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Abstract

Constructed from the consensus of short-read variant callers, existing benchmark datasets for 

evaluating variant calling accuracy are biased toward easy regions accessible by known 

algorithms. We derived a new benchmark dataset from the de novo PacBio assemblies of two 

human cell lines that are homozygous across the whole genome. It provides a more accurate and 

less biased estimate of the error rate of small variant calls in a realistic context.

Calling genomic sequence variations from resequencing data plays an important role in 

medical and population genetics, and has become an active research area since the advent of 

high-throughput sequencing. Many methods have been developed for calling single-

nucleotide polymorphisms (SNPs) and short insertions/deletions (INDELs) primarily from 

short-read data. To measure the accuracy of these methods and ultimately to make accurate 

variant calls, one typically runs a variant calling pipeline on benchmark datasets where the 

true variant calls are known. The most widely used benchmark datasets include Genome In 

A Bottle1 (GIAB) and Platinum Genome2 (PlatGen) for the human sample NA12878. Both 

come with a set of high-quality variants and a set of confident regions where non-variant 

sites are deemed to be identical to the reference genome. These two datasets were 

constructed from the consensus of multiple short-read variant callers, with consideration of 

pedigree information or structural variations (SVs) found with long-fragment technologies 

by PacBio or 10X Genomics. A major concern with GIAB and PlatGen is that the 

sequencing technologies and the variant calling algorithms used to construct the data sets are 
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the same as the ones used for testing. This strong correlation leads to biases in two subtle 

ways. First, variant calling with short reads is intrinsically difficult in regions with 

moderately diverged repeats and segmental duplications. We have to exclude such regions 

from the confident regions as different variant callers fail to reach consensus there. This 

biases GIAB and PlatGen toward “easy” genomic regions. In fact, both benchmark datasets 

conclude competent variant callers make a SNP error every few million bases (Figure 1a), 

while other work suggests we can only achieve an error rate of one per 100–200 thousand 

bases in wider genomic regions3, nearly an order of magnitude higher. The bias toward easy 

regions directs the progress in the field to focus on trivial errors while overlooking the major 

error modes in real applications. Second, as GIAB and PlatGen were constructed using the 

existing algorithms, they may penalize more advanced algorithms and hamper future method 

development. These caveats suggest we can only comprehensively evaluate the accuracy of 

short-read variant calling by constructing benchmark datasets with methods largely 

orthogonal to and more powerful than short-read sequencing technologies and variant calling 

algorithms.

It may be tempting to construct a new benchmark dataset from a whole genome assembly 

based on PacBio data4. However, recent work shows that while PacBio assembly is accurate 

at the base-pair level for haploid genomes5, it is not accurate enough to confidently call 

heterozygotes in diploid mammalian genomes6. To derive a comprehensive truth dataset, we 

turned to the de novo PacBio assemblies of two complete hydatidiform mole (CHM) cell 

lines7,8. CHM cell lines are almost completely homozygous across the whole genome. This 

homozygosity enables accurate PacBio consensus sequences of each cell line in two ways. 

First, the PacBio consensus tool works better with homozygous sequences. Second, we can 

identify and mask PacBio errors by mapping Illumina short-read contigs to the PacBio 

contigs. Because for each CHM sample we are calling small base changes on a single 

haplotype, we can avoid most artifacts in diploid variant calling against a reference genome, 

which involves three haplotypes and complex genetic variations beyond the capability of 

short reads.

Using the error-masked contigs of each cell line, we combined the two homozygous calls at 

each locus into a synthetic diploid call, resulting in the new phased benchmark dataset: 

Syndip (synthetic diploid; Figure 1). This callset consists of 3.57 million SNPs and 0.58 

million INDELs in 2.71 gigabases (Gbp) of confident regions, covering 95.5% of the 

autosomes and X chromosome of GRCh37 excluding assembly gaps.

In order to compare Syndip with existing benchmarks and re-evaluate popular short-read 

variant callers, we evenly mixed DNA from the two CHM cell lines and sequenced the mix 

with Illumina HiSeq X Ten (Figure 1). By counting supporting reads at heterozygous SNPs 

after variant calling, we estimated 50.7% of DNA in the mixture comes from one cell line 

and 49.3% from the other, concluding that the mixture is a good representative of a naturally 

diploid sample. We mapped the reads from the synthetic-diploid samples to the human 

genome with BWA-MEM-0.7.159, Bowtie2–2.2.210 and minimap2–2.511, and called 

variants on the synthetic-diploid samples with FreeBayes-1.0.212, Platypus- 0.8.113, 

Samtools-1.314 and GATK-3.515, including the HaplotypeCaller (HC) and 

UnifiedGenotyper (UG) algorithms. We included multiple variant callers to avoid 
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overemphasizing caller-specific effects. We optionally filtered the initial variant calls with 

the following rules3: 1) variant quality ≥ 30; 2) read depth at the variant is below d + 4 d
with d being the average read depth; 3) the fraction of reads supporting the variant allele ≥ 

30% of total read depth at the variant; 4) Fisher strand p-value ≥0.001; 5) the variant allele is 

supported by at least one read from each strand.

We used RTG’s vcfeval16 to evaluate the variant calling accuracy. Given a truth and a test 

callset, a true positive (TP) is a true allele found in the test callset; a false negative (FN) is a 

true allele not found in the test callset; a false positive (FP) is an allele in the test callset not 

found in the truth set. We define %FNR=100×FN/(TP+FN) and FPPM=106×FP/L, where L 
is the total length of confident regions. We took FPPM as a metric instead of the more 

widely used metric “precision” [=TP/(TP+FN)], because FPPM does not depend on the rate 

of variation and is thus comparable across datasets of different populations or species.

Figure 2 shows the results of evaluating variant calling pipelines with various benchmarks 

and conditions. Figure 2a reveals that the FPPM of SNPs estimated from Syndip is often 5–

10 times higher than FPPM estimated from GIAB or PlatGen. Looking into the Syndip FP 

SNPs, we found most of them are located in CNVs that are evident in PacBio data in the 

context of long flanking regions, but look dubious in short-read data alone. GIAB-3.3.2 and 

PlatGen-1.0 exclude these false positives from the truth variant set based on the pedigree 

information or orthogonal data. However, in real applications, we often only have access to 

Illumina data and thus cannot achieve the accuracy suggested by the two benchmark 

datasets.

In our evaluation, we used post-filtered variant calls instead of raw calls. For GATK-HC, 

filtering reduces sensitivity by only 0.5%, but reduces the number of FPs by four folds 

(Figure 2c), reduces the number of coding SNPs absent from the 1000 Genomes Project17 

by 58%, and reduces the number of loss-of-function (LoF) calls by 30%. We manually 

inspected 20 filtered LoF calls in IGV18 and confirmed that all of them are either false 

positives or fall outside confident regions; those outside confident regions look spurious as 

well. False positives are enriched among LoF calls because real LoF mutations are subjected 

to strong selection but errors are not. For functional analyses, such as in the study of 

Mendelian diseases, we recommend applying stringent filtering to avoid variant calling 

artifacts. We note that the popular metric F1-score, which is the average of sensitivity 

[=TP/(TP+FP)] and precision, is usually higher for unfiltered calls. For example, on GIAB, 

the F1-score of unfiltered GATK-HC SNP calls is 0.997, higher than that of filtered calls 

0.990. The F1 metric may not reflect the accuracy in many applications.

Consistent with our previous finding3, most FP INDELs come from low-complexity 

regions19,20 (LCRs), 2.3% of human genome (Figure 2b). While this finding helps to guide 

our future development, it over-emphasizes a class of INDELs that often have unknown 

functional implications. To put the evaluation in a more practical context, we compiled a list 

of potentially functional regions, which consist of coding regions with 20bp flanking 

regions, regions conserved in vertebrate or mammalian evolution and variants in the ClinVar 

or GWAScatalog databases with 100bp flanking regions. Only 0.5% of these regions 

intersect with LCRs. As a result, the FPPM of INDELs in these regions is much lower.
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We found that mapping reads to GRCh38 leads to slightly better results than mapping to 

GRCh37 (Figure 2d), potentially due to the higher quality of the latest build. Although 

mapping to GRCh37 with decoy sequences further helps to reduce FP calls, this often comes 

at a minor loss in sensitivity. The choice of read mapping pipelines affects variant calling 

accuracy more (Figure 2e). Bowtie2 alignment often yields lower FPPM because Bowtie2 

intentionally lowers mapping quality of reads with excessive mismatches, which helps to 

avoid FPs caused by divergent CNVs, but may lead to a bias against regions under balancing 

selection or reduce sensitivity for species with high heterozygosity. It would be preferable to 

implement a post-alignment or post-variant filter instead of building the limitation into the 

mapper. We observed comparable FPPM but varying sensitivity across four independent 

experiments (Figure 2f). Replicate 4 has the lowest coverage and base quality as well as the 

lowest variant calling sensitivity. Importantly, replicate 5* in Figure 2f suggests that 

computationally subsampling and mixing reads sequenced from each CHM cell line 

separately, which is an easier technical exercise than experimentally mixing DNA to a 

precise fraction, is adequate for the evaluation of short variant calling.

We have manually inspected FPs and FNs called by each variant caller. GATK-HC performs 

local re-assembly and consistently achieves the highest INDEL sensitivity (Figure 2). 

However, it may assemble a spurious haplotype around a long INDEL in a long LCR and 

call a false allele. We believe this can be improved with a better assembly algorithm3. 

FreeBayes is efficient and accurate for SNP calling. However, it does not penalize reads with 

intermediate mapping quality as much as other variant callers, which may lead to high 

FPPM in regions affected by CNVs. Platypus and SAMtools also demonstrate good SNP 

accuracy. Nonetheless, they both suffer from an error mode in which they may call a weakly 

supported false INDEL that is similar but not identical to a correct INDEL call nearby. This 

affects their FPPM. It is not obvious how to filter such false INDELs without looking at the 

underlying alignments.

Syndip is a special benchmark dataset that has been constructed from high-quality PacBio 

assemblies of two independent, homozygous cell lines. It leverages the power of long-read 

sequencing technologies while avoiding the difficulties in calling complex heterozygous 

variants from relatively noisy data. Syndip is the first benchmark dataset that does not 

heavily depend on short-read data and short-read variant callers, and thus more honestly 

reflects the true accuracy of such variant callers. On the other hand, Syndip also has 

weakness: the PacBio consensus of homozygous genomes is still associated with a small 

error rate. We have to use Illumina short reads to avoid PacBio errors being identified as 

wrong FNs in evaluation. Better PacBio assembly would eliminate this step and produce a 

benchmark dataset fully orthogonal to Illumina data.

Methods

Identifying erroneous regions on PacBio contigs

We acquired CHM1 and CHM13 PacBio assemblies8 (accession GCA_001297185 and 

GCA_000983455, respectively) from NCBI and downloaded Illumina short reads from SRA 

(accession SRR2842672 and SRR3099549 for CHM1; SRR2088062 and SRR2088063 for 

CHM13). We assembled the Illumina CHM1 reads with FermiKit21 and mapped the short-
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read unitigs to the corresponding PacBio assembly to call the sequence differences between 

the Illumina and the PacBio assemblies. These differences may come from three sources: 

incorrect PacBio consensus, somatic cell line mutations and collapse of segmental 

duplications.

An incorrect PacBio consensus base leads to a homozygous difference between the Illumina 

and PacBio assemblies. We found ~62k such homozygous differences from each sample, 

most of which are 1bp INDELs. A somatic mutation appears to be an isolated heterozygote 

with read depth close to the genome average. We identified such erroneous heterozygotes by 

requiring 1) each allele is supported by at least 9 Illumina read bases; 2) read depth is no 

greater than 50 and 3) the distance between adjacent somatic calls is above 10,000bp. We 

found 10,498 potential somatic calls in CHM1 and 4,701 in CHM13.

Collapse of segmental duplications in the PacBio assemblies lead to elevated read depth and 

clustered heterozygotes. To pinpoint such regions, we hierarchically clustered heterozygous 

events as follows: we merged two clusters adjacent on the PacBio assembly if 1) the minimal 

distance between them is within 10kb and 2) the density of heterozygotes in the merged 

cluster is at least 1 per 1kb. This resulted in about 3,000 clusters containing three or more 

heterozygotes from each PacBio assembly.

We marked the three types of errors plus 10bp flanking regions on the PacBio contigs. At a 

later step, we lift these regions over to the human reference coordinate and exclude them 

from the final list of confident regions. We note that the procedure above is aggressive in 

that regions we identified may not be associated with PacBio errors. These false regions will 

not lead to wrong FP/FN classification in evaluation.

Constructing the truth call set and confident regions

We aligned each CHM PacBio assembly to GRCh37 with minimap2. To call pseudo-diploid 

variants from PacBio assemblies, we merged the assembly-to-reference alignments of 

CHM1 and CHM13. We discarded alignments with mapping quality below 5, dropped 

aligned segments shorter than 50kb and made an unfiltered call set by calling the alignment 

differences between each PacBio contig and GRCh37.

We constructed the initial set of confident regions from the same alignment. For each PacBio 

assembly, we say a region on GRCh37 is orthologous to the assembly if 1) the region is 

covered by one PacBio alignment longer than 50kb with mapping quality at least 5; 2) the 

region is not covered by another PacBio alignment longer than 10kb, with mapping quality 

at least 5. In downstream evaluation, we later noticed that if a small region harbors excessive 

variant calls, the region tends to be enriched with errors potentially due to misalignments or 

structural variations. We thus applied another hierarchical clustering to spot clusters of 

variations. More precisely, we hierarchically merged two clusters if 1) the minimal distance 

between two variants is within 250bp and 2) the density of variants in the merged cluster is 

at least 1 per 50bp. We collected clusters consisting of 10 or more variants and excluded the 

related regions together with erroneous PacBio regions from the orthologous regions. This 

gives us the list of confident regions for each sample.
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The final list of confident regions of Syndip is the intersection of confident regions from 

each sample. It covers 96.0% of GRCh37, or 95.5% when we also excluded poly-A runs 

≥10bp. We applied a similar procedure to both GRCh37 with decoy contigs and GRCh38.

To confirm the quality of the Syndip data set, we manually inspected a few hundred 

discordant calls in IGV18. We observed that a few percent of false positive and false negative 

INDEL calls made by HaplotypeCaller appear to have strong support from Illumina reads. 

Most of them are associated with 1bp deletions in poly-C. They may be remaining PacBio 

consensus errors we failed to identify. Regardless, a few percent of discrepancy between 

Illumina and PacBio evidence would not change our general conclusions or the relative 

performance between calling methods as PacBio contig errors and somatic mutations are not 

biased toward a particular calling method.

Quantification, normalization and mixing of the CHM samples

Initial sample quantification was performed using the Invitrogen Quant-It broad range 

dsDNA quantification assay kit (Thermo Scientific Catalog: Q33130) with a 1:200 

PicoGreen dilution. Following quantification, each sample was normalized to a 

concentration of 10 ng/μL using a 1X Low TE pH 7.0 solution, then sample concentration 

was confirmed via PicoGreen. Sample mixing was then performed by combining an equal 

mass (ng) of each of the two samples (CHM1 & CHM13) needed to obtain enough material 

for the Whole Genome library preparation (500ng). The samples for creating the 4 libraries 

were normalized and mixed independently (Life Science Reporting Summary).

Preparation of libraries & sequencing

For PCR-free whole genomes, library construction was performed using Kapa Biosystems 

reagents with the following modifications: (1) initial genomic DNA input was reduced from 

3μg to 500ng, and (2) custom full-length dual-indexed library adapters at a concentration of 

15 uM were utilized. Following sample preparation, libraries were quantified using 

quantitative PCR (kit purchased from Kapa biosystems) with probes specific to adapter ends 

in an automated fashion on Agilent’s Bravo liquid handling platform. Based on qPCR 

quantification, libraries were normalized and pooled on the Hamilton MiniStar liquid 

handling platform. For HiSeq X Ten, pooled samples were normalized to 2nM and 

denatured with 0.1N NaOH for a loading concentration of 200 pM. Cluster amplification of 

denatured templates and paired-end sequencing was then performed according to the 

manufacturer’s protocol (Illumina) for the HiSeq X Ten, with the following modification: we 

enabled dual indexing outside of the standard HiSeq control software by altering the 

sequencing recipe files.

Calling SNPs and short INDELs from Illumina data

We mapped the Illumina reads to the human genome GRCh37 with the GATK best-practice 

pipeline, which uses BWA-MEM for mapping and post-processes alignments with BQSR 

and INDEL realignment. We additionally mapped the reads from one sample with BWA-

MEM to various human genome versions without post processing steps. We have also run 

minimap2 and Bowtie2 for the same sample. We used the default settings of various 

mappers, except for tuning the maximal insert size.
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We called variants on the mixed synthetic-diploid samples with FreeBayes, Platypus, 

Samtools and GATK, including the HaplotypeCaller (HC) and UnifiedGenotyper (UG) 

algorithms and filtered the raw variant calls with the set of rules described in the main text. 

We have tried GATK’s VQSR model for filtering. However, as the VQSR training set is 

biased towards variants in regions with unambiguous mapping, VQSR misses many truth 

variants without perfect averaged mapping quality. Both GATK and Platypus come with a 

set of hard filters. However, by not filtering on read depth, one of the most effective filters 

on single-sample WGS calling, these filters lead to a low precision.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Constructing the Syndip benchmark dataset. CHM1 and CHM13 cell lines were sequenced 

with PacBio and de novo assembled independently. Assembly contigs were aligned to the 

human reference genome. Differences in the alignment were taken as ‘true’ SNPs and 

INDELs; regions covered by exactly one contig from each CHM assembly were identified as 

confident regions where true variants can be called to high accuracy. For the evaluation of 

diploid variant calling with short reads, equal quantities of DNA from the two cell lines were 

experimentally mixed. A PCR-free library was constructed from the mix and sequenced to 

~45-fold coverage with 151bp paired-end reads. Variants called from the short reads were 

compared to the PacBio variants as truth to measure variant caller accuracy.
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Fig. 2. 
Evaluating variant calling accuracy with Syndip. %FNR denotes percent false negative rate, 

and FPPM is the number of false positives per million bases. (a) Comparison of Syndip, 

GIAB and PlatGen benchmark datasets on filtered calls. For GIAB and PlatGen, variants 

were called from the HiSeq X Ten run ‘NA12878_L7_S7’ available from the Illumina 

BaseSpace. (b) Effect of evaluation regions. Low-complexity regions were identified with 

the symmetric DUST algorithm. The ‘hard-to-call’ regions include low-complexity regions, 

regions unmappable with 75bp single-end reads and regions susceptible to common copy 

number variations. Panels (c)–(f) only show metrics in ‘coding+conserved’ regions. (c) 

Effect of variant filters. Green bars applied Platypus built-in filters. (d) Effect of the human 

genome reference build. Decoy sequences17 are real human sequences that are missing from 

GRCh37. (e) Effect of the mapping algorithms and post-processing. BWA-MEM* represents 

alignment post-processed with base quality recalibration and INDEL realignment; other 

alignments were not processed with these steps. (f) Effect of replicates. Replicate 1–4 were 

sequenced from four independent libraries, respectively, by mixing equal amount of DNA 

prior to library construction. Replicate 5* was generated by computationally subsampling 

and mixing reads sequenced from the two CHM cell lines separately. Replicate 1 is used in 

panels (a)–(e). Numerical data and the script to generate the figure are available as 

Supplementary Data.
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