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Nanoscale imaging of the 
photoresponse in PN junctions of 
InGaAs infrared detector
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Electronic layout, such as distributions of charge carriers and electric field, in PN junction is determinant 
for the photovoltaic devices to realize their functionality. Considerable efforts have been dedicated 
to the carrier profiling of this specific region with Scanning Probe Microscope, yet reliable analysis 
was impeded by the difficulty in resolving carriers with high mobility and the unclear surface effect, 
particularly on compound semiconductors. Here we realize nanometer Scanning Capacitance 
Microscopic study on the cross-section of InGaAs/InP photodetctors with the featured dC/dV layout 
of PN junction unveiled for the first time. It enables us to probe the photo-excited minority carriers in 
junction region and diagnose the performance deficiency of the diode devices. This work provides an 
illuminating insight into the PN junction for assessing its basic capability of harvesting photo-carriers as 
well as blocking leakage current in nanoscopic scale.

PN junction (PNJ) is the active site of most semiconductor devices, such as diodes, transistors, photodetectors 
and solar cells1–3. Its primary role of modulating the charge carrier transport is implemented within the depletion 
region that mostly spans no more than several hundred nanometers4. Accordingly the actual electronic layout, 
e.g. the band alignment and the carrier profile of the junction, should be one of the key factors in optimizing the 
device performance5–7, particularly when it approaches the prediction limit nowadays8,9. On the other aspect, the 
spatially resolved electronic information could be beneficial for diagnosing the local effect10–14, such as that of the 
point defects, which is beyond the capacity of traditional techniques.

In the past decade, the scanning capacitance microscopy (SCM) has been widely used in the carrier profil-
ing of various functional structures15–19. However, confident SCM analysis on PN junction remains a challenge. 
Firstly, the strong built-in electric field increases the difficulty to resolve the highly mobile carriers and hinders 
the reliable interpretation16–21. Secondly, surface charges may exist and lead to re-distribution of carriers near the 
tip-engaged area20. The situation could be more complicated on the cross section of PNJ since the polarity and 
density of surface charges are expected to change remarkably across the reversely doped area. Furthermore, SCM 
is known of detecting the local majority carriers, but the capability of probing the minority carriers in the PNJ has 
not been shown, which is critically wanted for developing high performance photovoltaic devices22.

In this work, with an improved spatial resolution of SCM on narrow bandgap semiconductor, the distribution 
of differential capacitance (dC/dV) along the PNJ of In0.53Ga0.47As/InP photodetector has been delicately delin-
eated. Based on that, significant nanoscale dC/dV response to light illumination was observed in the InGaAs 
depletion region of PN junction. Moreover, this dC/dV variation at PNJ is closely related to the device perfor-
mance. The findings, consistent with those of photoluminescence study as well as the low frequency noise analy-
sis, suggest that defects in the InGaAs/InP interfacial region could be responsible for the performance deficiency 
of PNJ and device. By fitting the experimental SCM results with 2-dimensional numerical model, the density dis-
tribution of surface charges along the cross section of PNJ is obtained. The dC/dV photoresponse in the depletion 
region, which reflects the efficiency of PNJ to collect photocarriers, is demonstrated to arise from the recombina-
tion between surface charges and the photo-excited minority carriers.
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Results and Discussions
Imaging the photoresponse in PN junction.  The examined samples are the typical InGaAs mesa pho-
todetector, operating at a wavelength between 0.9 μ m and 1.7 μ m. The detector was designed to be the “n+ n p+” 
structure with a 1 μ m n+-InP (2 ×  1018 cm−3) layer, a 1.5 μ m n-In0.53Ga0.47As (2 ×  1016 cm−3) layer, a 50 nm unin-
tentionally doped InP layer and a 950 nm p+-InP (2 ×  1018 cm−3) capping layer. Following this sequence these 
functional layers were grown on the semi-insulating InP substrate by molecular beam epitaxy. The samples were 
cleaved for cross sectional SCM measurement as sketched in Fig. 1a.

Unlike carriers in abrupt potential wells of low dimensional structures that can be clearly resolved23,24, PNJ 
provides gradual potential distribution which spans several hundred nanometers, the carriers with high mobility 
would respond to the tip bias from a fairly long distance. A series of improvements were then adopted to circum-
vent this difficulty. The conductive diamond coated Si probe was chosen for the SCM characterization due to its 

Figure 1.  The configuration and the results of the photo-excited SCM measurements on the cross section of 
In0.53Ga0.47As photodetector. (a) The schematic experimental setup with the detail described in the “Methods” 
section. The SCM image of the device structure taken in dark condition (b) and illuminated by 808 nm laser 
with intensity of 1.3 mW/cm−2 (c). (d) The dC/dV profiles of the photodetector both in dark and under 
illumination. The inset shows a full view of the SCM profiles of the sample.
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sharp edge at the tip end as well as the excellent mechanical and electrical endurance. The contact force between 
the probe and the sample was minimized to reach a small contact area. Moreover, the measurements were done 
in the nitrogen atmosphere to avoid the electric field induced oxidization and the humidity induced stray capaci-
tance. With these modifications and the optimized parameters, nanoscale SCM characterization can be routinely 
achieved on III-V semiconductors, which offers a chance to experimentally resolve the detailed layout of junction 
area in narrow bandgap photovoltaic devices.

Figure 1b presents the cross-sectional SCM image of the photodetector taken in dark condition with the cor-
responding dC/dV distribution plotted in Fig. 1d as black line. With all the function layers clearly discriminated 
by their doping properties, some fine features of the dC/dV profile are disclosed in InGaAs depletion area. It can 
be verified that this is the characteristic appearance of PN junction since it won’t exist while the capping p-InP is 
etched (Supplementary Fig. 1). In principle, the local differential capacitance is expected to transit monotonically 
from negative to positive signal when the SCM tip scans from n- to p-type doped area. Practically, slight valley of 
dC/dV signal usually emerges in the depletion region due to the nonlinear sensitivity of measuring setup17,18,20,21. 
Nevertheless the exquisite SCM feature of PN junction presented here has not been reported including our pre-
vious studies on similar structures25,26. We attribute this progress to the improved spatial resolution and electrical 
sensitivity in the SCM experiments, which, together with the numerical simulation discussed later, makes it pos-
sible to investigate the performance related electronic layout in the PN junction.

SCM measurement under illumination could provide further information for the analysis of photovoltaic 
structures on their operating condition. Figure 1c shows the SCM image of the sample excited by laser at 808 nm. 
Noticeable change of SCM signal occurs in the PN junction compared with that in dark condition. Meanwhile 
no obvious variation could be observed for the junction width, indicating a relatively low illumination intensity 
(Fig. 1d)17. These phenomena suggest that the measurement is sensitive to the faint variation of local electronic 
environment induced by photo-injection.

Numerical elucidation on the dC/dV profile.  Quantitative analysis of SCM results, especially that of 
PNJ, suffers from the reproduction of the real electronic circumstance, including the lateral built-in electric field 
as well as the surface effect. Unlike the reported dC/dV profiles of Si PN junctions that could be reproduced by 
the numerical calculation with uniform distribution of surface states/charges21,27, here the situation is more com-
plicated for the junction of compound semiconductors.

The 2D simulation started from fitting the experimental dC/dV profile taken in dark condition. The details of 
the numerical model could be found in the “Methods” section. As shown in Fig. 2a, when no fixed charges were 
set at the sectional surface, the numerical calculation could give qualitatively correct dC/dV signal on the p+ InP 
and n-InGaAs neutral region (z <  − 0.25 and z >  0.05 μ m), but failed in predicting the feature in the junction 
area. Considering the fact that high density of surface states exists on oxygen adsorbed III-V semiconductors28–30, 
surface charges were then adopted in the simulation. Furthermore, the density of surface charges (DSC) is deter-
mined by the bulk Fermi level which will shift continuously from p- to n- region. This should result in a gradient 
density of fixed charges across the charge neutrality level (CNL) in the midgap.

Figure 2.  The fitting of the experimental dC/dV profile taken in dark condition. The simulated dC/dV 
profile of the PNJ (a) without surface charges, (b) with surface charges at the oxide/semiconductor interface.  
(c) The spatial distribution of surface charges obtained from the simulation of dC/dV profiles in dark condition 
and under illumination. The inset is the derived profile of surface trap density (Dst) on In0.53Ga0.47As.
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The inference was supported by numerical simulation. As shown in Fig. 2b, the experimental dC/dV pro-
file could be well reproduced with the spreading density of surface charges on cross section of InGaAs deple-
tion region (Fig. 2c). The demarcation between positive and negative surface charges is found at the peak 
between “valley I and II” (Fig. 2b), which helps to locate the charge neutrality level (CNL) of oxygen adsorbed 
In0.53Ga0.47As(110) at 0.21 eV below the conduction band minimum (CBM). The density profile of surface traps 
(Dst) on of In0.53Ga0.47As (110) is then derived and shown in the inset of Fig. 2c. Compared with the most stud-
ied Al2O3-In0.53Ga0.47As(100) system28,29,31,32, the oxygen-In0.53Ga0.47As(110) interface introduces relatively lower 
density of trap states in the bandgap, and its distribution deviates from the traditional parabolic profile when 
approaching the valence band maximum.

The simulation then casts light on the distinct dC/dV features in the InGaAs/InP n - p+ junction. For “valley I”, 
both the initial increase and subsequent reduction of the dC/dV amplitude, originates from the slowly decreased 
electron concentration along the growth direction. The reduction of dC/dV amplitude starts at the point where 
the majority carriers of electrons are efficiently depleted, and the contribution of holes to the differential capac-
itance is comparable to that of electrons, this leads the dC/dV value to approach zero. Based on these interpre-
tations, this specific structure (valley I) is inferred as a typical SCM (dC/dV) feature of the asymmetrical p+- n 
or n+- p junction, which is independent of the material and the fabrication process. In contrast, the discovery 
of “valley II” highly depends on the experimental spatial resolution. This fine structure arises from the gradual 
distribution of surface charges on the cross section of the PNJ. As stated earlier, the surface of “valley II” is posi-
tively charged, which will deplete holes and accumulate electrons. The contribution of holes (or electrons) to the 
capacitance response decreases (or increases), thus the dC/dV signal experiences a dip when it steps into valley 
II, which denotes an enhanced response from electrons. The subsequent transition of dC/dV signal from negative 
to positive value arises from the rapid increase of the hole concentration (up to 2 ×  1018 cm−3). In this region, the 
effect of surface charges and electrons on the capacitance response is relatively much lower.

Under illumination, the photo-excited carriers in junction area will neutralize the surface charges as illus-
trated in Fig. 3b. Thus with significant decrease of charge density on the sectional surface of the PNJ (Fig. 2c), 
the simulation shown in Fig. 3c exhibits typically the same dC/dV features as the experiment. In contrast, light 
illumination caused negligible change on dC/dV profile when no surface charges were set on the cross section 
(Supplementary Fig. 2). According to the calculation, the surface Fermi level could shift 53 meV under illumina-
tion of 2.8 mW/cm2, and gives rise to recordable dC/dV response in junction area.

Performance relevance of dC/dV photoresponse at PNJ.  As the localized dC/dV response to light 
arises from the recombination between photo-carriers and surface charges, its magnitude can actually denote 
the concentration of the photo-excited minority carriers in the PNJ and further reflect on the photoelectric per-
formance of the detector. When comparing two series of InGaAs/InP PNJs designed with same structure, one 
can find in Fig. 4a,b, although both junctions exhibit local response of capacitance to the illumination, the peak 

Figure 3.  The schematic surface photoresponse process in the In0.53Ga0.47As depletion region and the 
fitting of the photo-excited dC/dV profile. (a) The schematic band structure near the surface of In0.53Ga0.47As 
depletion region in dark condition where the Fermi level is above the charge neutrality level. (b) Corresponding 
band structure of (a) under illumination of 2.8 mW/cm2. The surface band bending leads to the accumulation of 
the photo-excited holes to the surface, which will neutralize the negative surface charges. (c) The experimental 
and simulated dC/dV profiles of junction area under dark condition and light illumination.
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sensitivity of dC/dV to excitation can differ for 2.3 times in magnitude between sample A and B. This is consistent 
with the photoelectric property of their devices, the photo-responsivity of diode made of sample A is nearly twice 
than that of sample B (shown in the inset of Fig. 4d).

In general, the function of a PNJ to collect and separate the photo-carriers is determined by its build-in field. 
Figure 4c presents the electric field distribution of two samples along the growth direction, which is derived from 
the surface potential alignment (shown in the inset of Fig. 4c) measured by Scanning Kelvin Probe Microscopy. It 
needs to be mentioned that the contact potential difference is likely to be smeared by surface charges at the cross 
section; still, it could be cited as reliable evidence to evaluate the relative intensity of electrical field inside the 
bulk. As one can see in Fig. 4c, while similar electric field distributions were observed at the n+-InP/n-InGaAs 
interface (Z ≈  1.75 μ m) for both samples, the build-in field at PNJ of sample B shows an expanded peak and with 
a relatively lower peak value in contrast with that of the regular one (sample A). This, together with the dC/dV 
findings, could be the clue to understand the difference of photoelectric property between these two samples.

Besides the poor photoresponse performance, a weak build-in electric field could also worsen the leakage 
character of PNJ in dark condition. This is confirmed by the dark current property of two diodes shown in Fig. 4d. 
Under reverse bias, the difference of dark current reaches one order in magnitude.

The discovery of electronic singularity in junction area is partially confirmed by low frequency noise analysis 
on both diodes. As shown in Fig. 5a, the noise of sample A is substantially lower than that of sample B and show a 
typical 1/f style over 1000 Hz. In contrast, an obvious generation-recombination (g-r) noise is observed in sample 
B even at very low bias voltage, which indicates that defect-assisted generation-recombination process dominates 
the electrical noise in the depletion region of PNJ in sample B (more noise spectra of sample B can be found in 
Supplementary Fig. 3)33,34.

On the aspect of optical transition, photoluminescence (PL) study gives further clue to understand the SPM 
findings on junction area. Laser with wavelength at 647 nm was chosen as the incident light so that photo-carriers 
were mostly excited in InP capping layer; consequently recombination in the junction depletion zone would play 
a major role in luminescent emission of InGaAs layer. PL spectrum of InGaAs was obtained at 77 K and 4.5 K 
respectively (Fig. 5b). At 77 K, both samples present photoluminescence with same peak energy corresponding to 
the inter-band transition of In0.53Ga0.47As, which implies the identical In-Ga composition between two samples. 
However difference emerges at 4.5 K. While similar integral intensity of InGaAs luminescence was yielded by the 
two samples, that of sample A mainly comes from exciton recombination at 0.80 eV as expected for high quality 
InGaAs layers35,36. As regards to the PL of sample B, emission centered at 0.79 eV dominates the spectrum which 

Figure 4.  The microelectronic layout and device performance of sample A and B. (a) The SCM (dC/dV)  
profiles of sample B under illumination of different laser power, while the inset shows those of sample A. The 
laser spot is 4 mm in diameter. (b) the peak response of dC/dV signal to the excitation intensity for sample 
A (red scatter line) and B (black scatter line). The red and black solid curves are the guide lines to show 
the increasing tendency. (c) The electric field distributions of sample A and B, which were derived by the 
differentiation of the surface potential data shown in the inset. (d) The dark current of diode devices made of 
sample A and B. The inset shows the photo-responsivity of these two devices.
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is supposed to be related with the defects35–37, particularly those in the InGaAs/InP interfacial region. This could 
be responsible for the abnormal electrical and photoelectric properties of the PN junctions.

This study unveils the electronic layout of the In0.53Ga0.47As/InP PN junction on its cross section. It’s found 
that the profile of differential capacitance in the depletion region is mainly affected by the gradient distribution of 
surface charges. Under illumination, the recombination between surface charges and photocarriers allows us to 
extend the capability of SCM, which is generally referred as a tool for sensing local majority carriers, to character-
ize minority carriers in PNJ. By reproducing the photo-dC/dV distribution, it tells that the surface photovoltaic 
effect can even pull down the surface Fermi level of InGaAs depletion layer by 53 meV when excited with moder-
ate light intensity of 2.8 mW/cm2.

The observed dC/dV response to light excitation in PN junction can actually denote its efficiency to collect 
photo-excited carriers, and shows a close relationship with the behavior of the photodiodes. Comparison between 
different samples suggests that defects control in the junction area is critical for photodetectors to approach its 
ideal performance. This study offers a way of locating and evaluating the electronic irregularity in PNJ in nanos-
cale. Also its high electric sensitivity and spatial resolution is well-suited for the scaling down of the photovoltaic 
devices.

Methods
The setup of the SCM and SKPM measurements.  For the SCM experiments: the conductive dia-
mond coated Si probes were used in contact mode for SCM measurements. The force constant of cantilever is 
21–98 N/m. The microscopic tip radius is in the regime of 10 nm owing to sharp edges of single diamond crys-
tals at the very end of the tip. During the experiments, the tip was kept virtual ground and served as a scanning 
nano-electrode, while AC bias voltage of 1.0 V at 90 KHz was applied to the bottom common electrode. An 
external 808 nm laser was introduced from the upper side (schematically shown in Fig. 1a) for the photo-excita-
tion with a spot size of ~4 mm. In order to minimize the disturbance from the internal stray light, the AFM laser 
(670 nm) spot was set at 90 μ m away from the front end of the probe’s cantilever25,26,38.

For the SKPM (or KPFM) experiments: the SKPM measurements were performed in the lift tapping mode. 
The first scan obtained the surface topography, and the second (interleave) scan extracted the potential signal on 
the lift height of 10 nm. Doped silicon probes with high aspect ratio were chosen for reproducible potential study. 
The nominal radius of tip curvature is 30 nm, and the resonance frequency of cantilever is 200–400 kHz.

Noise PSD characterization.  The noise PSD was measured by the Stanford Research System (SRS) SR760 
FFT spectrum analyser. The signal (dark current) is first amplified by the DL1211 current preamplifier and then 
sent to the spectrum analyser. Also the biased voltage is applied to the sample by the current preamplifier. The 
experiments were done in a shielded room to screen the interference.

PL experiments.  The PL spectrum was obtained by the Bruker 80v FT-IR spectrometer installed with the 
InGaAs photodetector39,40. A helium-flow cryostat was used to held the sample at 4.5 K and 77K. The 647 nm laser 
was chosen for the optical excitation of the sample.

Numerical simulation.  Based on the experiment setup shown in Fig. 1a, the numerical model is estab-
lished with SENTAURUS TCAD, a commercial package by Synopsys. The conductive probe is treated as a 
nano-electrode with the diameter of 6 nm; its scanning behavior is simulated by continuously changing the posi-
tion of electrode. While the thickness and doping concentration of other functional layers are referring to their 
designed value, the static electric environment of the device is derived by introducing the basic drift-diffusion 

Figure 5.  The noise and PL spectrum of sample A and B. (a) The noise spectrum of sample B and sample 
A under the reverse bias voltage of − 8 mV and − 200 mV respectively. The inset shows the fitting slope of 
spectrum in the 300–10000 Hz section. (b) The PL spectrum of sample A and B taken at 4.5 K. The samples are 
optically excited by the 647 nm laser. The PL intensity of sample A is multiplied by 1.5 to make its peak intensity 
close to that of sample B. Note that the integral PL intensity of sample A is larger than that of sample B. The inset 
gives the PL spectrum obtained at 77 K for sample A and B, both luminescent peakes are centered at 0.792 eV, 
indicating the same indium-gallium composition in the absorption layers of two samples.



www.nature.com/scientificreports/

7Scientific Reports | 6:21544 | DOI: 10.1038/srep21544

model, in which the carrier and electric field distribution are calculated by solving the coupled Poisson, electron 
and hole continuity equations. The recombination of the carriers in the devices is simulated by the Shockley–
Read–Hall model41 with the parameters determined from literature data42. Furthermore, the AC modulation 
voltage applied to the sample is the same as that of the experiments, and the small-signal AC analysis model41 is 
applied to figure out the dC/dV response of the device. In this way, the numerical model can not only simulate the 
static electric environment of the junction, but also reproduce its dC/dV response under the AC modulated bias. 
For the fitting of the experimental dC/dV profile, the local density of surface charge is set as the only adjustable 
parameter.

References
1.	 Wang, P. F. et al. Semi-floating gate transistor for low-voltage ultrafast memory and sensing operation. Science 341, 640–643 (2013).
2.	 Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature 

Nanotechnology 9, 257–261 (2014).
3.	 Baugher, B. W. H., Churchill, H. O. H., Yang, Y. F. & Herrero, P. J. Optoelectronic devices based on electrically tunable p–n diodes in 

a monolayer dichalcogenide. Nature Nanotechnology 9, 262–267 (2014).
4.	 Dhar, R. S. et al. Direct nanoscale imaging of evolving electric field domains in quantum structures. Scientific Reports 4:7183, (2014).
5.	 Garber, V., Dust, A., Baskin, E., Spektor, B. & Bahir, G. Estimation of the p-n junction depth in LWIR HgCdTe detectors from the 

spatial profile of the lateral photocurrent and transverse photovoltage induced by an infrared small spot. Journal of Electronic 
Materials 30, 6 (2001).

6.	 Gabriel, M. M. et al. Imaging charge separation and carrier recombination in nanowire p-i-n junctions using ultrafast microscopy. 
Nano Lett. 14, 3079–3087 (2014).

7.	 Mohite, A. D. et al. Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p–n 
junctions. Nano Lett. 12, 1965–1971 (2012).

8.	 Leite, M. S. et al. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells. ACS Nano 8, 11883–11890 (2014).
9.	 Michel, J., Liu, J. F. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nature Photonics 4, 527–534 (2010).

10.	 Yamaguchi, H. et al. Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2. ACS Nano 9, 
840–849 (2015).

11.	 Howell, S. L. et al. Investigation of band-offsets at monolayer-multilayer MoS2 junctions by Scanning Photocurrent Microscopy. 
Nano Lett. 15, 2278–2284 (2015).

12.	 Rauhut, N. et al. Antenna-enhanced photocurrent microscopy on single-walled Carbon nanotubes at 30 nm resolution. ACS Nano 
6, 6416–6421 (2012).

13.	 Rao, G., Freitag, M., Chiu, H. Y., Sundaram, R. S. & Avouris, P. Raman and photocurrent imaging of electrical stress-induced p-n 
junctions in Graphene. ACS Nano 5, 5848–5854 (2011).

14.	 Son, B. H. et al. Imaging ultrafast carrier transport in nanoscale field-effect transistors. ACS Nano 8, 11361–11368 (2014).
15.	 Chang, M. N., Hu, C. W., Chou, T. H. & Lee, Y. J. Contrast distortion induced by modulation voltage in scanning capacitance 

microscopy. Appl. Phys. Lett. 101, 083503 (2012).
16.	 Wong, K. M. & Chim, W. K. Deep-depletion physics-based analytical model for scanning capacitance microscopy carrier profile 

extraction. Appl. Phys. Lett. 91, 013510 (2007).
17.	 Chang, M. N. et al. Photovoltaic effect on differential capacitance profiles of low-energy- BF2+ -implanted silicon wafers. Appl. Phys. 

Lett. 82, 3955 (2003).
18.	 Jiang, C. S., Heath, J. T., Moutinho, H. R. & Al-Jassim, M. M. Scanning capacitance spectroscopy on n+ -p asymmetrical junctions 

in multicrystalline Si solar cells. J. Appl. Phys. 110, 014514 (2011).
19.	 Edwards, H. et al. PNJ delineation in Si devices using scanning capacitance spectroscopy. J. Appl. Phys. 87, 1485 (2000).
20.	 Zavyalov, V. V., McMurray, J. S. & Williams, C. C. Scanning capacitance microscope methodology for quantitative analysis of p-n 

junctions. J. Appl. Phys. 85, 7774 (1999).
21.	 Chim, W. K., Wong, K. M., Teo, Y. L., Lei, Y. & Yeow, Y. T. Dopant extraction from scanning capacitance microscopy measurements 

of p-n junctions using combined inverse modeling and forward simulation. Appl. Phys. Lett. 80, 4837 (2002).
22.	 Gutsche, C. et al. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p− n junctions. Nano Lett. 12, 

1453− 1458 (2012).
23.	 Maknys, K., Douhe´ ret, O. & Anandb, S. Electrical characterization of InGaAs/InP quantum wells by scanning capacitance 

microscopy. Appl. Phys. Lett. 83, 4205–4207 (2003)
24.	 Giannazzo, F. et al. Carrier distribution in quantum nanostructures by scanning capacitance microscopy. J. Appl. Phys. 97, 014302 

(2005).
25.	 Yin, H. et al. Scanning capacitance microscopy investigation on InGaAs/InP avalanche photodiode structures: Light-induced 

polarity reversal. Appl. Phys. Lett. 95, 093506 (2009).
26.	 Yin, H. et al. Nonequilibrium carrier distribution in semiconductor photodetectors: Surface leakage channel under illumination. 

Appl. Phys. Lett. 96, 263508 (2010).
27.	 Yang, J. & Kong, F. C. J. Simulation of interface states effect on the scanning capacitance microscopy measurement of p-n junctions. 

Appl. Phys. Lett. 81, 4973 (2002).
28.	 Kobayashi, T. & Shinoda, Y. Metal insulator semiconductor diodes fabricated on InP, InGaAsP, and InGaAs. J. Appl. Phys. 53, 43339 

(1982).
29.	 Alian, A. et al. Oxide trapping in the InGaAs–Al2O3 system and the role of sulfur in reducing the Al2O3 trap density. IEEE Electron 

Device Letters 33, 1544–1546 (2012).
30.	 O’Regan, T. P., Hurley, P. K., Sorée, B. & Fischetti, M. V. Modeling the capacitance-voltage response of In0.53Ga0.47As metal-oxide-

semiconductor structures: Charge quantization and nonparabolic corrections. Appl. Phys. Lett. 96, 213514 (2010).
31.	 Xuan, Y., Ye, P. D. & Shen, T. Substrate engineering for high-performance surface-channel III-V metal-oxide -semiconductor field-

effect transistors. Appl. Phys. Lett. 91, 232107 (2007).
32.	 Xuan, Y., Wu, Y. Q. & Ye, P. D. High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain 

current exceeding 1 A/mm. IEEE Electron Device Letters 29, 294–296 (2008).
33.	 Lauritzen, Peter O. Noise due to generation and recombination of carriers in p-n junction transition regions. IEEE Transactions on 

Electron Devices 15, 10 (1968).
34.	 Jiménez Tejada, J. A., Godoy, A., Palma, A. & López Villanueva, J. A. Generation -recombination noise in highly asymmetrical P-N 

junctions. J. Appl. Phys. 92, 320 (2002).
35.	 Yu. P. W., Peng, C. K. & Morkoç, H. Quasi-donor-acceptor pair photoluminescence emission in GaxIn1−xAs/InP. J. Appl. Phys. 65, 

2427 (1989).
36.	 Estrera, J. P., Duncan, W. M., Kao, Y. C., Liu, H. Y. & Beam, E. A. Systematic optical and x-ray study of InxGa1−xAs on InP. Journal of 

Electronic Materials, 20, 983–987 (1991).
37.	 Tilly, L. P., Grimmeiss, H. G. & Hansson, P. O. Copper-related defects in In0.53Ga0.47As grown by liquid-phase epitaxy. Phys. Rev. B 

47, 1249 (1993).



www.nature.com/scientificreports/

8Scientific Reports | 6:21544 | DOI: 10.1038/srep21544

38.	 Xia, H. et al. Distinct photocurrent response of individual GaAs nanowires induced by n-Type doping. ACS Nano 6, 6005–6013 
(2012).

39.	 Shao, J. et al. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer. Rev. Sci. 
Instrum. 77, 063104 (2006).

40.	 Shao, J. et al. Photoreflectance spectroscopy with a step-scan Fourier-transform infrared spectrometer: technique and applications. 
Rev. Sci. Instrum. 78, 013111 (2007).

41.	 Synopsys TCAD (2005): Process and device simulation software for technology exploration, development and variability analysis. 
Synopsys Inc, California, the United States. URL http://www.synopsys.com/Tools/TCAD/Pages/default.aspx.

42.	 Parks, J. W., Smith, A.W., Brennan, K. F. & Tarof, L. E. Theoretical study of device sensitivity and gain saturation of separate 
absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes IEEE Trans. Electron Devices 43, 2113 (1996).

Acknowledgements
The authors acknowledge financial support from the National Basic Research Program of China (No. 
2013CB632805, No. 2012CB619204 and No. 2011CB925604), and the National Natural Science Foundation 
of China (No. 61521005, No. 91321311 and No. 91121009), and Natural Science Foundation of Shanghai (No. 
14JC1406600 and No. 14ZR1446200). H. Xia and T.X. Li appreciate James Torley from University of Colorado at 
Colorado Springs for critical reading of the manuscript.

Author Contributions
H.X. and T.-X.L. performed all the SCM experiments, and proposed the numerical model. H.X. simulated the 
results and measured the current noise spectra. L.Z. measured the PL spectra of devices. T.-H.J., X.L. and H.-M.G. 
measured the dark current and photoresponse of the photodetectors. T.-X.L., H.X. and W.L. performed the data 
analysis and prepared the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Xia, H. et al. Nanoscale imaging of the photoresponse in PN junctions of InGaAs 
infrared detector. Sci. Rep. 6, 21544; doi: 10.1038/srep21544 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.synopsys.com/Tools/TCAD/Pages/default.aspx
http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Nanoscale imaging of the photoresponse in PN junctions of InGaAs infrared detector

	Results and Discussions

	Imaging the photoresponse in PN junction. 
	Numerical elucidation on the dC/dV profile. 
	Performance relevance of dC/dV photoresponse at PNJ. 

	Methods

	The setup of the SCM and SKPM measurements. 
	Noise PSD characterization. 
	PL experiments. 
	Numerical simulation. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ The configuration and the results of the photo-excited SCM measurements on the cross section of In0.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ The fitting of the experimental dC/dV profile taken in dark condition.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ The schematic surface photoresponse process in the In0.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ The microelectronic layout and device performance of sample A and B.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ The noise and PL spectrum of sample A and B.



 
    
       
          application/pdf
          
             
                Nanoscale imaging of the photoresponse in PN junctions of InGaAs infrared detector
            
         
          
             
                srep ,  (2016). doi:10.1038/srep21544
            
         
          
             
                Hui Xia
                Tian-Xin Li
                Heng-Jing Tang
                Liang Zhu
                Xue Li
                Hai-Mei Gong
                Wei Lu
            
         
          doi:10.1038/srep21544
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep21544
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep21544
            
         
      
       
          
          
          
             
                doi:10.1038/srep21544
            
         
          
             
                srep ,  (2016). doi:10.1038/srep21544
            
         
          
          
      
       
       
          True
      
   




