
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19992  | https://doi.org/10.1038/s41598-020-77090-2

www.nature.com/scientificreports

Operant conditioning of motor 
cortex neurons reveals 
neuron‑subtype‑specific responses 
in a brain‑machine interface task
Martha Gabriela Garcia‑Garcia1,2,3*, Cesar Marquez‑Chin1,2,3 & Milos R. Popovic1,2,3

Operant conditioning is implemented in brain-machine interfaces (BMI) to induce rapid volitional 
modulation of single neuron activity to control arbitrary mappings with an external actuator. 
However, intrinsic factors of the volitional controller (i.e. the brain) or the output stage (i.e. individual 
neurons) might hinder performance of BMIs with more complex mappings between hundreds of 
neurons and actuators with multiple degrees of freedom. Improved performance might be achieved 
by studying these intrinsic factors in the context of BMI control. In this study, we investigated how 
neuron subtypes respond and adapt to a given BMI task. We conditioned single cortical neurons 
in a BMI task. Recorded neurons were classified into bursting and non-bursting subtypes based on 
their spike-train autocorrelation. Both neuron subtypes had similar improvement in performance 
and change in average firing rate. However, in bursting neurons, the activity leading up to a reward 
increased progressively throughout conditioning, while the response of non-bursting neurons did not 
change during conditioning. These results highlight the need to characterize neuron-subtype-specific 
responses in a variety of tasks, which might ultimately inform the design and implementation of BMIs.

Brain-machine interfaces (BMI) exploit the adaptability of the brain to modify cortical circuits for the purpose 
of controlling neuroprosthetic devices1–9. BMIs that explicitly use operant conditioning of neural activity impose 
an arbitrary task rule between neural activity and external actuators that can be reinforced through rewards. 
Biofeedback is crucial to exert10,11 and maintain12 control over the neural activity, down to the single neuron 
level. Operant conditioning of single neurons has been implemented in humans13, non-human primates14–19, 
rats10,20,21, and more recently in mice using calcium imaging12,22–24. BMIs not only have the potential to replace 
or augment motor function, but also to be used as tools to study the direct and indirect12,20,22,25,26 neural circuits 
involved in learning as they adapt to new contingencies. Single cortical neurons can be the sole output to a 
BMI12,17, however, recent evidence shows there might be different levels of utility based on the neuron type27,28, 
as well as different strategies to execute a BMI task (e.g. activity up-regulation or down-regulation24). Therefore, 
performance would likely improve with the ability to identify neuron types and subtypes and predict their 
response prior to their inclusion in a BMI.

Subtypes of cortical neurons can be unequivocally identified in transgenic mice expressing a calcium indicator 
in specific neuron subtypes using two-photon imaging. In electrical recording studies, different types of puta-
tive neurons can be classified based on their extracellular waveform and intrinsic firing dynamics. A bimodal 
distribution of narrow and wide waveform widths (i.e. trough-to-peak duration of the spike waveform) has 
been reported in the cortex of rats29, non-human primates30 and humans31. A recent study27 found that motor 
parameters, including kinematics, kinetics and muscle activity, were decoded more accurately and with less 
neurons using ensembles of narrow waveform neurons, thus the authors proposed waveform width as a predictor 
of utility in BMIs. However, classification of neuron types based on waveform width alone might be insufficient 
to distinguish neuron subtypes. For example, wide waveform neurons are known to have two extreme modes of 
firing behavior: bursting (i.e. spikes are produced in a clustered pattern at time intervals ≤ 5 ms) and non-bursting 
(i.e. spikes are produced in regular time intervals > 5 ms). Furthermore, numerous studies have investigated the 
differences in extracellular action potential shape and firing dynamics to distinguish putative pyramidal and 
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interneuron types29,31–40, and even putative neuron subtypes (i.e. regular-spiking, fast-spiking, intrinsic bursting, 
chattering30), consistent with those identified in intracellular studies41.

In this study, we implemented a BMI in a rat model using operant conditioning of single neuron activ-
ity. We conditioned rats to up-regulate the activity of motor cortex neurons using visual feedback. Neurons 
were classified post-hoc based on two measures of their spike-train autocorrelation histograms into two broad 
subtypes, which were described as neurons with bursting and non-bursting activity. We investigated the firing 
rate up-regulation, reward frequency, and the event (i.e. firing rate event that reached or surpassed the reward 
contingency) amplitude and duration, from which we calculated an event integral as the sum of binned firing 
rates from the event onset to end. We found that both bursting and non-bursting neurons significantly increased 
the reward frequency and average firing rates as the experiment progressed, but only bursting neurons did so 
by gradually incrementing the magnitude of the event integral leading to a reward. Considering these neuron-
subtype-specific responses might inform the design of BMIs, as it is a step forward in investigating the inherent 
capabilities of different neuron subtypes to control a BMI.

Results
We performed electrode implantation in 9 Long-Evans rats, targeting layer V of the forepaw representation in 
the motor cortex. To condition the single neuron activity, we selected a single unit from the available pool in a 
given day (see “Methods”). Single neurons were conditioned to progressively increase their average firing rates 
during the main protocol (i.e. up-regulation), where the instantaneous firing rates were transformed into the 
brightness of a light-emitting diode (LED). Rats were rewarded when the single neuron firing rate crossed a 
threshold of 2 standard deviations (s.d.) above pre-BMI baseline activity levels for a minimum of 750 ms (see 
“Methods”; Fig. 1a,b). The up-regulation protocol consisted of 20 trials (Fig. 1c), which were completed in an 
average of 10.7 ± 5.1 min (mean ± s.d.). The up-regulation protocol was followed by a second baseline recording 
(i.e. post-BMI baseline).

Operant conditioning during the up‑regulation protocol resulted in an increase in average 
firing rates.  We conditioned a total of 57 single neurons with a signal-to-noise ratio (SNR) of 3.97 ± 1.31 
(mean ± s.d.) from all 9 rats. We ensured that these neurons were single units by looking at absolute refrac-
tory period (i.e. 1–2 ms) violations. On average, neurons contained 0.05 ± 0.07% of the total number of spikes 
in ≤ 1  ms and 0.5 ± 0.6% in ≤ 2  ms. Example of conditioned neuron waveforms are shown in Supplementary 
Figure S1. On average, rats progressively learned to increase the firing rate of the conditioned neuron during the 
up-regulation protocol from early (i.e. days 1–3) to late (i.e. days 10–13) training (Fig. 2a; unpaired Student’s t 
test, p = 0.032). The up-regulation protocol of individual neurons was divided into 6 equally-sized time bins for 
statistical comparison. Neurons had a significant increase in firing rate (Wilcoxon’s signed-rank test, Bonferroni 
corrected, p < 0.01) starting in bin 3, and a significant increase in reward frequency (Wilcoxon’s signed-rank 
test, Bonferroni corrected, p < 0.01) starting in bin 2 (Fig.  2b). These learning-related changes took place in 
5.34 ± 2.50 min.

Individual neurons with a significant increase in the firing rate from the first to the second half of the up-
regulation protocol (Wilcoxon’s rank-sum test, p < 0.05) were classified as learners (Fig. 2c), and non-learners 
otherwise (Fig. 2d). The presence of significant up-regulation of firing rates was our indicator of successful 
conditioning and it was found in 27 out 57 (47.4%) neurons. The firing rate during baseline, as well as the 
chance performance, was not different between learners and non-learners (Wilcoxon’s rank-sum test, p = 0.98 
and p = 0.08, respectively). Also, the SNR of learners (i.e. successfully conditioned neurons) and non-learners 
(i.e. unsuccessfully conditioned neurons) was not different (unpaired Student’s t-test, p = 0.63).

To validate that the BMI was indeed under volitional control, we tested the effect of visual feedback and 
rewards on the neuron’s firing rate in 3 different modified (i.e. control) protocols: (1) LED-only (i.e. no rewards; 
Fig. 3a), (2) rewards-only (i.e. no LED feedback; Fig. 3b), and (3) 1 SD-BMI (i.e. rewards and LED feedback with 
a reward threshold of 1 s.d. above baseline firing rate). Two protocols were tested in a given conditioning session, 
one before and one after the up-regulation protocol (Figs. 3c–e; see “Methods” for details on modified protocol 
order randomization). We found that the up-regulation protocol of learners had significantly higher firing rates 
compared to the first paired set of modified protocols (Fig. 3f): rewards-only (Wilcoxon’s signed-rank test, Bon-
ferroni corrected, p = 0.002) and LED-only (p = 0.0098). A similar effect was found in the second set of paired 
modified protocols (Fig. 3g), where the up-regulation protocol of learners had higher firing rates compared to: 
1-SD BMI (p = 0.0002) and LED-only (p = 0.0004). No significant difference was found between modified pro-
tocols (p = 0.70, p = 0.59, respectively). These results suggest that successful up-regulation was a consequence of 
learning the BMI task, rather than a simple response to light feedback or reward expectation. Also, up-regulation 
only occurred when a higher, more challenging reward threshold was introduced in the contingency.

In addition, learners had slight modulation to the audio cue (i.e. beep) at trial onset, but only during the up-
regulation protocol. This modulation was not present during the modified protocol LED-only, where rewards 
were not given to the rat upon reaching the contingency (Fig. 3h). We found that the modulation depth at trial 
onset was significantly different between the LED-only and up-regulation protocols (paired Student’s t-test, 
p = 0.025). In learners, a histogram of the times to reach or surpass the reward contingency shows that the 
percentage of trials completed in the minimum time (i.e. 750 ms) was 2.2% in the first half of the up-regulation 
protocol, while in the second half it increased to 4.6% (Supplementary Figure S2), demonstrating that modula-
tion at trial onset was not sufficiently robust to dispense a reward. Although, this slight increase at onset in trials 
involving rewards suggests that modulation was volitional.
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Direct neurons were strongly modulated and led activation compared to indirect neurons 
around the reward contingency.  In all conditioned neurons (i.e. learners and non-learners), we inves-
tigated if activation was exclusive to the neuron directly under conditioning (i.e. direct neuron; DN) or if the 
response was generalized to the local circuit (i.e. indirect neurons; INs), which might be the result of stereotyped 
forepaw movements that drive neural activity at the recording site. First, we computed a peri-event time histo-
gram (PETH) for DNs and INs aligned to reward (Fig. 4a). We found that the activation latency of DNs often 
preceded that of INs recorded in the array (Fig. 4b). Out of a total of 512 neurons recorded from the arrays of all 
9 rats (SNR of 3.37 ± 1.06), 94 (18.4%) INs were found to be active either before or after the reward contingency 
was met. Out of the 94 INs, 33 (35.1%) had activation latencies before the reward contingency was met, while the 

Figure 1.   Operant conditioning of single cortical neurons. (a) Schematic of the BMI task. (b) Real-time 
transform of the instantaneous firing rates into the brightness of an LED and reward times. Spike times were 
binned every 250 ms. Rats were rewarded when activity crossed the reward threshold (horizontal line in firing 
rate histogram) for 3 consecutive bins. (c) Example firing rate histogram during an up-regulation protocol 
(20 trials). Tick marks at the top of the figure denote reward times. The horizontal line marks the high activity 
threshold. The vertical dotted line denotes half of the protocol. The audio cue is depicted with a horizontal line 
at trial onset.
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majority of INs (61; 64.9%) had activation latencies after the reward contingency was met. The average z-score 
PETH traces for all DNs and INs are shown in Fig. 4c.

Next, we looked into the modulation depth of DNs and INs (Fig. 4c) around the reward contingency (i.e. − 1 
to 0.5 s), and after the reward contingency (i.e. 0.5–2 s) given that the majority of INs had latencies of activation 
in this time window. We found that the modulation depth of DNs was significantly greater than the modulation 
depth of INs around the reward contingency (two-way ANOVA, F1,298 = 14.84, p = 0.0001; Tukey’s HSD post hoc 
test for multiple comparisons, p = 3.77e-09). Also, a significant increase in the modulation depth of DNs was 
found around the reward contingency (two-way ANOVA, F1,298 = 22.43, p = 3.37e−06; Tukey’s HSD post hoc test 
for multiple comparisons, p = 3.77e−09), indicating that DNs were strongly modulated and this response was 
specific to reward dispensing, as activation quickly died down after the reward contingency was met. On the 
other hand, changes in the modulation depth of INs were not significant after reward contingency (Tukey’s HSD 
post hoc test for multiple comparisons, p = 0.068). DN activation was not different than IN activation after the 
reward contingency (Tukey’s HSD post hoc test for multiple comparisons, p = 0.15).

We also investigated DN and IN modulation at trial onset (Fig. 4a). The average z-score traces of the trial 
onset-aligned PETH of DNs and INs show that both neuron types were modulated to a similar extent at trial 
onset during the up-regulation protocol (Fig. 4d). As expected, no difference in modulation depth was found 
between DNs and INs at trial onset during the up-regulation protocol (unpaired Student’s t-test, p = 0.76). Similar 
to DNs, IN modulation was not present during the LED-only protocol, in which rewards were not given upon 
reaching the reward contingency (Fig. 4e). No difference was found in the modulation depth of DNs and INs at 
trial onset during LED-only (unpaired Student’s t-test, p = 0.067).

Finally, we simulated the event (i.e. firing rate event that reached or surpassed the contingency) frequency 
and integral (i.e. sum of binned firing rates from event onset to end) for INs, using the same criteria applied for 
DNs (i.e. 2 s.d. above baseline firing rate for ≥ 750 ms). While IN events were unrewarded, a few INs underwent 
similar changes observed in DNs during the up-regulation protocol. On the other hand, DNs produced events 
spontaneously while the rats were retrieving the reward during the 10 s in between trials, when the LED feedback 
was turned off (see “Methods” for details on trial structure). These unrewarded events became more frequent 
as the up-regulation protocol progressed and were only observed in between trials because a new trial would 
not start until the firing rate went back to baseline. Therefore, the only event found during a given trial was the 
rewarded event.

Figure 2.   Up-regulation of single neuron firing rates as a result of operant conditioning. (a) Learning effect 
in all 9 rats, depicting an increase in the firing rate change factor during the up-regulation protocol, from early 
(data from 9 rats) to late training (data from 3–4 rats) (*p < 0.05, unpaired Student’s t test). Data represents 
mean ± standard error of the mean (s.e.m.). (b). Normalized firing rate (*p < 0.01, ** p < 1e-04, Wilcoxon’s 
signed-rank test, Bonferroni corrected) and reward frequency (Wilcoxon’s signed-rank test, *p < 0.01, ** 
p < 1e-05, Bonferroni corrected) for all 57 neurons that underwent operant conditioning, for each of 6 equally-
sized time bins. (c, d) Firing rate and reward frequency for learners and non-learners, for each of 6 equally-
sized time bins. The gray bars shows the 40th and 60th percentile range of firing rate and the estimated chance 
performance, respectively, during pre-BMI baseline. Bold horizontal lines indicate the median and the 40th and 
60th percentiles. Gray dotted lines indicate individual neurons.
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We quantified the change factor in the frequency and integral of all events (i.e. rewarded and unrewarded) 
for DNs and INs from the first to the second half of the up-regulation protocol (Fig. 4f). We found that the 
proportion of DNs (i.e. 27 out of 57) with frequency and integral change factors > 1 (i.e. gain) was significantly 
larger (χ2 (1, 134) = 8.45, p = 0.0036) than that of INs (i.e. 18 out of 77). Moreover, the proportion of DNs with 
significant up-regulation (i.e. learners) with change factors > 1 (i.e. 19 out of 27) was significantly larger than that 
of unsuccessfully conditioned DNs (i.e. non-learners) and INs (χ2 (2, 134) = 22.85, p = 1.09e-05).

Neurons were classified into bursting and non‑bursting types using autocorrelation‑based 
measures and k‑means clustering.  Next, we investigated whether the response of bursting and non-
bursting neurons differed as a result of conditioning. We measured the response as the changes in average firing 
rates, reward frequency, the event frequency and the event integral during the up-regulation protocol.

First, to classify neurons, we computed the spike-train autocorrelation histogram from which we extracted two 
measures: the autocorrelation median (i.e. positive time lag where half the total histogram counts occur), and the 
probability of firing in ≤ 5 ms (i.e. percentage of histogram counts in ≤ 5 ms from the total 50 ms autocorrelation 
histogram counts). An intracellular recording study41 demonstrated that regular-spiking neurons, which do not 
produce bursts, have long refractory periods (i.e. 5 ms) compared to other neuron subtypes. Another intracellular 
recording study reported that in the cortex only excitatory pyramidal neurons produce bursts42. In addition, an 
extracellular recording study used the activity in ≤ 5 ms to split non-bursting from bursting neurons30. These 
measures (i.e. autocorrelation median and probability of firing in ≤ 5 ms) were chosen based on these criteria, 
as well as on visual inspection of the four main modes of neuron firing identified from the dataset (Fig. 5a; see 
“Methods” for details regarding the modes of firing identified from the spike-train autocorrelation). Two modes 
described non-bursting neurons (i.e. Modes 1 and 2), while the remaining two described neurons with bursting 

Figure 3.   Modified (i.e. control) protocols tested along with the up-regulation protocol. (a) Real-time 
transform of firing rates during the LED-only protocol. (b) Real-time transform of firing rates during the 
rewards-only protocol. (c) Thirty-second firing rate averages during example conditioning session where 
1-SD BMI and LED-only protocols were tested. Pre-BMI and post-BMI baseline firing rates are not shown. 
(d) Thirty-second firing rate averages during example conditioning session where rewards-only and LED-
only protocols were tested. Pre- and post-BMI baseline firing rates are not shown. (e) Experimental timeline. 
Modified protocols were randomized within and across sessions (see “Methods”). (f) Firing rates during the 
rewards-only and LED-only protocols were significantly lower than the last 3 min of the up-regulation protocol 
(Wilcoxon’s signed-rank test, Bonferroni corrected). Boxplots depict the median and quartiles. (g) Firing rates 
during the 1 SD-BMI and LED-only protocols were significantly lower than the last 3 min of the up-regulation 
protocol (*p < 0.017, n.s. not significant, Wilcoxon’s signed-rank test, Bonferroni corrected). Boxplots depict the 
median and quartiles. (h) Average z-score peri-event time histogram (PETH) aligned to trial onset, from -0.5 
to 1 s during the up-regulation and LED-only protocols and corresponding modulation depth (*p < 0.05, paired 
Student’s t-test). The gray contours depict ± s.e.m. Bars are mean ± s.e.m.
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propensity (i.e. Modes 3 and 4). Spike trains from each mode of neuron firing are shown in Supplementary Fig-
ure S3. Next, neurons were clustered into non-bursting and bursting types with a k-means algorithm (Fig. 5b), 
based on the autocorrelation-based measures described above. Bursting neurons (n = 24) had a probability of fir-
ing in ≤ 5 ms of 7.32 ± 4.90% and autocorrelation median of 26.69 ± 3.48 ms. Non-bursting neurons (n = 33) had a 
probability of firing in ≤ 5 ms of 1.18 ± 1.39% and autocorrelation median of 32.55 ± 4.37 ms. Both measures were 
significantly different between neuron subtypes (Student’s t-test, p = 1.33e−06, and p = 6.79e−09, respectively). 
Baseline firing rates of bursting neurons were significantly faster (10.66 ± 7.20 Hz; Student’s t-test, p = 0.02) than 
those of non-bursting neurons (7.05 ± 4.51 Hz).

We also classified neurons based on their waveform width (i.e. trough-to-peak duration of the spike wave-
form; Fig. 5c), as spike waveform asymmetry measures have been reported to be one of the best predictors of 
neuron classification into functional groups29: interneurons (i.e. narrow waveform neurons) and pyramidal (i.e. 
wide waveform) neurons. We found a bimodal distribution of waveform widths (Fig. 5c), from which neurons 
were classified as either narrow waveform neurons (i.e. putative interneurons; n = 6, trough-to-peak width: 
211.11 ± 17.21 µs; Fig. 5d) or wide waveform neurons (i.e. putative pyramidal neurons; Fig. 5d; n = 51, trough-to-
peak width: 526.80 ± 72.12 µs). As expected, putative pyramidal neurons (n = 51; 89.5%) outnumbered putative 
interneurons (n = 6; 10.5%). Putative interneurons were all characterized by a Mode 2 spike-train autocorrelation 
histogram and were all classified in the non-bursting cluster. On the other hand, putative pyramidal neurons had 
heterogeneous modes of firing (Modes 1, 3 and 4). Mode 1 neurons were all classified in the non-bursting cluster. 
We speculate that Mode 1 neurons were likely ‘regular-spiking’ neurons, term used in intracellular recording 
studies. Regular-spiking neurons have wide waveforms, are abundant in the cortex and do not typically produce 
bursts41,43. Modes 3 and 4 were classified as bursting neurons. Mode 3 was found in only 1 neuron out the whole 
dataset, while Mode 4 was the second most predominant mode of firing in the dataset after Mode 1. We speculate 
that the neuron with a Mode 3 autocorrelation histogram was likely a ‘chattering’ neuron, described in intracel-
lular recording studies as a type of bursting neuron that typically produces repetitive bursts with high intra-burst 
frequency41,43. The Mode 3 neuron frequently produced bursts with 2 or 3 spikes per burst (Supplementary 
Figure S3), with high intra-burst frequency (i.e. 2–3 ms interspike interval) followed by periods of inactivity. 
Chattering neurons are pyramidal neuron subtypes and are mostly found in superficial layers (i.e. II/III), rather 
than in the deep layers (i.e. V/VI) of the cortex43. On the other hand, another type of bursting neuron described 
in intracellular recording studies as ‘intrinsic bursting’, produces bursts with lower intra-burst frequency at the 
beginning of a depolarization current pulse, followed by tonic discharges41. Intrinsic bursting neurons are typi-
cally identified morphologically as large pyramidal neurons in layer V of the cortex. We speculate that Mode 4 
neurons were likely intrinsic bursting neurons.

All neurons were clustered in the expected cluster using the k-means algorithm, except for one Mode 4 neuron 
clustered as a non-bursting neuron. Even though Modes 2 and 4 had similar autocorrelation median values, the 
difference in activity in bins ≤ 5 ms was sufficient to cluster neurons correctly. These results are summarized in 
Table 1.

We also evaluated the performance of the clustering method using the probability of firing in ≤ 10 ms. In that 
case, three Mode 2 neurons and one Mode 1 neuron were classified as bursting neurons. We decided using the 
probability of firing in ≤ 5 ms as more suitable, as it did not split Mode 2 neurons into different clusters, and also 
based on the criteria described above.

Bursting and non‑bursting neurons improved reward frequency but only bursting neurons 
increased the magnitude of the event integrals.  Finally, we investigated the change in average firing 
rate, event (i.e. rewarded and unrewarded) frequency and event integral during the up-regulation protocol, for 
DNs with significant up-regulation (i.e. learners) classified as bursting and non-bursting neurons.

First, we found that both bursting (n = 11) and non-bursting (n = 16) neurons underwent similar increases 
in firing rate and reward frequency, compared to the first bin of the up-regulation protocol, starting at time bin 
4 (6.36 ± 1.21 min) and 3 (4.55 ± 1.60 min), respectively (Wilcoxon’s signed-rank test, Bonferroni corrected, 
p < 0.01; Fig. 6a,b). While non-bursting neurons underwent these learning-related changes slightly faster than 
bursting neurons, the peak reward frequency was not different at the end of the up-regulation protocol (bin 6, 
Wilcoxon’s rank-sum test, p = 0.17). In addition, chance performance during pre-BMI baseline was not different 
to the reward frequency during the first bin of the up-regulation protocol, for bursting (Wilcoxon’s signed-rank 

Figure 4.   Activity of direct and indirect neurons around and after reward. (a) Example peri-event time 
histogram (PETH) for a direct neuron (DN) during the up-regulation protocol aligned to reward dispensing 
(top) and trial onset (bottom). (b) Latency of activation of all DNs and INs. (c) Average z-score PETH trace for 
sessions where INs were detected along with the DNs. The mean traces are marked with bold and dashed lines, 
while the gray contours denote ± s.e.m. for DNs and INs, respectively. The corresponding modulation depth 
for DNs and INs around and after the reward contingency is shown in the right. The modulation depth was 
significant around the reward contingency for DNs. Also, DNs were significantly modulated around the reward 
contingency compared to INs. Bars are mean ± s.e.m. Two-way ANOVA and Tukey’s HSD post-hoc test for 
multiple comparisons, **p < 1e-07, n.s. not significant. (d, e) Average z-score trial onset-aligned PETH traces for 
DNs and INs during up-regulation and LED-only protocols. The modulation depth is shown at the right of each 
trace (n.s. not significant, unpaired Student’s t-test). Bars are mean ± s.e.m. (f) All event (i.e. firing rate event 
that reached or surpassed the contingency) integral and frequency change factors for learner (DN_l) and non-
learner (DN_n) DNs (downward facing arrow symbols) and INs (star symbols). The dashed lines on both axes 
depict a factor change = 1 (i.e. gain > 1). Axes are shown in logarithmic scale.

▸
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Figure 5.   Neuron classification based on spike-train autocorrelation histogram measures and the trough-to-peak waveform width. 
(a) Four predominant modes of firing were identified from the spike-train autocorrelation histograms of all 57 neurons in the dataset. 
All available spikes were used to construct the autocorrelation histograms for visual inspection. Autocorrelation histograms have a 
resolution of 1 ms. The autocorrelation median was calculated with 0.1 ms resolution and is marked with a downward-facing arrow. 
The vertical dashed lines denote the 5 ms threshold. (b) k-means clustering showing bursting and non-bursting neurons, with the 
probability of firing in ≤ 5 ms in the x-axis and the autocorrelation median in the y-axis. Only the first 350 spikes from pre-BMI 
baseline were used to compute the autocorrelation-based values to facilitate between-unit comparisons. The predominant modes of 
firing are shown in the location where they were found in the k-means plane. Classification based on waveform width is shown with 
different symbols: triangles for wide waveform neurons, and circles for narrow waveform neurons. (c) Distribution of waveform widths 
with a clear cut-off between narrow and wide waveform neurons. Inset shows the difference in trough-to-peak width between narrow 
and wide waveform neurons. (d) Traces of narrow waveform and wide waveform neurons.
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test, p = 0.46) and non-bursting (p = 0.36) neurons. Chance performance (Wilcoxon’s rank-sum test, p = 0.36), 
as well as the reward frequency during the first bin of the up-regulation protocol (p = 0.67) was not different 
between neuron subtypes.

Next, we found that the rewarded event integral was significantly larger during the last two bins of the up-
regulation protocol, for bursting neurons (Fig. 6c; Wilcoxon’s signed-rank test, Bonferroni corrected, p < 0.01), 
while no difference was observed for non-bursting neurons. Then, we investigated if the elevated rewarded event 
integral in bursting neurons was the result of larger firing rates or prolonged event durations. An example event 
integral is shown in Fig. 6d. We found that the rewarded event duration was significantly longer during the 
last bin of the up-regulation protocol (Fig. 6e; Wilcoxon’s signed-rank test, Bonferroni corrected, p < 0.01). The 
maximal amplitude recorded for each rewarded event was not different throughout the up-regulation protocol. 
However, the probability of firing in ≤ 5 ms significantly increased for bursting neurons during the last 2 bins of 
the up-regulation protocol (Fig. 6f; Wilcoxon’s signed-rank test, Bonferroni corrected, p < 0.01), while no change 
was found for non-bursting neurons, suggesting that higher bursting activity might also be related to the increase 
in the rewarded event integral found in bursting neurons. Otherwise, this change might only indicate that as 
bursting neurons become more active, they produce more bursting events.

Finally, we investigated if there was a difference between bursting and non-bursting neurons in terms of all 
events (i.e. rewarded and unrewarded) frequencies and integrals. We found that both neuron subtypes signifi-
cantly produced more events as the protocol progressed, starting in bin 3 (Fig. 6g; Wilcoxon’s signed-rank test, 
Bonferroni corrected, p < 0.01). However, only bursting neurons produced significantly larger all-event integrals 
during the last bin of the up-regulation protocol (Fig. 6h; Wilcoxon’s signed-rank test, Bonferroni corrected, 
p < 0.01), while non-bursting neurons did not.

Discussion
We implemented single neuron operant conditioning of firing rates in a rat model and found successful activ-
ity up-regulation in 27 out of 57 neurons. Successful conditioning appeared to be the result of learning, as rats 
showed greater ability to produce up-regulation of firing rates as training progressed from days 1–3 compared 
to days 10–13. On average, direct neurons (DN) had gradual increases in firing rate, improved reward frequency, 
robust modulation around the reward contingency and increased all-event frequency as the up-regulation proto-
col progressed. In DNs with significant up-regulation, bursting neurons had additional learning-related changes 
in the increased activation (i.e. larger rewarded and unrewarded event integrals) towards the end of the up-
regulation protocol and elevated bursting activity. The presence of these indicators was neuron-type-specific, 
which might have implications in the design of BMIs.

A similar study12 also found learning-related changes in the event rate and amplitude of conditioned neurons. 
In our study, high but short bursts of activity would not result in reward, thus learning-related changes had to 
involve sustained high firing rates (i.e. at least for 750 ms) to produce an event that would result in a reward, 
which only bursting neurons improved at, beyond the reward contingency. We also found that longer event 
duration, not maximal amplitude, was the likely mechanism behind larger event integrals in bursting neurons. 
This was probably a reflection on the reward contingency, which required sustained high firing rates. A proposed 
mechanism underlying the changes observed in bursting neurons is intrinsic plasticity. Learning, as well as some 
forms of experience-dependent plasticity, elicit intrinsic plasticity, which is manifested as an increase in the rate 
of firing of a neuron (for review44,45). Changes in intrinsic plasticity are expressed as changes in neuronal excit-
ability and can be long-lasting (i.e. up to many days46). Classical conditioning alters intrinsic excitability46,47, 
as well as other forms of learning, including spatial learning48, fear conditioning49, odor discrimination50, and 
experiencing new environments51.

Long-term potentiation of intrinsic excitability (LTP-IE) has been induced in intrinsic bursting (i.e. identified 
morphologically as thick-tufted neurons projecting subcortically) layer V neurons in visual cortex after periods 
of repetitive high frequency stimulation in bursts52. High-frequency stimulation delivered in bursts has also 
been used to induce intrinsic excitability of deep cerebellar nuclear neurons53. Recent studies have shown that 
intrinsic excitability is altered only in neurons directly active during learning54, although, it has been shown to 
have global effects as well (for review44). Many forms of plasticity are layer- and neuron-type-specific55–58. Also, 
intrinsic plasticity shares common learning rules with synaptic plasticity, for example, with Hebbian- and spike-
timing-dependent plasticity (for review59,60). Regarding our findings, neuron-type-dependent plasticity might 
also play a role in explaining the lack of changes in non-bursting neurons’ event integral.

A previous study found a dichotomy of experience-dependent plasticity in the two major types of neurons 
found in layers Va and Vb: regular-spiking and intrinsic bursting61, which are both pyramidal neuron subtypes. 

Table 1.   Electrophysiological properties of the four modes of neuron firing identified from the spike-train 
autocorrelation histograms computed from the initial 350 spikes recorded during pre-BMI baseline. Data 
represents mean ± s.d

Mode of neuron firing Autocorrelation median (ms)
Probability of firing in ≤ 5 ms 
(%) Waveform width (µs) k-means cluster

Mode 1 (n = 26) 33.64 ± 4.24 1.25 ± 1.54 502.58 ± 82.11 (Wide) Non-bursting

Mode 2 (n = 6) 28 ± 1.14 0.74 ± 0.45 211.11 ± 17.21 (Narrow) Non-bursting

Mode 3 (n = 1) 11.9 27.62 600 (Wide) Bursting

Mode 4 (n = 24) 27.58 ± 1.78 6.47 ± 2.49 559.09 ± 58.07 (Wide) Bursting
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Even though their study was performed in the barrel cortex, the same principles might be generalized to layers 
Va and Vb of the motor cortex. The authors found that these neuron subtypes experience complimentary forms 
of synaptic plasticity in response to whisker trimming, where intrinsic bursting neurons were potentiated in 
the spared whisker barrels, while regular-spiking neurons were depressed in the trimmed barrels. Extrapolating 
their results, the bursting neurons (i.e. Mode 4/pyramidal) found in our study are likely candidates for intrinsic 
bursting neurons, while non-bursting neurons (i.e. Mode 1/pyramidal) are the most likely candidates for regular-
spiking neurons. Similarly, we found bursting neurons to be potentiated (i.e. producing larger event integrals), 
while non-bursting neurons were neither potentiated nor depressed, possibly due to the nature of the BMI task 
involving activity up-regulation. Different BMI tasks, or perhaps extinction of existing BMI mappings might 
involve depression in the activity of non-bursting neurons. There is also the possibility that plastic changes act 
in a faster time-frame in bursting compared to non-bursting neurons, for the simple fact that intrinsic bursting 
neurons fire at high rates or in bursts of activity. Elucidating the specific cellular and molecular mechanisms 
underlying the plastic changes observed in neurons as a result of operant conditioning, and in particular, if 
differences exist between bursting neurons and non-bursting neurons in layer V of the motor cortex will be of 
interest in future studies.

Another possible explanation to our findings might be that pyramidal neuron subtypes have different strate-
gies to perform a BMI task. A recent study reported different strategies in subtypes of interneurons performing 
a calcium-based BMI task in mice24. The task involved the ensemble activity of a pair of interneurons. In two 
subtypes of interneurons (i.e. somatostatin- and vasoactive intestinal peptide-expressing interneurons), activity 
frequency (i.e. frequency of calcium events) of the increasing neuron grew larger while activity frequency of 
the decreasing neuron remained the same. When parvalbumin-expressing interneurons were targeted, activity 
frequency of the decreasing neuron diminished, while activity frequency of the increasing neuron remained the 
same. These findings highlight the differences in plasticity in another major type of cortical neuron: interneurons. 
Interestingly, the authors reported that the amplitude of the calcium events did not change significantly, only the 
frequency of the events of individual neurons according to their arbitrary mapping (i.e. increasing or decreasing). 
The overall reward frequency between neuron subtypes was not significantly different. Given that in our study, 
we recorded from layer V, where pyramidal neurons are abundant, the proportion of interneurons (i.e. narrow-
waveform neurons) was very low (i.e. 6 out of 51). Out of these 6 putative interneurons, only 2 were success-
fully conditioned, thus we are unable to draw conclusions regarding differences in the response of interneuron 
subtypes. However, we also observed subtype-specific strategies in putative pyramidal neurons, reflected in the 
magnitude of the event integrals, which highlights the importance of investigating how neurons are modulated 
in various neuroprosthetic tasks and how extrinsic and intrinsic factors can inform the design of BMIs.

Regarding the performance of non-bursting neurons in the BMI, the firing rate and reward frequency 
increased slightly earlier in the protocol than that of bursting neurons. However, this difference might be due 
to the effect size (i.e. non-bursting neurons: n = 16 vs. bursting neurons: n = 11), indicating that non-bursting 
neurons had increased power when performing statistical comparisons. Furthermore, it could be argued that 
producing larger events was not necessary, since the reward contingency remained the same throughout the 
experiment. In this case, non-bursting neurons produced a more stable response (i.e. stable event integral) lead-
ing to a reward than bursting neurons, whose response went beyond the reward contingency (i.e. overshoot).

Our findings in DNs with significant up-regulation (i.e. learners) suggest that control of the BMI was goal-
directed. Successful activity up-regulation in DNs was not explained by delivery of rewards without LED feed-
back (i.e. rewards-only protocol), or a positive association with a flashing light without rewards (i.e. LED-only 
protocol), as both conditions had significantly lower average firing rates compared to the last 3 min of the 
up-regulation protocol. This was true even during the 1-SD BMI protocol, where significantly lower firing rates 
were produced compared to the second half of the up-regulation protocol, despite rewards being delivered 
more frequently and having higher LED brightness due to a lower reward threshold. This result suggests that 
changes in firing rate were the result of learning, as the average neuron activity only increased when a challenging 
reward threshold was presented, and an association was made between high firing rate and proportional high 
brightness of the LED. The presence of this association, however, was meaningless without food rewards (i.e. 
LED-only protocol), as the firing rate quickly returned to baseline levels, which indicates that the learned task 
was goal-directed rather than a learned habit. It should be taken into consideration that neurons were exposed 

Figure 6.   Differences in the response of bursting and non-bursting neurons during operant conditioning. (a) 
Firing rate per neuron subtype during the up-regulation protocol, for each of 6 equally-sized time bins. The 
firing rate was normalized to the firing rate during the first bin of the up-regulation protocol. The gray area 
denotes the 40th and 60th percentile range of the firing rate during pre-BMI baseline, normalized to the firing 
rate during the first bin of the up-regulation protocol. (b) Reward frequency per neuron subtype during the 
up-regulation protocol, for each equally-sized time bin. The gray area denotes the 40th and 60th percentile range 
of the chance performance during pre-BMI baseline. c. Rewarded event integral per neuron subtype during 
the up-regulation protocol, for each of 6 equally-sized time bins. (d) Example event aligned to reward (0 s) 
from which an event integral was calculated from event onset to end. (e) Rewarded event maximal amplitude 
and duration for bursting neurons. (f) Probability of firing in ≤ 5 ms per neuron subtype. These values were 
estimated for each time bin by computing the spike-train autocorrelation and normalizing by the number of 
spikes in each time bin. (g) All events (i.e. rewarded and unrewarded) frequency per neuron subtype. (h) All 
events (i.e. rewarded and unrewarded) integral per neuron subtype. For all plots: gray dotted lines indicate 
individual neurons. Bold line is the median with 40th and 60th percentiles (*p < 0.01, Wilcoxon’s signed-rank 
test, Bonferroni corrected).
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to each modified protocol for 3 min at a time, which might have limited the amount of learning, especially dur-
ing protocols involving rewards. One study exposed mice extensively in a single neuron operant conditioning 
task with only rewards23. However, the presence of sensory feedback seems to be necessary to produce a robust 
response around the reward contingency, selectively to DNs, as well as to expedite learning, as reported in this 
and other studies10–12. Also, DNs and INs were modulated at trial onset during the up-regulation protocol and 
this modulation was not present during LED-only, protocol in which rewards were not dispensed upon reaching 
the contingency, further suggesting volitional modulation of firing rates.

Other studies have reported the same specificity of single neuron responses in layers II/III and V in the 
cortex using operant conditioning. The mechanism by which single neurons can be volitionally modulated 
without simultaneous activation of neighboring neurons is unknown, however, it involves reward-modulated 
spike-timing-dependent plasticity62,63. Also, downstream circuits, namely the basal ganglia-thalamo-cortical 
loop, regulate plasticity in dopaminergic neurons that project to the motor cortex (for review64). Corticostriatal 
plasticity is reported to play a crucial role in BMI learning10. However, one study found evidence that upstream 
circuits play a role as well12. They tested a condition in which mice had to initiate licks upon trial completion in 
order to get a liquid reward, therefore mice would have to rely on internal cues to maintain performance after 
conditioning. They found that mice were not able to predict reward outcomes based on internal cues alone, 
therefore sensory cues remained necessary even after conditioning. This evidence would suggest that motor 
cortex neurons are driven by downstream reward-related circuits, and upstream circuits are then able to hone 
in to an individual output neuron. In our study, further evidence of this would be the fact that both DNs and 
INs were modulated at trial onset, however, modulation and performance improvement at the time of reward 
were confined to DNs, indicating that INs likely played a role in providing part of the drive to DNs during con-
ditioning, as reported in several BMI studies12,20,22,25,26. Although, IN modulation has been reported to decrease 
with prolonged learning22,25. One study reported that both DNs and INs experienced increased phase-locking 
and coherency to slow-wave activity during sleep, suggesting a supportive role for INs in the consolidation of 
BMI skills26.

Despite the marked learning-related changes found in almost half of the neurons, the other half did not up-
regulate their activity as a result of operant conditioning (i.e. 30 out of 57), regardless of neuron subtype. One 
study trained mice to pull a lever prior to operant conditioning of single M1 neurons23. They reported that only 
neurons which were not modulated to the lever-pull task were successfully conditioned. Even though we did not 
test this condition, an association to existing motor commands might explain why some neurons, regardless of 
neuron subtype, did not respond to operant conditioning.

In the context of BMIs implementing neural population decoding for real-time control of artificial limbs or 
computer cursors, one study investigated neuron-type-specific utility, defined as improved offline decoding of 
motor parameters, in narrow and wide waveform neurons27. The authors reported that narrow waveform neurons 
outperformed wide waveform neurons in various motor parameters. It remains to be investigated how the dif-
ferent responses in cortical neuron subtypes, and subtypes, impacts the decoding accuracy of dynamic signals, 
such as torque, EMG or force. The progressively larger response at the time of reward found in bursting neurons 
might lead to higher utility in BMI implementation, as it will likely carry more information for a given decoder 
to translate into commands related to motor execution or intention, ultimately requiring less neurons to achieve 
the same level of performance as a larger number of neurons with lower utility (i.e. non-bursting neurons).

Conclusions
When designing a BMI system, one should consider the different neuron-type-specific responses when learning 
a novel BMI task. Wide waveform (i.e. putative pyramidal) neurons are an abundant source of output signals in 
the cortex, capable of producing robust responses within minutes as a result of operant conditioning. However, 
bursting neurons produced larger event integrals at the time of reward, which were a result of sustaining high 
firing rates for longer than non-bursting neurons. These additional learning-related changes might be indicators 
of higher utility observed in bursting neurons. With respect to neuron classification, computing the spike-train 
autocorrelation will identify the mode of firing, revealing the bursting propensity, or lack of it, of individual 
neurons.

Limitations of the study
Our study is limited by the fact that rats were unrestrained during experiments. We did not determine whether 
the direct neurons had a previous association to forepaw limb movements, nor did we track movements or EMG 
activity. However, we did not observe overt behavioral strategies that could be up-regulating the single neuron 
activity. In addition, activity of DNs was selectively modulated around reward dispensing, unlike activity of 
INs. If rats relied on stereotyped forepaw moments to obtain rewards, the local circuit would have been driven 
in concert. Finally, the modified protocols were aimed at determining whether the increase in firing rate and 
reward frequency during the up-regulation protocol was volitional. Nonetheless, inclusion of movement tracking 
or intramuscular EMG in future experiments will allow us to ascertain that control of the BMI was volitional.

Methods
Animal model and experimental setup.  Nine adult male Long-Evans rats underwent stereotaxic sur-
gery for electrode implantation in the forepaw representation of the primary motor cortex (M1), targeting layer 
V at a depth of ~ 1,500 µm. The University of Toronto Animal Care Committee approved the protocols described 
below. All experiments were performed in accordance with relevant guidelines and regulations. The electrode 
consisted of an array of sixteen Parylene C-insulated tungsten electrodes (Microprobes for Life Sciences, Gaith-
ersburg, MD, USA; 4 × 4 configuration; 250 μm inter-electrode distance; impedance of ~ 0.5 MΩ at 1 kHz). Rats 
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recovered from surgery for 10 days before taking part in the experiments. Analgesia (i.e. Meloxicam at a dose 
of 1–2 mg/kg administered subcutaneously) was provided once per day during the first 2–3 days post-surgery.

Operant conditioning experiments were performed in a chamber (Med-Associates Inc, St. Albans, VT, USA) 
equipped with a food dispenser that dispensed 45 mg chocolate-flavored pellets (Bio-Serv, Flemington, NJ, USA), 
and a light-emitting-diode (LED) for visual feedback. A buzzer was added to the chamber to indicate trial onset 
during the experimental protocols. The chamber components (i.e. pellet dispenser, LED, and buzzer) were con-
trolled in real-time with custom-made routines created using MATLAB (Mathworks, Natick, MA, USA) and a 
microcontroller board (Arduino UNO, Ivrea, Italy).

Single neuron recordings.  Neural activity was recorded at 30 kHz, band-pass filtered from 250–5,000 Hz 
and digitized with 16-bit resolution using an amplifier and data acquisition system (Cerebus, Blackrock 
Microsystems, Salt Lake City, UT, USA). Spikes were sorted using time–amplitude windows, which were placed 
manually on the spike waveform65. The criteria used to select a neuron for subsequent experimentation included: 
a minimum refractory period of 1 ms66, a signal-to-noise ratio (SNR) of two or greater, as described in67, mini-
mum firing rate > 1 Hz and a unit not conditioned previously. Refractory period violations were assessed using 
an interspike interval (ISI) histogram from the pre-BMI baseline recordings (described below). SNR was calcu-
lated as the ratio between the peak-to-peak amplitude of the mean neuron waveform, divided over two times the 
s.d. of the waveform residuals after the mean waveform was subtracted.

BMI task and experimental protocols.  Once a neuron was selected, its average firing rate and ISI his-
togram were computed from a 5-min baseline recording (i.e. pre-BMI baseline). Rats were tethered to the head-
stage but otherwise unrestrained during the entire experimental timeline (Fig. 3e). During this recording, the 
rats received no auditory cues, visual feedback or food rewards. The recorded activity was used to determine the 
firing rate distribution of the selected neuron, from which the high activity reward threshold (i.e. 2 s.d. above 
baseline firing rate) was determined for subsequent protocols.

During the “up-regulation” protocol (i.e. the protocol in which the BMI task was performed), the neuron’s 
firing rate was transformed into the brightness of the LED for visual feedback (Fig. 1a). The purpose of the up-
regulation protocol was to induce a gradual increase of the neuron’s firing rate, where at the beginning, rewards 
were obtained infrequently, however, as the overall firing rate of the neuron increased, rewards would become 
more frequent. The presence of up-regulation (i.e. significant firing rate increase from the first to the second half 
of the protocol) was our indicator for successful conditioning. To provide LED visual feedback, the brightness of 
the LED was adjusted automatically in linear increments using pulse-width modulation to reflect the firing rate 
of the neuron (Fig. 1b). The LED displayed maximum brightness when the firing rate reached the high activity 
threshold and the minimum brightness corresponded to no activity. Firing rates were updated every 250 ms. 
A trial started with an audio cue (i.e. 750 ms ‘beep’ produced by the buzzer) and the simultaneous activation 
of the LED. The reward contingency consisted of reaching the high activity reward threshold and sustaining it 
for at least 750 ms (i.e. 3 consecutive bins). Upon reaching it, a pellet was immediately dispensed, the LED was 
turned off and the rat was given 10 s to retrieve the pellet. A new trial started when the firing rate went back to 
baseline activity levels. There was no time limit to complete a given trial. The up-regulation protocol consisted 
of a total of 20 trials (Fig. 1c).

After the up-regulation protocol, a second baseline (i.e. post-BMI baseline) was recorded for a minimum of 
5 min, or until the average firing rate of the conditioned neuron went back to pre-BMI baseline levels.

Two of three modified (i.e. control) protocols were performed in addition to the up-regulation protocol 
during a given conditioning session. These three modified protocols involved a reward threshold of 1 s.d. above 
pre-BMI baseline firing rate and were conducted to test the effect of: (i) LED-only (i.e. no rewards; Fig. 3a); (ii) 
rewards-only (i.e. no LED feedback; Fig. 3b); (iii) LED feedback and rewards with a lower threshold (i.e. 1-SD 
BMI). The modified protocols were chosen as follows: since two of them involved rewards (i.e. rewards-only 
and 1-SD BMI), one of these protocols was chosen at random; the LED-only protocol was always performed. 
One modified protocol was conducted after pre-BMI baseline and before the up-regulation protocol; the second 
modified protocol was conducted after post-BMI baseline (Figs. 3c,d). The order in which the modified protocols 
were performed was randomized as well. Trial onset was indicated with a beep as in the up-regulation protocol. 
The modified protocols lasted 3 min each. The experimental timeline is shown in Fig. 3e.

Rats underwent conditioning for as many days as we were able to obtain good quality single neuron recordings 
(i.e. SNR > 2). Only conditioning sessions in which 20 trials were completed during the up-regulation protocol 
were included in subsequent analyses. One conditioning session was performed per day, per animal. Neurons 
with baseline firing rates < 1 Hz were discarded from the analyses because we established that these neurons lack 
utility in a BMI in a previous study28.

Neuron classification.  Neurons were classified post-hoc into bursting and non-bursting neurons, based 
on two measures of their spike-train autocorrelation histograms. The spike-train autocorrelation quantifies the 
probability of spikes being generated at a given time interval, therefore, it can characterize the firing behavior 
of a neuron. Pre-BMI baseline recordings were used to compute the spike-train autocorrelation at 1 ms resolu-
tion, from − 50 to 50 ms. Recordings were truncated at 350 spikes. The center bin (i.e. 0 ms lag) was discarded 
from the autocorrelation histograms. In order to classify neurons based on their autocorrelation histograms, we 
first calculated the autocorrelation median34, which consisted of the positive time lag where half the histogram 
weights occurred. The autocorrelation median was computed at 0.1 ms resolution. Second, the probability of fir-
ing in ≤ 5 ms, calculated as the percentage of histogram weights in ≤ 5 ms divided over the total autocorrelation 
histogram weights.
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These two measures were chosen based on visual inspection of the main modes of firing shown in Fig. 5a, 
identified from the neuron autocorrelation histograms. Non-bursting neurons (i.e. Modes 1 and 2; Fig. 5a) were 
characterized by very low firing activity in bins ≤ 5 ms (i.e. < 2% of the autocorrelation histogram bin count). 
Mode 1 neurons were identified by a slow rise in the histogram from 0 to 50 ms, resulting in autocorrelation 
medians > 30 ms. Mode 2 neurons also had very low activity in bins ≤ 5 ms, however, these neurons had a peak 
in their autocorrelation histograms between 15–30 ms, resulting in autocorrelation medians between 27–30 ms. 
Bursting neurons (i.e. Modes 3 and 4; Fig. 5a) described neurons with higher activity in bins ≤ 5 ms. Mode 3 illus-
trates the bursting neuron described in the literature29, characterized by a peak in the autocorrelation histogram 
between 3–6 ms, followed by exponential decay, resulting in autocorrelation medians < 15 ms. Mode 4 neurons 
had a very wide firing range, including bins ≤ 5 ms. Even though Mode 4 neurons did not solely produce bursting 
activity, they were numerous in the recordings and were distinguished from non-bursting Mode 2 neurons on 
the basis of their higher probabilities of firing between 2–5 ms. For visual inspection, autocorrelation histograms 
were constructed using all available spikes from each neuron (Fig. 5a). However, for classification purposes, only 
spikes recorded during pre-BMI baseline (i.e. spontaneous activity) were considered. During the up-regulation 
protocol, some neurons increased their activity as a result of conditioning. However, other neurons decreased 
their activity (see Mode 3 neuron in Supplementary Figure S3). Due to this variability during the up-regulation 
protocol and given that our classification system was activity-based, we considered that classifying neurons based 
on their spontaneous activity would be more consistent. Also, the same number of spikes per neuron (i.e. the 
first 350 spikes) during pre-BMI baseline were used to compute the autocorrelation-based measures to facilitate 
between-unit comparisons68–70. Finally, we used k-means clustering71,72 to classify neurons into non-bursting 
and bursting neurons from the autocorrelation median and probability of firing in ≤ 5 ms.

We also calculated the trough-to-peak width of the average neuron waveform shape during pre-BMI baseline 
(Fig. 5d), given that spike waveform asymmetry measures have been reported to be the best predictors of neuron 
classification into functional groups (i.e. interneurons and pyramidal neurons29. Based on this definition, puta-
tive interneurons are characterized by narrow or ‘thin’ spikes and they are quite scarce in the cortex (i.e. < 30%, 
although numbers as low as 7% have been reported29,30,41). In contrast, putative pyramidal neurons have wide 
spikes and are very numerous in the cortex (i.e. 60–70%).

Data analysis.  Statistical analyses were performed in MATLAB (2018a, Mathworks, MA, USA). Kolmogo-
rov–Smirnov tests were used to determine if the data met the normality assumption. Non-parametric tests were 
used where appropriate. All tests were two-sided unless otherwise stated. All tests were performed with a signifi-
cance level (α) of 0.05. Data are presented as mean ± s.d.

Firing rates were quantified in bins of 250 ms. Neurons with significant increases in firing rate (Wilcoxon’s 
rank-sum test, p < 0.05) from the first to the second half of the up-regulation protocol were considered success-
fully conditioned.

Conditioning sessions with paired modified (i.e. control) protocols were compared to the last 3 min of the 
up-regulation protocol (Wilcoxon’s signed-rank test, Bonferroni corrected, p < 0.017).

For each successfully conditioned neuron, we divided the up-regulation protocol into 6 equally-sized time 
bins, from which we constructed learning curves per neuron subtype of firing rate, reward frequency and other 
measures described below. This allowed for paired statistical comparisons. Firing rates and chance performance 
during pre- and post-BMI baseline were calculated for equivalent time bins, as in the up-regulation protocol. 
Firing rates were normalized to the firing rate during the first bin of the up-regulation protocol.

The learning effect (Fig. 2a) was estimated by taking the average firing rate change factor for each consecutive 
day of training in all rats. The firing rate change factor was computed by taking the mean firing rate during the 
second half of the up-regulation protocol, divided by the mean firing rate during the first half of the protocol. 
Data was pooled for training days 1–3, 4–6, 7–9 and 10–13.

We assessed the rewarded and unrewarded events (i.e. firing rate evens that reached or surpassed the reward 
contingency) by transforming the firing rates to a z-score (Fig. 6d), where the spikes were first binned every 
62.5 ms, for greater resolution of the firing rates, and then smoothed with a sliding window of 250 ms, consist-
ent with the bin width during experimentation. We calculated the mean and s.d. during the first 25 s of the 
up-regulation protocol to transform the firing rate histograms to a z-score waveform. This time window was 
chosen because rewards were infrequent at the beginning of the up-regulation protocol, and thus, firing rates 
were not yet elevated. Events were detected when the z-score waveform first crossed a value of 2 (p < 0.023), and 
until the waveform returned to a value below 0. From these two time points, the event duration and amplitude 
were used to calculate an event integral (i.e. sum of z-score transformed firing rates from event onset to end).

To examine co-activation of other neurons recorded in the array along with the conditioned neuron, a 
peri-event time histogram (PETH) was constructed using 5 s around and after the reward contingency for each 
neuron, from − 3 s to + 2 s, with a bin size of 62.5 ms to assess firing rates in a finer timescale (Fig. 4a). Neurons 
in the array with average firing rates of < 1 Hz were not included in the analyses. The raw PETH was transformed 
to a z-score waveform using the mean and s.d. of the PETH from − 3 to − 1 s. Co-activation in neighboring 
neurons was detected when the z-score PETH trace crossed a value of 2 (p < 0.023) for at least 4 consecutive bins 
(i.e. 250 ms, or the bin width during conditioning). These neurons were labeled indirect neurons (IN), while 
conditioned neurons were labelled direct neurons (DN). The modulation depth was calculated for DNs and INs 
around the reward contingency, from − 1 to 0.5 s, and after reward contingency, from 0.5 to 2 s. The modulation 
depth was calculated as the difference between the maximum and the minimum z-score firing rate values within 
each respective window. Similar to the reward-aligned PETH, we constructed a trial onset-aligned PETH, from 
− 0.5 to + 1 s, with a bin size of 62.5 ms, for DNs and INs. The trial onset-aligned PETH was transformed to a 
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z-score trace by taking the mean and s.d. from − 0.5 to 0 s. The modulation depth was calculated as the difference 
between the maximum and minimum z-score firing rate value within this window.

Data availability
The raw datasets generated during the current study are available from the corresponding author on reasonable 
request. All data analyzed during this study are included in this published article and supplementary materials.
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