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Abstract

KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of
drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We
demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the
inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene
encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an
important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous
tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with KrasG12D to markedly
accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign
adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras
mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500
human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression
of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular
senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence
therapy.
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Introduction

Lung cancer is responsible for more cancer deaths in the US

than colorectal, breast, and prostate cancer combined with a

dismal overall survival of 15% [1]. The majority of human lung

cancers are adenocarcinomas carrying somatic mutations in the

genes that encode the EGFR/KRAS/BRAF pathway [2].

Observations in both experimental mouse models and human

lung tumors strongly suggest that these pathways are causally

responsible for lung tumorigenesis [3,4,5,6,7].

KRAS mutant lung adenocarcinomas are generally refractory to

conventional cytotoxic therapies [8] and currently available small

molecule targeted agents [9,10]. Difficulties in pharmacologically

targeting K-RAS have resulted in some labeling the protein

‘‘undruggable’’ [11]. Approaches such as using farnesyl transferase

inhibitors to prevent prenylation of Ras for its membrane

localization have not shown clinical efficacy [12,13]. Other

potential kinase targets for KRAS mutant tumors have been

identified through RNAi screens including: TBK1, STK33 and

PLK1 [14,15,16]. Rational candidate based approaches that
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target key pathways required during the process of tumorigenesis

for KRAS mutant cancers have not been exhaustive.

One such pathway is oncogene-induced senescence (OIS), a

failsafe program that prevents normal cells from progressing

towards malignancy following introduction of a mutant form of

an oncogene such as KrasG12D [17]. OIS is an irreversible cell

cycle arrest that is characterized by cells displaying an enlarged,

flattened cytoplasm, increase in senescence associated beta-

galactosidase (SA-b-Gal) activity, increased chromatin condensa-

tion and changes in gene expression associated with DNA

damage checkpoint proteins or cell cycle checkpoint proteins.

OIS is thought to be triggered early during tumorigenesis in

order to inhibit aberrant cell cycle progression, preventing pre-

malignant tumors from progressing to malignancy [17]. OIS

seems to be dependent on the p53-p19ARF, p16-Rb and Atf4-

p27 pathways to enforce the senescent phenotype, but the

requirement of any or all these pathways is highly context

dependent [18,19]. Whether these latent OIS programs can be

activated in KRAS mutant cancers to result in a clinical effect has

only recently been examined [20,21].

Recently, Twist1, a basic helix-loop-helix transcription factor

that is central to embryogenesis [22], has been shown to suppress

OIS associated with KrasG12D and EGFR2 oncogenes in vitro in

MEFs [23] and pancreatic epithelial cells [24]. Twist1 protein

expression is usually undetectable in most adult tissues, but has

been shown to be overexpressed in cancers including prostate,

bladder pancreatic, osteosarcomas, melanomas and breast

[25,26,27,28,29,30,31]. The high expression of Twist1 in cancers

strongly correlates with invasive and metastatic tumor cells. Twist1

is thought to regulate epithelial-mesenchymal transition (EMT)

through the down-regulation of key proteins that maintain

epithelial cell characteristics and up-regulation of proteins that

confer a mesenchymal phenotype [31]. Thus, Twist1 may act both

to induce malignancies early in tumorigenesis and also promote

tumor progression [32]. To date, there has yet to be reported an

autochthonous model to study the role of Twist1 overexpression in

the initiation and maintenance of tumorigenesis. Here we report

the generation of such a model and through this demonstration we

show an important role of Twist1 in suppressing cellular

senescence programs.

Results

Generation of an inducible lung epithelium specific
Twist1 transgenic mouse model

To produce a useful tool to address Twist1 functions in vitro and

in vivo we generated a transgenic founder line, Twist1-tetO7-luc (T),

that harbored the mouse Twist1 cDNA under the control of a

bidirectional tetracycline operator sequence (tetO7) also regulating

the firefly luciferase gene (luc) [33] (Figure 1A). This T founder was

crossed to Clara cell secretory protein-reverse tetracycline

transactivator protein (CCSP-rtTA or C) mice to generate

inducible, double-transgenic (CT) mouse cohorts. CT mice

contain both the rtTA activator expressed primarily in lung

alveolar Type II pneumocytes [34] and the tetracycline inducible

Twist1-tetO7-luc transgene allowing for spatial and temporal

expression of Twist1 and luc (Figure 1A).

Inducible regulation in CT mice was verified using serial small

animal bioluminescence imaging (BLI) and Western blotting,

respectively (Figure 1B–1C). Doxycycline drinking water given to

CT mice (CT ON) induced luciferase and Twist1 expression

specifically in the lung only (Figure 1C) which reverted to

background luciferase and Twist1 expression by 3–7-days after

doxycycline withdrawal [34,35], (Figure 1B–1C).

To address the functional significance of ectopic Twist1

expression in the lung epithelium global gene expression

microarray analysis was performed with induced CT mouse lungs

versus wildtype mouse lungs. Notably, after performing gene set

enrichment analysis (GSEA) [36] with this dataset, we found CT

ON lungs had a global gene expression pattern that had a highly

significant similarity to two overlapping gene sets for EMT [37]

(Figure 1D and Figure S1A) and three EMT related phenotypes

(hypoxia, metastasis and wound healing [38,39,40]; Figure S1B–

S1D). CT ON lungs showed a subset of epithelial cells appeared to

lose E-cadherin and gain vimentin staining by immunofluores-

cence consistent with an EMT (Figure 1E and Figure S1E),

strongly supportive of the gene expression data. Thus, our lung

specific CT mouse model is capable of enforcing a Twist1-

dependent transcriptional program in lung epithelial cells that is

consistent with cells that have undergone EMT.

Twist1 accelerates KrasG12D-induced lung tumorigenesis
and promotes progression to adenocarincoma

Twist1 has been strongly implicated in tumor progression, but

no studies have examined the effect of Twist1 alone for

autochthonous tumorigenesis. Twist1 was not a strong oncogene

when expressed alone in the lung epithelium. CT ON mice did not

develop lung tumors at an increased frequency compared to

wildtype FVB/N mice (Figure 2A) [41].

Twist1 cooperated dramatically with KrasG12D expression in the

lung. CCSP-rtTA/tetO-KrasG12D (CR) mice developed multiple

synchronous lung tumors, mostly adenomas, with a median tumor

latency of 32 weeks [3,35] (Figure 2A and 2E). Triple transgenic

mice, CCSP-rtTA/tetO-KrasG12D/Twist1-tetO7-luc (CRT), demon-

strated a greatly reduced lung tumor latency compared to CR

mice, 15 versus 32 weeks (p,0.0001 by log-rank analysis)

(Figure 2A). CRT mice developed numerous lung tumors

(Figure 2B) that appeared to be from a type II pneumocyte origin

based on CCSP negative and proSpC positive immunohistochem-

istry (IHC) (Figure 2C). Twist1 cooperation with KrasG12D

increased the number and size of lung tumors that developed.

At six months of oncogene induction there was a large difference

in the total lung tumors per mouse for CRT versus CR, 40 tumors

versus 2 tumors (p = 0.03 by t-test) (Figure 2D). Twist1 co-expression

with KrasG12D in the lung also appeared to promote transformation

Author Summary

Lung cancer is the most common cause of cancer death
worldwide. The Twist1 gene encodes for an essential
transcription factor required for embryogenesis and
overexpressed in many cancer types. It has yet to be
shown in vivo whether Twist1 plays a role in the initiation
or maintenance of cancer. Here we demonstrate using
novel transgenic mouse models that Twist1 cooperates
to induce lung tumorigenesis by suppressing cellular
senescence programs. Moreover, the suppression of
Twist1 in murine tumors elicited cellular senescence
and the loss of a neoplastic phenotype. We found that
TWIST1 is commonly overexpressed in human lung
cancers. Finally, the inhibition of TWIST1 levels in human
lung cancer cells was associated with loss of prolifera-
tion, induction of cellular senescence, and the inability to
form tumors in mice. Hence, we conclude that TWIST1 is
a key regulator of cellular senescence programs during
tumorigenesis. The targeted inactivation of TWIST1 may
be an effective pro-senescence therapy for human lung
adenocarcinomas.

Twist1 Accelerates and Maintains Lung Tumors
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Figure 1. Inducible Twist1 lung model of epithelial mesenchymal transition (EMT). (A) A mouse line containing the Clara cell secretory
protein (CCSP) promoter driving the reverse tetracycline transactivating protein (rtTA) is crossed with a line containing Twist1 and Luc under the
control of bi-directional tetracycline-responsive elements (tetO7). In the bitransgenic animal, CCSP-rtTA/Twist1-tetO7-luc (CT), absence of doxycycline
prevents rtTA protein from binding and activating the tetO operon. Addition of doxycycline (Dox) triggers a conformational change which enables
tetO7 binding, activation and Twist1 and luc transcription. CT animals express Twist1 and luciferase inducibly in the lungs and trachea of bitransgenic

Twist1 Accelerates and Maintains Lung Tumors
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of the predominantly benign lung adenoma tumor phenotype of

CR mice [3] to a malignant phenotype composed mostly of

adenocarcinomas as determined by a veterinarian pathologist [42]

(Figure 2E, p,0.0001 Fisher’s exact test). A more sensitive marker

of this conversion from adenoma to adenocarcinoma was the

proliferative rate as we observed much higher proliferative index

in CRT versus CR tumors (Figure 2E, p = 0.021 Chi-square and

Figure S2A).

Although, we observed a strong genetic interaction between

Twist1 and KrasG12D for lung tumorigenesis, we did not see a

pronounced effect on distant lung tumor metastases. One CRT

mouse did exhibit a macroscopic metastasis to the liver confirmed

by pathology (data not shown). However, in general the CRT

cohort of mice (n = 33) did not demonstrate increased distant

metastasis compared to CR mice (n = 55) when followed for up to

9 months of oncogene induction (data not shown). Taken together,

these data suggest that Twist1 does not appear to be a strong

oncogene when over-expressed alone in the lung. Twist1 is capable

of strong cooperation with KrasG12D for lung tumorigenesis and

progression. Despite markedly accelerating tumorigenesis, Twist1

did not promote increased numbers of circulating tumors cells as

detected by qPCR specific for the luc transgene (data not shown)

and nor did Twist1 promote distant metastasis from primary lung

tumors.

Reversible KrasG12D/Twist1-induced lung tumorigenesis
CR lung tumors were fully reversible following 2–3 weeks of

KrasG12D oncogene inactivation with the mechanism of tumor

regression being a combination of tumor cells undergoing

proliferative arrest and apoptosis [3]. We inactivated both Twist1

and KrasG12D from a cohort of CRT lung tumor moribund mice by

the removal of doxycycline and monitored them for lung tumor

regression at multiple time points using serial non-invasive imaging

techniques in addition to final pathologic analysis (n = 4). CRT

lung tumors showed dramatic tumor regression by gross exami-

nation (compare Figure 3A versus Figure 2B) that could be

demonstrated serially with microCT (Figure 3B) and microPET-

CT (Figure 3C and Figure S3A) after as little as 1 week of dual

oncogene inactivation. By 4 weeks, CRT OFF lungs typically

demonstrated no evidence of viable tumor cells on histologic

analysis (Figure 3D) even despite CRT mice having considerably

more advanced lung tumors than CR at similar time points

(Figure 2D). CRT mice with heavy initial tumor burden did have

residual fibrotic scars remaining (white spots in Figure 3A and

trichome collagen staining in Figure S3B).

To gain insight into the mechanism of tumor regression, we

performed a time course analysis of CRT OFF lung tumors during

the first week of oncogene inactivation. CRT OFF lung tumors

demonstrated a prominent decrease in proliferation and increase

in apoptosis following 5 days of doxycycline withdrawal as

measured by Ki-67 and cleaved caspase 3 (CC3) IHC, respectively

(Figure 3E–3F, p,0.0001 Chi-square for both Ki-67 and CC3 and

Figure S3C–S3D). As mentioned previously, Twist1 has been

shown in vitro to suppress KrasG12D oncogene-induced senescence

(OIS) [23]. However, we did not see any appreciable increase in

senescence associated beta-galactosidase (SA-b-Gal) staining fol-

lowing simultaneous inactivation of Twist1 and KrasG12D in CRT

OFF lung tumors (Figure 3G, p = 0.68 Chi-square) or by assessing

for markers of cell cycle arrest (data not shown). These data

suggest that although CRT lung tumors demonstrate more

aggressive histologic appearance than CR tumors, CRT lung

tumors are still strictly dependent on initiating oncogenes for

tumor maintenance. Furthermore, Twist1 did not alter the

mechanism of tumor regression between CR OFF and CRT

OFF lung tumors.

Induction of cellular senescence in KrasG12D-induced lung
tumors by inactivation of Twist1

The strong dependency or addiction of KrasG12D-initiated lung

tumors for KrasG12D [3,35] may have precluded us from observing

any activation of OIS in CRT OFF lung tumors. Furthermore,

given the genetic configuration of the CRT mouse model we were

not able to examine the effects on lung tumors following

inactivation of Twist1 alone.

We addressed in vitro whether activation of rasG12V-induced

senescence could be driven by inactivation of Twist1 by using

mouse embryonic fibroblasts (MEFs) generated from b-actin-rtTA/

Twist1-tetO7-luc (BT) mice. BT MEFs were shown to be inducible

with doxycycline in vitro by Western blotting (Figure S4A). As

reported previously [23], we found Twist1 was able to fully

suppress rasG12V-induced senescence in vitro as shown by prolifer-

ation curves and SA-b-Gal staining (Figure S4B–S4D). We

removed doxycycline from the media of BT MEFs infected with

rasG12V to downregulate expression of Twist1 at Day 12. These de-

induced BT MEFs activated OIS in vitro as shown by decreased

proliferation and increased SA-b-Gal staining relative to cells

maintained in the presence of doxcycline (p = 0.0025 for prolifer-

ation and p = 0.0294 for SA-b-Gal; Figure S4E–S4F). These data

suggested that at least in vitro inhibition of Twist1 can activate

rasG12V-induced senescence.

To examine whether Twist1 inhibition could be a viable

therapeutic target in vivo for Kras mutant autochthonous lung

cancers, we generated mice in which only Twist1 expression was

doxycycline-dependent (Figure 4A). The LSL-KrasG12D (LSL)

model allows for conditional activation of an endogenous KrasG12D

allele in the lungs following intranasal adenoviral delivery of Cre

recombinase (AdCMVCre) [43]. The strain background difference

between CT (FVB/N) and LSL (C57BL/6) transgenic models

forced us to use first generation progeny from these crosses for all

our experiments. We generated tri-transgenic CT-LSL animals

(Figure 4A), activated Twist1 expression with doxycycline, then

conditionally activated the KrasG12D allele with AdCMVCre and

followed these CT-LSL ON mice and similarly treated littermate

controls for lung tumor development. Twist1 accelerated condi-

tional KrasG12D-induced lung tumorigenesis in CT-LSL mice (CT-

LSL versus LSL, p = 0.0121 by log-rank analysis, Figure 4B–4C,

similar to CRT mice, although to a lesser degree. CT-LSL lung

tumors were similar to CRT tumors based on histology, expression

of type II pneumocyte markers, and increase in the proportion of

lung tumors with a higher proliferative index (Figure 4D–4F,

p,0.0001 Chi-square). Recently, two groups have demonstrated

in a similar LSL-p53 model system that p19ARF is a critical sensor

of oncogenic stress from MAPK signaling in adenocarcinomas

[44,45]. We similarly observed overlap of activated p19ARF

mice as shown by (B) bioluminescence imaging (BLI) on a Xenogen Spectrum and (C) Western blotting for Twist1. BLI was performed on the same CT
mouse with time ‘‘ON’’ or ‘‘OFF’’ Dox as indicated. (D) Enrichment plot of an EMT_UP signature following GSEA performed on lung mRNA samples
taken from CT mouse lungs Dox ON (n = 2) and wildtype mouse lungs Dox ON (n = 2), NOM p-values, FDR q-values, and FWER p-values were all
,0.001. (E) Plot of E-cadherinlow-Vimentinhigh cells per field of view immunofluorescence (IF) of the lungs from CT animals ON (n = 4) and wildtype
(n = 4) animals; p,0.01 by Mann-Whitney t-test. d – day; wk – week; and m – month.
doi:10.1371/journal.pgen.1002650.g001

Twist1 Accelerates and Maintains Lung Tumors
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(nucleolar localization) with areas of intense pErk1/2 staining by

IHC in our CT-LSL ON tumor model (Figure 4G).

We next inactivated the expression of Twist1 alone in a cohort

of CT-LSL lung tumor moribund mice by withdrawal of

doxcycline (CT-LSL OFF, n = 4). Twist1 levels were confirmed

in CT-LSL OFF tumors by qPCR (Figure 5A, p = 0.004 by t-test)

and by serial BLI (data not shown) to return to levels in wildtype

lungs. Interestingly, CT-LSL OFF lung tumors showed tumor

stasis by serial microCT over the course of the 4 weeks of Twist1

inactivation in stark contrast to the progressive tumor growth seen

for the control LSL OFF tumors (Figure 5B; 18% versus 220%

growth, p,0.0001 t-test).

To further characterize in an unbiased manner the mechanism

by which Twist1 suppression was inducing tumor stasis we

performed microarray analysis. We compared CT-LSL OFF lung

tumors with normal lung and microdissected lung tumors from

CR, CRT, LSL, CT-LSL ON and CT-LSL OFF mice. The

analysis of 2,163 annotated pathways using single sample GSEA

(ssGSEA), an algorithm designed for modest samples sizes [as used

previously in [16]], found gene sets representing p21 ectopic

overexpression to be highly correlated with the CT-LSL OFF lung

tumor transcriptional program (Figure S5A–S5B). We used the

complimentary Ingenuity Pathway Analysis (IPA) to identify

canonical pathways from the differentially expressed genes

between CT-LSL ON and CT-LSL OFF tumors. Consistent with

ssGSEA we found Twist1 regulated key drivers of cellular

senescence (genes encoding p21, p16, p27 and IL-6) and EMT

(genes encoding cadherins, vimentin and alpha-catenin) in the

Figure 2. Twist1 accelerates KrasG12D-induced lung tumorigenesis and promotes progression to adenocarcinoma. (A) Kaplan-Meier
tumor free survival using serial microCT of CCSP-rtTA/Twist1-tetO7-luc (CT), CCSP-rtTA/tetO-KrasG12D (CR) and CCSP-rtTA/tetO-KrasG12D/Twist1-tetO7-luc
(CRT) mice. The double inducible oncogene animals (CRT) developed multiple tumors at a median tumor latency that was significantly shorter than
the single CR animals, 15 weeks, by log-rank analysis (p,0.0001). A syngenic control cohort consisting of wildtype mice, those with tetO-KrasG12D/
Twist1-tetO7-luc (without CCSP-rtTA), CCSP-rtTA alone, or single oncogenes alone (n = 15 total) never developed lung tumors before 12 months of age.
(B) Lung tumors from a CRT mouse at necropsy and H&E sections. Black bars equal 200 and 50 mm. H – heart; and L – liver. (C) Immunohistochemical
(IHC) phenotyping of CRT tumors using antibodies against CCSP and proSpC. (D) Lung tumor burden is increased at 6 months in CRT versus CR mice
qualitatively by microCT and H&E histology. Blue arrowheads denote lung tumors. (Lower panel) Lung tumors were quantified for CR versus CRT mice
by microCT (n = 4 mice each). S – spine. Black bar equals 2 mm (E) Ki-67 IHC of CR versus CRT lung tumors (n = 3 mice each). Low - ,5%; Med – 5–25%;
and High - .25%. Histologic examination of lung tumors for numbers of benign lesions (hyperplasia, atypical adenomatous hyperplasia and
adenomas) versus adenocarcinomas (AdenoCA) for CR and CRT mice (n = 2 mice each).
doi:10.1371/journal.pgen.1002650.g002

Twist1 Accelerates and Maintains Lung Tumors
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Figure 3. KrasG12D/Twist1-induced lung tumors regress following combined oncogene inactivation. (A) Gross appearance of CRT lung
tumors following 4 weeks of combined KrasG12D and Twist1 oncogene inactivation (n = 4). H – heart and L – liver. (B) Serial axial microCT of the same
CRT mouse following 4 weeks of combined KrasG12D and Twist1 oncogene inactivation (n = 4) demonstrates tumor regression. Blue arrowheads
denote lung tumors. S –spine. (C) Serial coronal FDG microPET-CT demonstrate decreased metabolic tumor burden after 1 week of combined
KrasG12D and Twist1 oncogene inactivation (n = 2). (D) Normal appearing H&E histologic section from lung tumor moribund CTR OFF mouse following
4 weeks of combined KrasG12D and Twist1 oncogene inactivation (n = 4). Black bar equals 200 mm. CRT lung tumors demonstrate (E) decreased

Twist1 Accelerates and Maintains Lung Tumors
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context of KrasG12D-driven lung tumors (Figure S6). Directed IHC

analysis of CT-LSL OFF tumors confirmed ssGSEA and IPA that

molecular changes consistent with activation of OIS, such as

marked decreases in proliferation by Ki-67 and pronounced

increases in staining for SA-b-Gal, p21 and p16 (Figure 5C–5F

and 5H–5K, p,0.0007 Chi-square for 5H–5K).

The single inactivation of Twist1 in our CT-LSL OFF tumors

also appeared to decrease the number of adenocarcinomas as

shown with decrease in tumors with high proliferative rate to a

frequency similar to LSL alone (compare Figure 5C and 5H to

LSL from Figure 4F, p = 0.93 Chi-square). In addition MAPK

signaling intensity decreased in CT-LSL OFF significantly

compaed to CT-LSL ON (Figure 5G and 5L, p,0.015 Chi-

square). The decrease of highly proliferative adenoncarcinomas

with active MAPK signaling in KrasG12D-induced lung tumors was

also seen following p53 restoration [44,45]. Lastly, apoptosis

increased only very slightly in a subset of the CT-LSL OFF tumors

as demonstrated by cleaved caspase 3 IHC (data not shown).

proliferation and (F) increased apoptosis following combined KrasG12D and Twist1 oncogene inactivation. CRT lung tumors were assayed for
proliferation using Ki-67 IHC and quantified as in Figure 2E (n$2 mice per time point). CRT lung tumors were assayed for levels of apoptosis using
cleaved caspase 3 IHC and quantified (n$2 mice per time point). Low - ,1%; Med – 1–4%; and High - .4%. (G) Percentage of senescent lung tumors
per mouse does not increase following combined KrasG12D and Twist1 oncogene inactivation. The level of senescence associated-beta-galactosidase
(SA-b-Gal) correlates inversely with proliferative capacity of individual tumors. CRT lung tumors were assayed for levels of SA-b-Gal and quantified
(n$2 mice per time point). Low - ,10%; Med – 10–30%; and High - .30%. Representative panels of tumors with ‘‘Low’’ and ‘‘High’’ SA-b-Gal staining.
doi:10.1371/journal.pgen.1002650.g003

Figure 4. Twist1 accelerates conditional KrasG12D-induced lung tumorigenesis. (A) Crosses (CT6LSL) to produce CCSP-rtTA/Twist1-tetO7-luc/
LSL-KrasG12D (CT-LSL) mice. CT-LSL mice are infected with intranasal Cre to activate KrasG12D. Addition of Dox enables Twist1 and luc transcription. In
contrast to CRT OFF mice, CT-LSL OFF mice have KrasG12D still active and only Twist1 expression is inactivated. (B) Kaplan-Meier tumor free survival by
serial microCT of F1 littermates with CT, LSL and CT-LSL genotypes. The double oncogene animals (CT-LSL, n = 18) developed multiple tumors at a
median tumor latency that was significantly shorter than the single LSL (n = 14) animals, 5 versus 6 weeks (CT-LSL versus LSL, by log-rank analysis
p = 0.0121). CT animals (n = 17) and littermate controls not infected with AdCMVCre (n = 5) never developed lung tumors. (C) Lung tumor burden is
increased at 9 weeks post-AdCMVCre in CT-LSL versus LSL mice qualitatively by representative microCT. Blue arrowheads denote lung tumors. H –
heart; and S – spine. (D) H&E stained sections of lung tumors from a CT-LSL mouse. Black bars equal 200 and 50 mm. (E) Immunohistochemical (IHC)
phenotyping of CT-LSL lung tumors indicate a type II pneumocyte cell of origin using CCSP and proSp-C markers. (F) Ki-67 IHC of LSL versus CT-LSL
lung tumors (n = 2). Low - ,5%; Med – 5–25%; and High - .25%. (G) pErk1/2 and p19ARF IHC staining in serial sections demonstrate overlap. Note the
nucleolar staining of p19ARF, specific nuclei are denoted by blue arrowheads.
doi:10.1371/journal.pgen.1002650.g004

Twist1 Accelerates and Maintains Lung Tumors
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These data provide the first in vivo evidence that Kras mutant lung

adenocarcinomas can be clinically impacted by activating a latent

program of cellular senescence via the inhibition of Twist1.

TWIST1 is commonly overexpressed in human lung
cancers

The relevance of TWIST1 as a potential therapeutic target in

human lung cancers was evaluated by examining public gene

expression microarray datasets. We found seven independent

human lung cancer gene expression datasets that in total consisted

of 394 tumor samples and 159 normal lung samples

[46,47,48,49,50,51,52] (Figure 6A). Six out of the 7 datasets, as

well as aggregate analysis of all 7 datasets demonstrated TWIST1

overexpression in lung cancers (p = 0.04 for aggregate). The

analysis included tumors of adenocarcinoma and squamous cell

carcinoma histology which comprise the two most common

subtypes encountered in human lung cancer.

This microarray expression data was directly validated using

quantitative PCR (qPCR) for TWIST1 on human lung cancer

samples. In total we screened by qPCR 164 human lung tumor

samples and confirmed that TWIST1 was indeed overexpressed

(100/164 or 61% demonstrate at least 3-fold upregulation, 43/164

or 26% at least 10-fold overexpression and in some cases as high as

536 fold overexpression was observed, p,0.0001 by t-test;

Figure 6B). TWIST1 was similarly overexpressed in all the

histologies examined including adenocarcinoma and squamous

cell carcinoma (p,0.0001 by ANOVA) (Figure 6C). The range of

relative TWIST1 overexpression observed by qPCR in our 164

primary human lung cancer samples (range 3–536 fold TWIST1

overexpression) was similar to the Twist1 overexpression observed

Figure 5. Activation of Kras-induced senescence by down-regulation of Twist1 in autochthonous KrasG12D/Twist1-induced lung
tumors. (A) Verification by qPCR that Twist1 mRNA levels are reduced following doxycycline withdrawal in CT-LSL OFF (n = 4) compared to CT-LSL
ON (n = 3) lung tumors. (B) CT-LSL OFF lung tumors are static following single Twist1 inactivation. Representative serial microCT of CT-LSL lung tumor
moribund mouse just before, CT-LSL ON, and 4 weeks following doxycycline removal from the drinking water, CT-LSL OFF, resulting in de-induction
of Twist1only (n = 13 tumors quantified from 4 mice). For comparison, LSL-KrasG12D (LSL) mouse lung tumors grow despite withdrawal of doxycycline,
LSL OFF (n = 11 tumors quantified from 3 mice). Percent tumor volume growth was quantified and calculated showing CT-LSL OFF tumor stasis after 4
weeks compared to LSL OFF (p,0.0001). H – heart; and S – spine. CT-LSL OFF lung tumors demonstrate markers consistent with an increase in the
number of senescent cells, such as (C) reduction in proliferation by Ki-67 IHC, (D) increased lung tumors positive for SA-b-gal staining, increased levels
of (E) p21 and (F) p16 by IHC (n = 3 mice per staining). (G) pErk1/2 levels reduced moderately following Twist1 inactivation in CT-LSL OFF tumors. (H–L)
Quantification of (C–G) as described in previous figures for Ki67 (see Figure 2) and SA-b-gal (see Figure 3) staining; and 21, p16 and pERk1/2 as follows
- Low - ,10%; Med – 10–25%; and High - .25%. All animals in these experiments were taken off doxycycline (‘‘OFF’’) continuously for 2–5 weeks and
then sacrificed.
doi:10.1371/journal.pgen.1002650.g005
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in our mouse KrasG12D-Twist1-induced lung tumors (range 5–960

fold Twist1 overexpression, n = 6). Together these data demon-

strate that TWIST1 is commonly overexpressed in human lung

cancer and that our KrasG12D-Twist1 mouse models do reflect

human lung cancer.

Activation of cellular senescence in human KRAS mutant
lung cancer cells by targeting TWIST1

The overexpression of TWIST1 in human lung cancers and our in

vivo data from the CT-LSL OFF mouse lung tumors strongly

suggested that TWIST1 may be a relevant therapeutic target in

human lung cancer. The consequences of knocking down TWIST1

using shRNA technology was tested in human KRAS mutant H460

lung cancer cells. We screened various published shRNAs and

found three sequences that were capable of knocking down human

TWIST1 as shown by qPCR (Figure 7A, p,0.029 by ANOVA) and

at the protein level by Western (Figure 7B). TWIST1 knockdown in

H460 cells resulted in marked inhibition of proliferation using all

three shRNAs (Figure 7C) and increased staining for the cellular

senescence marker SA-b-Gal (Figure 7D–7E, p,0.023 by AN-

OVA). Other OIS markers p21 and p27 showed upregulation with

a subset of the shRNAs examined (Figure 7F). We extended these

results in two other human non-small cell lung cancer cell lines,

H727 and A549, showing that TWIST1 knockdown resulted in

decreased proliferation and increased expression of markers

consistent with activation of senescence (Figure S7).

We then confirmed that the TWIST1 shRNA was not having off

target effects by performing rescue experiments with mouse Twist1

infected into H460 and A549 cells (Figure S8A and data not

shown). Notably, the three shRNAs used in our study were not

predicted to knockdown mouse Twist1 cDNA, which was

confirmed by qPCR (Figure S8B and data not shown). The anti-

proliferative effects of shRNA mediated knockdown of human

TWIST1 in H460 and A549 cells was completely rescued by

expression of mouse Twist1 (Figure S8C and data not shown).

These data provide evidence that inhibition of TWIST1 can

activate latent OIS in multiple different human KRAS mutant lung

cancer cell lines.

To evaluate if the tumorigenic potential of human NSCLC cells

required TWIST1 overexpression, we performed subcutaneous

Figure 6. TWIST1 is overexpressed in human primary lung cancers. (A) Human non-small cell lung cancer samples (n = 394) compared against
normal lung (n = 159) from seven independent microarray datasets for TWIST1 expression using Oncomine. The heatmap contains individual studies
(see accompanying legend; #2 and #3 are from the same dataset analyzed by adenocarcinoma and squamous cell carcinoma, respectively). The heat
map intensity corresponds to percentile overexpression (red) or repression (blue). The median rank across all eight datasets demonstrates TWIST1 is
overexpressed in human lung cancer, p = 0.04. (B) We validated this microarray analysis by performing qPCR on primary human tumor samples for
TWIST1. TWIST1 mRNA is overexpressed in human lung cancer (n = 164) compared to normal lung (n = 28), p,0.0001 by Mann-Whitney t-test. (C)
Analysis of data from (B) broken down by adenocarcinoma (Adeno, n = 73) and squamous cell carcinoma (SCCA, n = 53) histology, p,0.0001 using
one-way ANOVA.
doi:10.1371/journal.pgen.1002650.g006
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xenografting experiments with A549 cells in immune-compro-

mised NOD-SCID mice. A549 cell infected with sh-Scrambled

control shRNA and subcutaneously injected into NOD-SCID

mice produced large tumors with high efficiency (5/6 mice

developed tumors by #4 weeks) necessitating humane euthanasia

of the mice. In stark contrast, the identical experiment using sh-

TWIST1 produced no tumors in any of the mice injected

(Figure 7G, p = 0.015 by Fisher’s exact test). These xenografting

results confirm that TWIST1 overexpression is required for

tumorigenicity in vitro and in vivo in human NSCLC cells.

Discussion

Our results dramatize that suppression of TWIST1 may be an

effective pro-senescence therapy for human lung cancer. We

provide the first in vivo demonstration that Twist1 plays an

important role in both the acceleration and maintenance of

KrasG12D-induced autochthonous lung tumorigenesis. Our results

illustrate that TWIST1 may be an important target for the

treatment of human lung adenocarcinoma. We generated two

novel autochthonous transgenic mouse models to demonstrate that

Twist1 overexpression cooperates with KrasG12D to markedly

accelerate the onset of lung adenocarcinoma. Suppression of

Twist1 expression to physiological levels is sufficient to induce lung

tumor stasis that was associated with the activation of cellular

senescence programs. Importantly, through the transcriptional

analysis of over 500 human tumors, human TWIST1 was found to

be frequently overexpressed and hence highly relevant to primary

human lung cancers. Finally, the knockdown of TWIST1 in

human KRAS mutant lung tumor cells was also associated with the

loss of their neoplastic properties and the induction of cellular

senescence. The generality of our results using different cell types

and across species suggest TWIST1 is a potential therapeutic target

in KRAS mutant lung cancers.

Oncogene-induced senescence and oncogene-induced apoptosis

represent early tumor suppressive barriers that must be overcome

for premalignant cells to ultimately emerge as neoplastic. It had

been reported previously that Twist1/2 could suppress mutant

Kras-induced OIS in vitro [23,24], but we report for the first time

the ability of Twist1 to suppress OIS in vivo using a novel Twist1

lung model in combination with two complementary KrasG12D–

induced autochthonous lung tumor models: the inducible trans-

genic KrasG12D (CR) model and the conditional endogenous

KrasG12D (LSL) model. Our results are confirmed by an accom-

panying paper demonstrating that Twist1 can also accelerate

KrasG12D-induced autochthonous breast tumorigenesis (Morel et.

al.). Twist1 co-expression accelerated tumorigenesis relative to

KrasG12D alone in both lung tumor models. Twist1 acceleration was

more pronounced in the CRT model than the CT-LSL model.

One explanation for this difference is the greater strength of

oncogenic signaling by transgenic KrasG12D versus endogenous

KrasG12D [53]. An alterative explanation is that cell type specific

chromatin regulation of tumor suppressor loci such as the Ink4a/

Arf locus is a key determinant of whether mutant Kras elicits tumor

suppressive responses resulting in apoptosis and/or senescence

[54]. Another explanation are strain difference effects as we had to

use a mixed background for the CT-LSL mouse experiments.

These alternatives are not mutually exclusive and further study

using additional tissue specific models of KrasG12D and Twist1

expression are needed to define the mechanistic basis for the

differences we observed in oncogenic synergy observed between

Twist1 and KrasG12D.

The acceleration and progression of KrasG12D -induced lung

tumors by Twist1 is reminiscent of that seen with p53 deficiency

[3,44,45,55]. Notably, Twist1 may inhibit p53 through several

independent mechanisms [23,56,57,58,59,60], including direct

Twist1-p53 antagonism [61]. One straightforward interpretation

of our results is that Twist1 overexpression can phenocopy Trp53

deletion. Twist1 may also accelerate and promote KrasG12D-

induced lung tumors by the direct transcriptional regulation of

BMI1 [62]. As mentioned above, the control of tumor suppressor

loci by chromatin regulatory complexes, such as those containing

Bmi1, may be a strong determinant of responses to oncogenic

signaling [54]. Interestingly, ectopic expression of Twist1 in lung

epithelial cells was associated with the induction of an EMT

program. Whether the transdifferentiation program might con-

tribute to accelerated tumor initiation, as proposed by Morel et.

al., is also an intriguing possibility. Additional studies are required

to define the mechanisms by which Twist1 accelerates KrasG12D-

induced lung tumors, as well as explain why different tissues

exhibit differing cancer susceptibilities despite harboring the same

initiating oncogenic event.

Twist1 has been commonly implicated in metastasis [32]. Thus,

our finding that Twist1 expression did not seem to confer increase

distant metastases in either the CRT or CT-LSL autochthonous

lung tumor models was surprising. We note that Twist1 appears to

confer increased prometastatic ability in other models of

tumorigenesis as predicted (D. I. Bellovin, P. T. Tran and D.

W. Felsher, unpublished data). Hence, Twist1 may have specific

effects on metastatic potential.

Our study dramatically illustrates that it is possible to activate a

latent senescence program in Kras mutant tumors in vivo by

targeting the collaborating oncogene, Twist1. We uncover a newly

defined synthetic interaction between mutant Kras and Twist1

resulting not in cell death, but cellular senescence. The activation

of this program is evident at the molecular level and most

importantly results in marked inhibition of Kras mutant lung tumor

growth in vivo. We realize that a possible caveat to this approach is

that we first overexpressed Twist1 prior to KrasG12D activation and

lung tumor formation and thus may have biased tumors towards

dependency for Twist1. However, simply overexpressing an

oncogene during tumorigenesis does not per se make tumors

dependent or ‘‘addicted’’ to that oncogene as we have shown, in

particular for lung tumorigenesis [35,63]. Finally, we validate that

knocking down endogenous TWIST1 in human lung cancer cell

lines in vitro and in vivo also results in activation of senescence.

An alternative approach to inducible overexpression using the

TET system as we used in our study would be to use genetic

Figure 7. TWIST1 knockdown activates senescence in human non-small cell lung cancer cells. Three different shRNAs were able to
knockdown TWIST1 mRNA levels and result in decreased TWIST1 protein in the KRAS mutated non-small cell lung cancer (NSCLC) cell line H460 as
shown by (A) qPCR and (B) TWIST1 Western blotting on day 9 after the shRNA infection. (C) Representative duplicates of crystal violet staining of
serially diluted H460 NSCLC cells demonstrate TWIST1 knockdown decreases cellular proliferation. (D) Representative photomicrographs of increased
SA-b-gal staining of cells following shRNA mediated TWIST1 knockdown using sh-TWIST1-39. (E) Quantification of SA-b-gal stained cells following
shRNA mediated TWIST1 knockdown. (F) TWIST1 knockdown in H460 results in the upregulation of some additional markers of senescence, p21 and
p27 as shown by Western blotting on day 9 after the shRNA infection. (G) A549 cells require TWIST1 overexpression to form subcutaneous tumors in
NOD-SCID mice. A contingency table of A549 cells infected with sh-Scrambled control or sh-TWIST1 shRNA that were implanted into NOD-SCID mice
and 4 weeks later scored for tumor development (5/6 versus 0/5, respectively, p = 0.01 by Fisher’s exact test).
doi:10.1371/journal.pgen.1002650.g007

Twist1 Accelerates and Maintains Lung Tumors

PLoS Genetics | www.plosgenetics.org 11 May 2012 | Volume 8 | Issue 5 | e1002650



ablation of endogenous Twist1 using the Cre-LoxP or a inducible

shRNA system following development of KrasG12D–induced lung

tumors. As KrasG12D–induced lung tumors are primarily adenomas

with low proliferative rates (Figure 2E and Figure 4F), endogenous

Twist1 ablation or knockdown would not likely have an effect as has

been shown for p53 restoration in adenomas [44,45]. From a

clinical standpoint complete ablation of a gene, such as in mice

using the Cre-LoxP system, is therapeutically not possible in humans.

In contrast, the TET model system where we can suppress Twist1

overexpression to physiologic levels is more clinically relevant to

what is done in the clinic with inhibitors. Others have shown

senescence can arise in vivo in established tumors by targeting an

initiating oncogene or reconstitution of a tumor suppressor

[21,64,65,66]. Our work further highlights the activation of a latent

cellular senescence program or pro-senescence therapy as an

innovative avenue for cancer therapy [67].

Our results may extend beyond KRAS-mutant lung cancers.

Notably, TWIST1 was found to be overexpressed in a majority of

human lung cancer samples we tested. This includes not only

adenocarcinoma, in which KRAS mutation is commonly observed,

but also other major lung cancer histologies including squamous

cell carcinoma, in which KRAS mutation is rare. Our preliminary

data suggests that TWIST1 knockdown can result in activation of

OIS in KRAS wildtype lung cancer cell lines in vitro, but further

characterization of these lines for mutations in other components

of the EGFR/KRAS/BRAF pathway are needed (T.F. Burns, P.

T. Tran and C. M. Rudin, unpublished data). Furthermore,

additional preliminary findings suggest that TWIST1 may have a

larger role in suppressing OIS following activation of other key

driver mutations using other transgenic mouse lines (P. T. Tran

and D. W. Felsher, unpublished data). This hypothesis will be further

explored in lung cancer through introduction of our inducible

Twist1 construct into other relevant transgenic models of lung

tumorigenesis. Importantly, regardless of whether there is an

exclusive association between KRAS mutation and TWIST1

overexpression in human lung cancer cells, the data presented

strongly support that TWIST1 upregulation in KRAS mutant lung

cancer represents a novel and particularly promising therapeutic

target. These observations have important and immediate

translational implications for this particularly refractory subset of

lung cancers.

The consequences of systemic transient inhibition of Twist1 in

the adult has not been well defined and thus side-effects of such

treatment are unknown. Germline deletion of Twist11 in mice is

embryonic lethal [22] and loss of function mutations in humans

cause a severe developmental disorder. However, postnatal

expression of TWIST1 appears to be tightly restricted to a

subpopulation of mesoderm derived tissues and limited studies

suggest that Twist1 inhibition systemically may be well tolerated

[68]. We conclude that TWIST1 may be an effective target for

‘‘pro-senescence’’ therapy for human lung cancers [67]. Our

results suggest that it will only be necessary to suppress TWIST1 to

a physiological level which may preclude toxicity. Our mouse

model will be useful to identify agents that target TWIST1 for the

treatment of human cancer.

Materials and Methods

Cell lines
The human non-small cell lung cancer cell lines, H460, H727

and A549; and embryonic kidney cell line HEK 293 T were

obtained from ATCC and grown in media as recommended.

MEFs were isolated from E13.5 embryos and propagated as

described previously [18]. MEFs were grown for two population

doublings and then frozen for future experiments. MEFs were

grown in DMEM plus 10% fetal calf serum.

Transgenic mice
The Twist1 cDNA was PCR cloned into the bidirectional tetO7

vector S2f-IMCg [33] at EcoRI and NotI sites, replacing the eGFP

ORF. The resultant construct, Twist1-tetO7-luc, was sequence

confirmed, digested with KpnI and XmnI to release the bidirectional

transgene and then used for injection of FVB/N pronuclei by the

Stanford Transgenic Facility. We ultimately obtained three

founders from 25 pups after screening by tail genotyping using

PCR as described below. These three founders were mated to

CCSP-rtTA mice to screen for functional Twist1-tetO7-luc found-

ers. One founder failed to pass the transgene germline and one

founder did not report inducible Twist1 or luc expression. The

remaining founder was used for all the experiments in this study.

We use the b-actin-rtTA, CCSP-rtTA, tetO-Kras4bG12D and LSL-K

rasG12D transgenic lines [3,34,69]. Twist1 and/or K-rasG12D

expression was activated in the CT, CR, and CRT lung lines by

administering doxycycline (Sigma) to the drinking water weekly

[2 mg/mL] starting at the age of 3–5 weeks. The conditional LSL-

K rasG12D lines were activated by intranasal delivery of adenoviral

CMV-Cre [43]. All procedures were performed in accordance

with APLAC protocols and animals were housed in a pathogen-

free environment.

PCR genotyping
DNA was isolated from mouse tails using the Qiaprep DNeasy

kit (Qiagen). The CCSP-rtTA, tetO-K-rasG12D and LSL-K rasG12D

transgenic lines were screened as described previously. The

Twist1-tetO7-luc line was detected with the following primers:

mTwist1-Luc.S2 59- CCTTATGCAGTTGCTCTCCAG -39 and

mTwist1-Luc.AS2 59- GCTTGCCTATGTTCTTTTGGA -39.

DNA was amplified using PCR and PCR products were resolved

on a 2% agarose gel.

SYBR-green quantitative RT–PCR
Total RNA was isolated from tissue using the Qiaprep

RNAeasy Kit (Qiagen) according to the manufacturer’s directions.

Samples were treated with RQ1 RNase-Free DNase (Promega).

cDNA was generated from 1 mg of total RNA using the

Superscript II kit (Invitrogen Technologies). Control reactions

were run without RT enzyme. 50 ng of cDNA equivalents were

amplified for the transcript described below in an ABI-prism 7700

for 40 cycles using SYBR green PCR Master mix (Perkin Elmer

Applied Biosystems). PCR reactions were performed in duplicate-

triplicate in a final volume of 20 mL. Following amplification, the

data was processed with the analysis program Sequence Detection

Systems v2.2.2 (Perkin Elmer Applied Biosystems). For each

sample, the level of RNA for the genes of interest was standardized

to a housekeeping gene (ubiquitin or 18S rRNA) within that

sample; subsequently, the level of a transcript of interest was

normalized to the expression of that transcript from the

appropriate comparator sample. Primers for qPCR are listed in

the Text S1.

Human normal lung and lung tumor qPCR tissue arrays and

TWIST1 qPCR oligos were purchased from OriGene. All relevant

clinical information can be found (http://www.origene.com/

qPCR/Tissue-qPCR-Arrays.aspx).

Immunoblot analysis
Cells were lysed on ice for 60 min in radioimmunoprecipitation

assay buffer supplemented with protease and phosphatase
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inhibitors (Sigma-Aldrich) and clarified by centrifugation. Protein

concentrations were determined by Bradford proteinassay (Bio-

Rad Laboratories). Equal protein concentrations of each sample

were run on NuPAGE bis-Tris gels (Invitrogen) and transferred to

membranes. After being blocked with 5% dried milk in TBS

containing 0.2% Tween 20, the filters were incubated with

primary antibodies. The following primary antibodies were used:

goat anti-Actin (C-11, Santa Cruz), mouse anti-Twist1

(TWIST2C1a, Santa Cruz), mouse anti-p21 (Ab-1, Calbiochem)),

mouse monoclonal anti-p27 (F-8, Santa Cruz) After washing and

incubation with horseradish peroxidase (HRP)-conjugated anti-

Goat or anti-mouse IgG (Amersham), the antigen-antibody

complexes were visualized by chemiluminescence (ECL detection

system; Perkin Elmer).

Histology and immunohistochemistry
Tissues were fixed in 10% buffered formalin for 24 h and then

transferred to 70% ethanol until embedded in paraffin. Tissue

sections 5 mm thick were cut from paraffin embedded blocks, placed

on glass slides and hematoxylin and eosin (H&E) or Masson’s

trichrome staining was performed using standard procedures.

Antibodies used in our study: p21, p27, p16, vimentin (BD

Pharmingen) and E-Cadherin (Cell Signaling). We performed IHC,

measured K-i67 and CC3-staining as described previously [35]. For

immunofluorescence (IF), Alexa488-conjugated anti-mouse and

Alexa594-conjugated anti-rabbit (1:300 dilution, Invitrogen) were

used as secondary antibodies and incubated at room temperature for

30 minutes. DAPI was used as a nuclear stain and slides were

mounted in aqueous mounting media (Vector Laboratories).

For EMT IF analysis double immunofluorescence was used.

Vimetin-expressing cells were labelled with Alexa488 (green) and

E-cadherin-expressing cells were labeled with Alexa 594 (red). To

quantify cells undergoing EMT, cells that were red(low)green(high)

were manually counted. A minimum of seven different fields of

view per section from greater than four different animals were

analyzed in total.

Lentiviral and retroviral experiments
293T cells were seeded (2.56106 cells) in T25 flasks. shRNA

constructs were obtained from the Broad RNAi Consortium.

pLKO.1-shRNA scramble vector was used. Lentivirus was made

using a three-plasmid system and infected using the TRC Library

Production and Performance Protocols. Twenty-four hours after

infection, cells were treated with 1 mg/ml puromycin and

passaged once 80% confluent.

Retroviral production used ecotropic and amphotropic Phoenix

packaging lines. Early passage MEFs were transduced with

pWZL-Hygro vectors expressing HrasG12V or with empty vector

for two successive times over a 36-h period and then followed by

selection with hygromycin (100 mg/ml) for 4 days. Retroviral

infections on H460 cells used pWZL-Hygro vector and pWZL-

Hygro/mTwist1 constructs, for two successive times over a 36-h

period and then followed by selection with hygromycin (250 mg/

ml) for 4 days.

Colony formation and proliferation assays
On Day 6 after infection with the indicated shRNA lentiviruses,

cells were plated in 12-well plates at a density of 5E3, 10E3 and

15E3 cells/well. On Day 12, the cells were stained with crystal

violet (0.5% in 95% ethanol).

Similar low passage MEFs were used for all proliferation assays.

Retroviral infections were performed as above, selection carried

out for 4 days and stably selected cells were plated and then

treated with or without 2 mg/ml doxyxycline for proliferation

assays (Day 1). Sets of cells were removed for trypsinization and

counting every 4 days. Values are normalized with Day1 readings.

SA-b-gal staining
Cells were washed twice with phosphate-buffered saline (PBS)

and then fixed with PBS containing 2% formaldehyde and 0.2%

glutaraldehyde for 5 min. The cells were then incubated at 37uC
for 20 hr with staining solution (40 mM citric acid sodium

phosphate, pH 6.0, 1 mg/ml 5-bromo-4-chloro-3-isolyl-b-D-ga-

lactoside [X-gal, Fisher], 5 mM potassium ferricyanide, 5 mM

potassium ferrocyanide, 150 mM NaCl, 2 mM MgCl2). After

incubation, cells were washed twice with PBS and viewed with

bright-field microscopy.

Small animal imaging
Micro-computed tomography (mCT) and PET scans were

performed on a custom GEHC (London, Ontario) eXplore

RS150 cone-beam scanner and an R4 microPET (Siemens

Medical Solutions USA, Inc.), respectively, as described previously

[35,70]. Mice were screened serially every 1–2 weeks following

doxycycline activation or intranasal adenoviral CMV-Cre and

images were reviewed by a board certified radiation oncologist

(PTT). PET images were reconstructed using the ordered-subsets

expectation maximization algorithm with a spatial resolution of

1.66 to 1.85 mm. No attenuation correction or partial volume

corrections were applied.

Lung tumor quantification
Micro-computed tomography (mCT) images were reviewed by a

board certified radiation oncologist (PTT) on multiple index

tumors in a blinded fashion (n = 2–5 tumors per mouse). Bi-

dimensional measurements were made on tumors using serial

examinations and tumor volumes calculated using the following

equation vol = pi/661.65(length6width)63/2. Volumes were

normalized to the starting volume, t = 0 before doxycycline

treatment, and percent tumor volume growth was then calculated

by (normalized tumor vol.6100%)2100%.

Mouse xenograft model
Female NOD-SCID mice 4–5 weeks old were purchased from

Harlan Laboratories. Mice were maintained under pathogen-free

conditions and given food and water ad libitum in accordance with

guidelines from the Johns Hopkins Animal Care and Use

Committee. A549 infected with sh-Scrambled control or sh-

TWIST1 shRNA, selected for 4 days as described above and then

56105 million cells in 100 mL of Hank’s solution and Matrigel (BD

Biosciences) mixed 1:1 were injected subcutaneously in the right

flank. Tumor measurements were taken every 2–3 days.

Supporting Information

Figure S1 Inducible Twist1 lung model of epithelial mesenchy-

mal transition (EMT). (A) Heatmap of the lung mRNA samples

taken from CT mouse lungs Dox ON (n = 2) and wildtype mouse

lungs Dox ON (n = 2) for the EMT_UP geneset. Enrichment plots

for (B) HYPOXIA_NORMAL_UP, (C) HYPOPHARYN-

GEAL_MET_VS_NON_UP and (D) PMNS_DN following

GSEA performed on CT ON lung samples and wildtype mouse

lung samples (NOM p-values, FDR q-values, and FWER p-values

were all ,0.001 for all three genesets). (E) Representative

immunofluorescence (IF) for the EMT markers E-cadherin and

vimentin on lungs of CT and wildtype mice that was used for

quantification of Figure 1E.

(TIF)
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Figure S2 Twist1 accelerates KrasG12D-induced lung tumorigen-

esis and promotes progression to adenocarcinoma. (A) Represen-

tative Ki-67 staining of lung tumors from CR and CRT mice used

for quantification of Figure 2E.

(TIF)

Figure S3 KrasG12D/Twist1-induced lung tumors regress follow-

ing combined oncogene inactivation. (A) Serial FDG microPET-

CT volumetric reconstructions demonstrate decreased metabolic

tumor burden after only 1 week of combined KrasG12D and Twist1

oncogene inactivation (representative of n = 2). (B) Representative

H&E and Masson’s trichrome staining of CRT OFF lungs show

fibrotic scars are present at the sites of presumed lung tumor

regression. Black bars equal 50 mm. (C) Representative Ki-67 IF

staining of lung tumors from CRT mice following combined

KrasG12D and Twist1 oncogene inactivation for the indicated time.

(D) Representative cleaved caspase 3 (CC3) IHC staining of lung

tumors from CRT mice following combined KrasG12D and Twist1

oncogene inactivation for the indicated time. Black arrows denote

CC3 positive staining cells.

(TIF)

Figure S4 Activation of ras-induced senescence by inactivation

of Twist1 in mouse embryonic fibroblasts (MEFs). (A) Western blot

of b-actin-rtTA/Twist1-tetO7-luc MEFs used in the study demon-

strating inducible Twist1 expression in vitro. Blots were probed with

a Twist1 immunoreactive antibody and then stripped and

reprobed with actin to ensure equal loading. (B) Representative

growth curves of inducible b-actin-rtTA/Twist1-tetO7-luc MEFs

infected with virus containing a control vector versus HrasG12V and

then induced with doxycycline (+Dox) or without doxycycline

(2Dox). Growth was normalized to Day 1. (C) Representative

photomicrographs of senescence associated-b-galactosidase (SA-b-

gal) staining of the cells in (B) at day 12. (D) Quantification of the

SA-b-gal-positive percentage of cells in (C), p = 0.0286 by t-test (for

both Twist1+Vector+Dox versus Twist1+HrasG12V2Dox and Twis-

t1+HrasG12V+Dox versus Twist1+HrasG12V2Dox). (E) Deinduction

of Twist1 activates senescence as shown by cells from (B) at Day 12

that had doxycycline removed or continued in the media and then

cell number counted 8 days later, p = 0.0025 by paired t-test. (F)

SA-b-gal staining and quantification of the SA-b-gal-positive

percentage of cells in (E), p = 0.0294 by t-test.

(TIF)

Figure S5 Twist1 inactivation in the setting of Kras mutation

results in gene expression changes consistent with an ectopic p21

overexpression gene expression signature. The mRNA was

purified from CT-LSL ON (n = 2) and CT-LSL OFF (n = 5) mice

and then subjected to microarray gene expression analysis. (A)

Heatmap of the top 25 up- and down-regulated genes between

CT-LSL ON versus CT-LSL OFF (t-test.5). (B) Additional mRNA

was purified from normal lung (n = 2) and microdissected tumors

from CR (n = 2), CRT (n = 2) and LSL (n = 2) mice and then

subjected to microarray gene expression analysis. Single sample

GSEA (ssGSEA) was used in preference over traditional GSEA as

this new technique allows more robust analysis from limited

sample sets (Barbie et al. 2009). The ssGSEA heat map of the top

25 correlated gene sets for normal lung, CR, CRT, LSL, CT-LSL

ON and CT-LSL OFF samples reveals enrichment of p21_ANY

and p21_ANY_UP gene set (boxed) in CT-LSL OFF relative to

CT-LSL ON tumors. A figure incorporating all these samples

(normal lung, CR, CRT, LSL, CT-LSL ON and CT-LSL OFF)

was too cumbersome to present in its entirety, for the sake of

clarity we only present the CT-LSL ON versus CT-LSL OFF

portion of the results.

(TIF)

Figure S6 Twist1 inactivation in the setting of Kras mutation

results in gene expression changes that effect multiple canonical

pathways specifically those for cell cycle arrest and senescence.

The mRNA was purified from CT-LSL ON (n = 2) and CT-LSL

OFF (n = 5) mice and then subjected to microarray gene

expression analysis. Ingenuity Pathway Analysis software v5.0

(IPA) was utilized to identify the top significant canonical pathways

from differentially expressed genes and their fold changes. The

most significant network of probe sets constructed using IPA 5.0 is

represented as nodes and lines between two nodes. Node shapes:

square, cytokine; diamond, enzyme; inverted triangle, kinase;

rectangle, nuclear receptor; ellipse, transcription regulator; circle,

other. The intensity of node colors indicates the degree of

upregulation (red) or downregulation (green). Continuous and

dashed lines indicate direct and indirect interactions between

molecules, respectively. Selected interesting genes are highlighted

by blue ovals. (A) IPA analysis of CT-LSL ON. (B) CT-LSL OFF.

(TIF)

Figure S7 TWIST1 knockdown activates senescence in vitro in

H727 and A549 human non-small cell lung cancer lines. (A) The

shRNAs shTWIST1-39 and -43 were able to knockdown TWIST1

mRNA levels as shown by qPCR at day 4 after the shRNA

infection. (B) Representative triplicates of crystal violet staining of

H727 and A549 NSCLC cells demonstrate TWIST1 knockdown

decreases cellular proliferation. (C) TWIST1 knockdown in H727

and A549 results in the upregulation of markers of senescence,

p21, p27 and dephosphorylated pRb as shown by Western blotting

on day 9 after the shRNA infection.

(TIF)

Figure S8 Mouse Twist1 can rescue the anti-proliferative effects

of knockdown of human TWIST1 in H460 cells. (A) Twist1

Western blot of H460 cells stably infected with mouse Twist1. (B)

Knockdown of human TWIST1 mRNA but not mouse Twist1

mRNA using human specific shRNAs in stably infected H460 cells

from (A) as shown by qPCR. (C) Mouse Twist1 rescues the anti-

proliferative phenotype of human TWIST1 knockdown in H460

cells as shown by crystal violet staining of cells in triplicate.

(TIF)

Text S1 Supporting information texts. Microarray Analysis,

Gene Set Enrichment Analysis and Ingenuity Pathway Analysis

methods and oligo sequences for qPCR are provided.

(DOC)
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