2R-D4.7R heteromers, respectively (53). In addition, a fraction

of D4R should not be expected to form heteromers, but

homomers, which should be more prevalent with D4.7R than

with D4.4R. In fact, as compared with D4.4R, not only D4.7R

seems to be less able to heteromerize with D2R (52, 56, 57), but it

also seems to be more able to homomerize (56). Since CODA-

RET experiments also demonstrated a significantly higher

potency of dopamine for D4.4R-D4.4R and D4.7R-D4.7R

homomers than for D2R-D4.4R and the D2R-D4.7R heteromers

(53), the expected larger population of D4.7R-D4.7R versus D4.4R-

D4.4R homomers should represent a third mechanism involved

in the gain of function of D4.7R (Figure 1).

In view of the involvement of D4R and a2AR in impulsivity

and ADHD (see next section), their concurrent localization in

frontal cortical P neurons (see below) and the demonstrated

ability of D4R to form functional heteromers with other

adrenoceptors in the pineal gland (see above), we investigated

the possible existence of functionally significant a2AR-D4.4R and

a2AR-D4.7R heteromers in the brain. Using several biophysical

and biochemical techniques and using heteromer-specific

disruptive peptides, we demonstrated the ability of both D4.4R

and D4.7R to heteromerize with a2AR both in mammalian

transfected cells and in the mouse cerebral cortex (54). The

results of BRET experiments indicated that, akin to D2R-D4R

heteromers, the D4.7R variant was less able to heteromerize with

a2AR than D4.4R. Furthermore, results from radioligand-

binding, CODA-RET and signaling experiments indicated that

heteromerization with D4.7R, but not with D4.4R, increases the

potency of norepinephrine at activating a2AR. Furthermore,

D4.4R, but not D4.7R activation, allosterically inhibited a2AR-

mediated signaling in their respective heteromers (54). Thus,

dopamine should be able to promote a significant inhibitory

effect of a2AR signaling though a2AR-D4.4R, but not a2AR-D4.7R

heteromers. Furthermore, as elaborated below, D4R can also be

activated by endogenous norepinephrine in the cerebral cortex,

and high concentrations should determine a significant

inhibition of a2AR signaling by the a2AR-D4.4R, but not by the

a2AR-D4.7R heteromer. If the main functional output of a2AR-

D4R heteromers is a decrease in excitability of P neurons (see

below, section 6) this could provide an additional mechanism for

the gain of function of D4.7R in its inhibitory control of frontal

cortico-striatal neurotransmission (Figure 2).
5 D4R as a moderator of the
personality traits action and
choice impulsivity

Themost popular models of personality are the Big-Three and

the Big-Five models, operationalized by the Multidimensional

Personality Questionnaire (MPQ) (60) and the NEO Personality

Inventory-Revised (NEO-PI-R) psychometric tests (61),
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respectively. The MPQ measures three orthogonal traits:

positive emotionality (PEM), negative emotionality (NEM) and

constraint (CON) (60, 62). PEM and NEM incorporate

dispositions toward positive and negative emotions, respectively,

and are linked conceptually to the brain systems underlying

appetitive-approach and defensive-withdrawal behaviors.

Constraint (CON) encompasses dimensions related to

behavioral restraint, the opposite end of which implies

disinhibition. NEO-PI-R (61) measures neuroticism (N),

extraversion (E), openness (O), agreeableness (A) and

conscientiousness (C). N and E highly correlate with NEM and

PEM respectively, generally constituting the same personality

constructs (63, 64). O captures interest toward experience, and

A implies an empathic personality. Finally, C is a spectrum of

constructs that describes individual differences in the propensity

to be self-controlled, responsible to others, hardworking, orderly,

and rule abiding (65).

Impulsivity is defined as a predisposition toward rapid,

unplanned reactions to internal or external stimuli with little

regard for the negative consequences to the individual or others

(66). Impulsivity has been decomposed into “rapid-response” or

“action” impulsivity, and “cognitive” or “choice” impulsivity

(67–69). Action impulsivity (AI) is defined as a diminished

ability to inhibit prepotent responses, or a failure of volitional

motor inhibition or disinhibition (68). Choice impulsivity (CI)

implies a tendency to accept small immediate or likely rewards at

the expense of large delayed or unlikely rewards (69). Excessive

CI overlaps conceptually with impairment in decision-making

and particularly with temporal or delay discounting (70). Delay

discounting is the phenomenon by which a delayed outcome of a

choice reduces the subjective value of a reward and constitutes

an operational measure of the degree of CI (71, 72). We have

previously maintained that AI constitutes the same concept as

strong disinhibition, the opposite end of the personality trait

CON (9), and that the trait C encapsulates both dimensions of

impulsivity (AI and CI) (73). In fact, a significant correlation

between measures of CON and C has been reported (63, 64). We

have also argued that the same as AI, CI fulfills the criteria to be

considered as a personality trait (73). The substantial overlap of

several of these personality traits with maladaptive behaviors

and specifically, with mental health disorders, justifies the

sustained search for their neural underpinnings as therapeutic

targets. But this has been a significant challenge for the field

of neuropsychiatry.

The ‘endophenotype’ concept has provided an invaluable

approach for the identification of genes that predispose or

indemnify individuals from mental and psychiatric disorders.

The endophenotype concept is understood as simpler clues to

genetic underpinnings than the disease syndrome itself and

involves the genetic analysis of any of a variety of biological

markers (cognitive, neurophysiological , anatomical ,

biochemical, etc.) of the disease. The concept promotes the

view that psychiatric diagnoses can be decomposed or
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deconstructed into more tractable intermediate phenotypes by

virtue of their assumed proximity to the genetic antecedents of

the disease (74, 75). Based on the results of studies that have

linked the structure of psychopathology to the structure of

personality, as defined by the MPQ or NEO-PI-R (76), we

argued previously that specific personality traits constitute

endophenotypes of mental health disorders, such as SUD (9).

We initially identified PEM/E (from the MPQ and NEO-PI-R

assessments, respectively), NEM/N (again, from the two

assessments, respectively), and CON (the inverse measure of AI),

as tied to specific brain circuits and genes (9). PEM/E is modulated

by the function of the central dopaminergic system and is

moderated by the D2R gene. NEM/N is modulated by the

glutamatergic outputs from the right anterior cingulate cortex and

ventromedial prefrontal cortex to the amygdala and insula and is

moderated by the serotonin transporter gene. AI is modulated by a

circuit including the glutamatergic neurons arising in the pre-

supplementary motor area and right inferior frontal gyrus and
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innervating the dorsal striatum and the subthalamic nucleus and is

moderated by the genes of the D4R and the dopamine transporter

(9) (Figure 3). Individuals with low PEM/E, high NEM/N and high

AI would be most vulnerable (least resilient) to develop SUD.

Conversely, individuals with high PEM/E, low NEM/N and low AI

would be least vulnerable (most resilient) to SUD (9).

To our initial analysis, we addedCI as an additional personality

trait, modulated by a circuit including glutamatergic neurons from

the ventromedial prefrontal cortex and the posterior cingular

cortex that innervate the ventral striatum (nucleus accumbens)

and, as withAI, is also moderated by the D4R gene, and by the gene

of the enzyme catechol-O-methyltransferase (73) (Figure 3). The

fact that D4R moderates both AI and CI provide a clue for the

apparent orthogonality of the C trait, as it encapsulates both traits

(see above), which constitute endophenotypes for ADHD (76–80)

and SUD (9, 73). Not surprisingly, as for SUD, low C is a consistent

finding in ADHD (81), which if left untreated, constitutes a risk

factor for SUD (82–84).
FIGURE 2

Schematic representation of the perisomatic region of frontal cortical P neurons and their modulatory D4.4Rs (left neuron) and D4.7Rs (right
neuron), which form heteromers with a2ARs. Heteromerization of a2AR with D4.7R promotes a gain of function of the noradrenergic-mediated
inhibition of neuronal excitability, as compared with heteromerization with D4.4R, since it increases the potency of norepinephrine (NE). In
addition, high concentrations of NE promote a decrease in the potency of NE in the a2AR-D4.4R but not in the a2AR-D4.7R heteromer (see text).
Furthermore, the population of D4.7Rs not forming heteromers with a2AR is larger than with D4.4Rs, which also increases the population of a2AR
not forming heteromers and therefore the potency of NE to decrease neuronal excitability. The increased proportion of D4.7Rs not forming
heteromers additionally increases the ability of DA to decrease neuronal excitability. The scheme is based on results obtained from experiments
in mammalian transfected cells and from in vitro experiments in rodents (see text).
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The same as for the D4R gene, polymorphisms of the a2AR

gene may confer vulnerability to developing ADHD as well as

symptoms of impulse control disorders (85, 86). However, a large

meta-analysis did not find a consistent significant association (87).

Yet, when studied at the intermediate phenotype level, as an

endophenotype, a clear significant association was established

between a2AR gene polymorphisms and AI (88). Additionally,

the a2AR agonist guanfacine, which is currently used in the

symptomatic treatment of ADHD (89), significantly decreases

delay discounting in nonhuman primates (90). Our recent study

on a2AR-D4R heteromers brings together two key receptors

involved in the pathogenesis and treatment of ADHD, since

a2AR-D4R heteromers represent a significant population of both

catecholaminergic receptors in the mouse cerebral cortex (54).

6 D4R antagonists as a plausible
treatment for ADHD and other
impulse-control disorders

Apart from the association with D4.7R, several other

preclinical and clinical findings converge on the involvement
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of D4R and its heteromers in ADHD and other impulse-control

disorders and, therefore, on its possible utility as a therapeutic

target for those disorders. At the preclinical level, several animal

models of ADHD with varied face, construct, and predictive

validity have been developed, particularly in rodents (91). The

complexity of the clinical symptoms and pathology of ADHD

has been very challenging for the development of those models

and, unfortunately, the lack of knowledge about the etiology and

pathogenetic mechanisms of the disorder hampers their

construct validity.

The most consistent pathogenetic finding in ADHD is a

frontal cortical hypoactivity (92, 93), for which there is not yet a

clearly accepted explanation. Although it might seem

counterintuitive that a decrease and not an increase in cortico-

striatal glutamatergic transmission is associated with impulsivity

and ADHD, this could probably be explained by considering the

well-established differential effects of the activation of the direct

and indirect striatal efferent pathways. Classically, the direct and

indirect pathways have been conceptualized as gas and brake

pedals of the output signals of the basal ganglia (“Go” and

“NoGo” pathways), respectively (94). It therefore seems that a

sufficient decrease in the activation of the indirect pathway
FIGURE 3

Scheme of personality traits as endophenotypes of SUD, with their linkage to specific brain circuits and genes. Positive emotionality/extroversion
(PEM/E) is modulated by the central dopaminergic (DA) system and is moderated by the D2R gene. Negative emotionality/neuroticism (NEM/N)
is modulated by a circuit that involves the right anterior cingulate cortex (rACC), ventromedial prefrontal cortex (vmPFC) and the amygdala and
is moderated by the gene of the serotonin transporter (5-HTT). Action impulsivity (AI) is modulated by a circuit that includes the pre-
supplementary motor area (preSMA), the right inferior frontal gyrus (rIFG), the striatum and the subthalamic nucleus (STN). Choice impulsivity
(CI) is modulated by a circuit that includes the ventromedial prefrontal cortex (vmPFC), the posterior cingular cortex (pCC) and the nucleus
accumbens (NAc). AI and CI are moderated by the genes of the dopamine transported (DAT) and the enzyme cathecol-O-methyltransferase
(COMT), respectively. In addition, AI and CI are both moderated by the genes of D4R and a2AR. “+” and “-” indicate that individuals with low
PEM, high NEM, high AI and high CI are most vulnerable (least resilient) to develop SUD [modified from ref (71)].
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(releasing the gas pedal) determines an increase in the basal

ganglia output, irrespective of a concomitant decreased

activation of the direct pathway. Considering a more cognitive

conceptualization, which includes the processing of information

of relevant and irrelevant stimuli (95), a blunted cortico-striatal

neurotransmission affecting the activity of both the direct and

indirect striatal efferent pathways should decrease their

respective ability to increase the reactivity to reward-related

stimuli and to suppress the reactivity to nonrewarded- or

aversive-related stimuli. As previously proposed (11), the

outcome should be an increased “interest” for irrelevant

stimuli and a reduced inhibition of irrelevant responses, which

could be important in explaining not only the impulsivity, but

also the attentional deficit of ADHD.

Genetic manipulations of the D4R in the experimental

animal have provided significant correlative information

supporting the role of a decrease in striatal glutamatergic

transmission in ADHD. As mentioned before, D4R-knockout

mice showed hyperexcitability of frontal cortical P neurons (30),

while the gain of function provided by D4.7R induced the

opposite effect, with a decrease in cortico-striatal glutamatergic

transmission (11). In addition, one of the classical animal models

of ADHD, the rodent with neonatal lesions with 6-OH-

dopamine, showed an ADHD-like phenotype, including

locomotor hyperactivity, paradoxical hypolocomotor response

to amphetamine and methylphenidate and poor behavioral

inhibi t ion, which was counteracted by genet ic or

pharmacological blockade of the D4R (96, 97). Furthermore, it

was also shown that locomotor hyperactivity in 6-OH-

dopamine-lesioned rats correlate with increases in the striatal

density of D4R (97).

The 6-OH-dopamine ADHD rodent model also

demonstrated predictive value, since apart from amphetamine

and methylphenidate, selective norepinephrine uptake inhibitors

were effective at counteracting locomotor hyperactivity (98). In

fact, apart from amphetamine and methylphenidate, the

inhibitor of the norepinephrine transporter atomoxetine and

the a2AR agonists guanfacine and clonidine are the most

accepted pharmacological treatments for ADHD (89). In the

cortex, a2ARs are preferentially localized postsynaptically, in P

neurons of the deep layers (99, 100), therefore, potentially co-

localized with D4R. In fact, as mentioned before, we have

recently provided experimental evidence indicating that a2AR-

D4R heteromers represent a significant population of both

receptors in the mouse cerebral cortex (54). Two different and

opposite neuronal effects, both dependent on Gi protein-

mediated decrease in cAMP formation, have been described

upon activation of cortical postsynaptic a2AR: an excitatory

effect, dependent on the inactivation of hyperpolarization-

activated cyclic nucleotide-gated (HCN) channels (101), and

an inhibitory effect, dependent on the inactivation of AMPA

receptors (102, 103). These results indicate the existence of two
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different functional populations of a2AR. It is assumed that the

excitatory effect mediates the therapeutic effect of a2AR agonists,

by counteracting the cortical frontal hypoactivity of ADHD

(100). It was then suggested that the inhibitory effect would be

mediated by a different population of a2AR, which could provide

a protective mechanism upon overstimulation by high levels of

norepinephrine released under stress conditions (102).

It is plausible, and experimentally testable, that D4Rs

mostly heteromerize and modulate the population of a2ARs

that mediate the inhibitory effect of P neuronal function. This

could explain at least part of the protective effect of D4.4R in

ADHD, as well as the D4.7R-mediated increased vulnerability

to develop ADHD. Thus, the same as with pineal b1R-D4R and

a1B-D4R heteromers, the cortical a2AR-D4.4R heteromer could

function as a norepinephrine concentration-sensing device,

where high concentrations activate D4.4R and counteract the

effect of the activation of the a2AR in the heteromer,

diminishing the a2AR-mediated inhibitory effect on P

neuronal function. On the other hand, the increase in the

potency of norepinephrine for a2AR in the a2AR-D4.7R

heteromer would facilitate the a2AR-mediated inhibitory

effect on P neuronal function (Figure 2). As in cortico-

striatal terminals, activation of D4R localized in the

perisomatic region of P neurons not forming heteromers (or

possible forming heteromers with D2R) should directly

promote an inhibition of the activity of P neurons (Figure 2).

D4R antagonists should then be considered as possible

therapeutic targets for ADHD, as predicted by the positive

results obtained in rodents with neonatal 6-OH-dopamine

lesions (96, 97), specially, when considering their additional

ability to counteract the dopamine-mediated inhibition of

glutamate release by cortico-striatal terminals.

However, a randomized, double-blind, crossover study

with the selective D4R antagonist L-745,870 (also named

MK-0929) in adults with ADHD did not demonstrate a

significant effect over placebo (104). To our knowledge, this

is the only published study addressing the possible clinical

efficacy of D4R antagonists in ADHD. Obvious limitations,

such as the small number of patients, short duration of each

treatment period and lack of quantitative cognitive assessments

of inhibitory control and other executive functions cannot be

ignored. Importantly, D4.7R polymorphism characterization

was not included in this study, which may also explain the

negative findings. Apart from the above reviewed preclinical

role of D4R as a very significant mediator of the effect of

dopamine and norepinephrine on the function of frontal

cortical P neuronal function, there is the unequivocal

association of D4.7R to ADHD. It would therefore be

important to carry out more clinical studies with D4R

antagonists, which should also include addressing their

ability to modify the underlying endophenotypes AI and CI

(9, 73).
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7 D4R agonists as plausible
treatment of restless legs syndrome

The term akathisia is used to define an urgent need to move.

Thus, the primary component of akathisia is a sensory

experience which acts as a “drive” or “motivational state” that

compels the subject to move. This is objectively perceived by an

observer as restlessness or motor hyperactivity (105). Akathisia

is also implicit in the description of the symptoms of the very

prevalent sensorimotor disorder RLS, where, more often, the

sensory experience is an urgent need to specifically move one’s

legs (106). Brain iron deficiency (BID), more often without

concomitant peripheral iron deficiency, is recognized as the

main initial pathogenetic mechanism in RLS (107, 108). BID

seems then to trigger a series of pathogenetic mechanisms,

including an increase in the motor-cortical and thalamic

excitability, conceptualized as a hyperglutamatergic state, that

seems to underly RLS symptomatology (108).

BID in rodents is a well-accepted animal model of RLS,

which can be induced by providing a severe iron-deficient diet

during the postweaning period. The model has both construct

and face validity since it recapitulates several biochemical and

behavioral findings of RLS (109, 110). Using the optogenetic-

microdialysis method, an increase in the sensitivity of cortico-

striatal terminals to release glutamate could be demonstrated in

the rat with BID, since a lower frequency of optogenetic

stimulation was necessary to induce striatal glutamate release

as compared to controls (55). This increased sensitivity seems to

be related to a BID-induced alteration in the expression of

adenosine receptor subtypes in the cortico-striatal

glutamatergic terminals, with a downregulation of adenosine

A1 receptors (A1Rs) and a relative upregulation of adenosine A2A

receptors (A2ARs) (111, 112). Using the optogenetic-

microdialysis method, evidence was also obtained for the

ability of the equilibrative nucleoside transporter dipyridamole,

which increases the extracellular levels of adenosine, to

significantly inhibit cortico-striatal glutamate in control rats

and in rats with BID (113). The results of these experiments

indicated a possible therapeutic effect of dipyridamole, which

was recently demonstrated by two clinical studies, an open trial,

and a randomized, placebo-controlled crossover study (114,

115). These studies provided a new therapeutic approach for

RLS and significantly validated the cortico-striatal glutamatergic

terminals as targets for the treatment of RLS.

Using the same model, perfusion of the most prescribed

drugs in RLS, pramipexole, ropinirole and gabapentin, all

counteracted the ability of optogenetic stimulation to induce

glutamate release, both in controls and in rats with BID (55). By

binding to the a2d subunit of voltage-dependent calcium

channels localized in glutamatergic terminals, gabapentin

reduces their function and trafficking, therefore decreasing

striatal glutamate release (116). Pramipexole and ropinirole are
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non-selective D2-like receptor agonists with a slightly higher

affinity for D3R. It has therefore been suggested that their

therapeutic effect is related to their preferential affinity for D3R

(117). However, the effect of pramipexole on the optogenetically

induced glutamate release was not antagonized by a selective

D3R antagonist, but by D2R and D4R antagonists (55). These

results, therefore, provided a significant support to the key

mediation of D2R and D4R in the local striatal inhibitory

control of dopamine on cortico-striatal glutamate release.

The predictive value offered by the conceptual framework of

an increased sensitivity of cortico-striatal terminals in RLS

points to D4R agonists as a possible new treatment for RLS.

This could possibly avoid secondary effects of the currently used

dopaminergic compounds, which very commonly lead not only

to disappearance of their therapeutic effect, but to an increase in

the RLS symptoms, known as “augmentation” (118). Thus, it is

conceivable that augmentation is secondary to activation of

postsynaptic dopamine receptors, similar to the mechanism

involved in L-DOPA-induced dyskinesia, a common

complication of the treatment with dopaminergic compounds

in Parkinson’s disease (119).

8 Conclusions

We reviewed the evidence conveying a significant role of

D4R in the dopaminergic and noradrenergic modulation of the

frontal cortico-striatal pyramidal neuron, with implications for

the moderation of constructs of impulsivity as personality traits.

We also reviewed the evidence strongly supporting that these

D4Rs should be exploited as therapeutic targets for ADHD and

other impulse-control disorders and for RLS. Special emphasis

was placed on the concept of receptor heteromerization, which

has played a fundamental role in the understanding of D4R

function and in the understanding of the different functional

differences between D4R polymorphic variants.

Particularly striking is the fact that the most common

polymorphic variants, D4.4R and D4.7R (with allelic frequencies

of about 60% and 20%, respectively) (4), confer significantly

different functional and pharmacological properties to a2AR-

D4R and D2R-D4R heteromers, which mediate a dopamine- and

norepinephrine-dependent fine-tune modulation of the frontal

cortico-striatal glutamatergic neuronal function. This can

explain the differential effect of D4R polymorphisms in the

moderation of the personality traits AI and CI and their role

as endophenotypes of impulse-control disorders, including

ADHD and SUD. More specifically, it can explain the

association of D4.7R with impulse-control disorders. The

demonstrated mediation of a stronger inhibition of cortico-

striatal glutamatergic transmission mediated by D4.7R (in

D4.7R knock-in mouse expressing a humanized D4R with the

3IL of the human D4.7R) (11), would then disclose a mechanism

determining an increase in AI and CI.
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Reviewing the results from experimental models of ADHD

and RLS, it becomes evident that selective D4R antagonists and

agonists could be respectively effective. Although a single clinical

study with a D4R antagonist resulted negative in the treatment of

ADHD (104), we believe that the reviewed preclinical evidence

calls for additional clinical studies. Apart from addressing the

ability of D4R antagonists to modify the underlying

endophenotypes AI and CI, the role of D4R polymorphisms

should also be addressed. Similarly, to our knowledge, there are

no studies concerning the frequency of the different D4R

polymorphic variants in RLS patients, and a prediction could

be made about an expected lower frequency of D4.7R. As

mentioned above, we also found a different qualitative profile

of several D2-like receptor ligands for D4.4R and D4.7R, but only

when forming heteromers with D2R or aAR (52, 53). Therefore,

when searching for new D4R ligands, D4R polymorphisms and

D4R heteromers (D2R-D4R and a2AR-D4R heteromers) should

be considered as targets, which could provide a more effective

and individualized treatment. Importantly, in this review we

only considered the most prevalent and studied D4R

polymorphisms, and more studies need to be performed to

evaluate the specific properties of less common yet

prevalent polymorphisms.

Finally, in this review we have not discussed the role of D4R

localized in brain areas other than the frontal cortico-striatal

pyramidal neuron and the pinealocytes. The globus pallidus and

the lateral habenula are additional regions where D4Rs have been

shown to play a significant role in the mediation of inhibitory

transmission by dopamine or norepinephrine, respectively

(120–122). The present review emphasizes the need to find

the heteromeric partners of the D4R and to establish the

differential functional and pharmacological role of its

polymorphic variants.
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Ferré et al. 10.3389/fendo.2022.1014678
11. Bonaventura J, Quiroz C, Cai NS, Rubinstein M, Tanda G, Ferré S. Key role
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109. Earley CJ, Jones BC, Ferré S. Brain-iron deficiency models of restless legs
syndrome. Exp Neurol (2022) 356:114158. doi: 10.1016/j.expneurol.2022.114158
Frontiers in Endocrinology 14
110. Salminen AV, Clemens S, Garcia-Borreguero D, Ghorayeb I, Li Y, Manconi
M, et al. Consensus guidelines on the construct validity of rodent models of restless
legs syndrome. Dis Model Mech (2022) 15:dmm049615. doi: 10.1242/dmm.049615

111. Quiroz C, Gulyani S, Ruiqian W, Bonaventura J, Cutler R, Pearson V, et al.
Adenosine receptors as markers of brain iron deficiency: Implications for restless
legs syndrome. Neuropharmacology (2016) 111:160–8. doi: 10.1016/
j.neuropharm.2016.09.002

112. Rodrigues MS, Ferreira SG, Quiroz C, Earley CJ, Garcıá-Borreguero D,
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Granizo JJ, Ferré S. Treatment of restless legs syndrome/Willis-ekbom disease
with the non-selective ENT1/ENT2 inhibitor dipyridamole: testing the adenosine
hypothesis. Sleep Med (2018) 45:94–7. doi: 10.1016/j.sleep.2018.02.002

115. Garcia-Borreguero D, Garcia-Malo C, Granizo JJ, Randomized FerréSA.
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