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Abstract The rapid advancement of single-cell technologies has shed new light on the complex

mechanisms of cellular heterogeneity. However, compared to bulk RNA sequencing (RNA-seq),

single-cell RNA-seq (scRNA-seq) suffers from higher noise and lower coverage, which brings

new computational difficulties. Based on statistical independence, cell-specific network (CSN) is able

to quantify the overall associations between genes for each cell, yet suffering from a problem of

overestimation related to indirect effects. To overcome this problem, we propose the c-CSN

method, which can construct the conditional cell-specific network (CCSN) for each cell. c-CSN

method can measure the direct associations between genes by eliminating the indirect associations.

c-CSN can be used for cell clustering and dimension reduction on a network basis of single cells.

Intuitively, each CCSN can be viewed as the transformation from less ‘‘reliable” gene expression

to more ‘‘reliable” gene–gene associations in a cell. Based on CCSN, we further design network flow

entropy (NFE) to estimate the differentiation potency of a single cell. A number of scRNA-seq data-

sets were used to demonstrate the advantages of our approach. 1) One direct association network is

generated for one cell. 2) Most existing scRNA-seq methods designed for gene expression matrices

are also applicable to c-CSN-transformed degree matrices. 3) CCSN-based NFE helps resolving the

direction of differentiation trajectories by quantifying the potency of each cell. c-CSN is publicly

available at https://github.com/LinLi-0909/c-CSN.
Introduction

With the development of high-throughput single-cell RNA
sequencing (scRNA-seq), novel cell populations in complex tis-
sues [1–5] can be identified and the differentiation trajectory of
cell states [6–8] can be obtained, which opens a new way to

understand the heterogeneity and transition of cells [9–11].
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However, compared to traditional bulk RNA-seq data, the
prevalence of high technical noise and dropout events is a
major problem in scRNA-seq [12–17], which raises substantial

challenges for data analysis. To analyze high-dimensional
scRNA-seq data, principal component analysis (PCA), non-
negative matrix factorization (NMF), and t-distributed

Stochastic Neighbor Embedding (t-SNE) are widely used for
dimension reduction. Subsequently, clustering methods such
as hierarchical clustering, K-means, SNN-Cliq [18], Corr

[19], SC3 [20], and SIMLR [21] could be applied to identify
potential cell types, further corroborated with known marker
genes. For developmental or differentiation studies, trajectory
inference methods such as Monocle [22], TSCAN [23], and

DPT [24] can be used to order cells along a pseudo temporal
trajectory. Besides these approaches, several methods have
been developed to offer special treatments of the dropouts in

scRNA-seq data. One way is to explicitly model the dropout
events during dimension reduction, e.g., the zero-inflated fac-
tor analysis model developed in ZIFA [25]. Another way is

to incorporate biological information, especially functional
gene–gene association networks. In this direction, SCRL [26]
takes another step forward by leveraging gene–gene interac-

tions, learning a more meaningful low-dimensional projection.
A recent method, netNMF-sc [27] derives a robust factoriza-
tion or clustering against dropouts, by regularizing the original
NMF model with a given gene correlation network. Further-

more, gene–gene correlations could also be employed to
directly estimate the ‘true’ expression values for those observed
zero counts, which is known as the data imputation approach,

as exemplified by several well-known methods including
SAVER [28], MAGIC [29], and scImpute [30]. However, data
imputation is with some limitations, such as over-imputation

of genes unexpressed in certain cell types and inducing artificial
effects that may confound downstream analyses [31].

Several network inference algorithms were also developed

for scRNA-seq. MTGO-SC [32] can detect the network mod-
ules of genes for each cell cluster though combing the informa-
tion of network structures and annotations of genes. SCODE
[33] can construct regulatory networks and expression dynam-

ics through linear ordinary differential equations (ODEs).
These methods only infer the network of a group or cluster
of cells, and do not construct networks for individual cells.

Recently, cell-specific network (CSN) has been proposed to
infer CSNs based on scRNA-seq data [34], which elegantly
infers a network for each cell. Moreover, unlike imputation

methods, CSN employs a data transformation strategy, and
successfully transforms the noisy and ‘‘unreliable” gene expres-
sion data to the more ‘‘reliable” gene association data, thereby
alleviating the dropout problem to a certain extent. The net-

work degree matrix (NDM) derived from CSN can be further
applied in downstream single-cell analyses, which performs
better than traditional expression-based methods in terms of

robustness and accuracy. CSN is able to identify the depen-
dency between two genes from single-cell data based on statis-
tical independence. However, CSN suffers from a problem of

overestimation on gene–gene associations and includes both
direct and indirect associations due to interactive effects from
other genes in a network. In other words, a gene pair without

direct association can be falsely identified to have a link just
because they both have true associations with some other
genes. Thus, the gene–gene network of a cell constructed by
CSN may be much denser than the real molecular network
in this cell, in particular when there are many complex associ-
ations among genes.

To overcome these shortcomings of CSN, we introduce a

novel computational method c-CSN, which can construct a
conditional cell-specific network (CCSN) from scRNA-seq
data. Specifically, c-CSN identifies direct associations between

genes by filtering out indirect associations in the gene–gene
network based on conditional independence. Thus, c-CSN
can transform the original gene expression data of each cell

to the direct and robust gene–gene association data (or net-
work data) of the same cell. In this study, we first demonstrate
that the transformed gene–gene association data not only are
fully compatible with traditional analyses such as dimension

reduction and clustering, but also enable us to delineate the
CSN topology and its dynamics along developmental trajecto-
ries. Then, by defining the network flow entropy (NFE) on the

gene–gene association data of each cell based on c-CSN, we
estimate the differentiation potency of individual cells. We
show that NFE can illustrate the lineage dynamics of cell dif-

ferentiation by quantifying the differentiation potency of cells,
which is also one of the most challenging tasks in developmen-
tal biology.

Method

Assume that x and y are two random variables, and z is the

third random variable. If x and y are independent, then

p xð Þp yð Þ ¼ p x; yð Þ ð1Þ
where p x; yð Þ is the joint probability distribution of x and y;
p xð Þ and p yð Þ are the marginal probability distributions of x

and y, respectively.
If x and y with the condition z are conditionally indepen-

dent, then

p xjzð Þp yjzð Þ ¼ p x; yjzð Þ ð2Þ
where p x; yjzð Þ is the joint probability distribution of x and y
with the condition z, p xjzð Þ and p yjzð Þ are conditionally mar-
ginal probability distributions. Note that Equations (1) and

(2) are both necessary and sufficient conditions on mutual
independence and conditional independence, respectively.
Here, we define

qxy ¼ p x; yð Þ � p xð Þp yð Þ ð3Þ

qxyjz ¼ p x; yjzð Þ � p xjzð Þp yjzð Þ ð4Þ
The original CSN method uses qxy to distinguish the inde-

pendency and association between x and y (File S1 Note 1).
However, if two independent variables x and y are both asso-
ciated with a third random variable z, qxy cannot measure the

direct independency because there is an indirect association
between x and y. In other words, the associations defined by

CSN or Equation (3) include both direct and indirect depen-
dencies, thus resulting in the overestimation on gene–gene
associations. To overcome this problem of CSN, we develop
a novel method, c-CSN, which measures the direct gene–gene

associations based on the conditional independency qxyjz, i.e.,
Equation (4), by filtering out the indirect associations in the

reconstructed network. The computational framework of c-
CSN is shown in Figure 1, and the method is described in next
sections.



Figure 1 Overview of c-CSN method

A. The CCSN of each cell, e.g., cell k, is constructed given a conditional gene z using gene expression data. For every two genes, e.g., gene x

and gene y, we use the statistics q kð Þ
xyjz to measure whether gene x and gene y are conditionally independent given gene z. If gene x and gene y

are directly dependent (x kð Þ
xyjz ¼ 1), there is an edge between gene x and gene y in CCSN of cell k given gene z. Otherwise, there is no edge

between gene x and gene y in CCSN of cell k given gene z. B. Construction of CCSNs of cell k given conditional gene zi (i = 1, 2, 3,� � �,G).
These CCSNs of cell k given conditional gene zi (i= 1, 2, 3,� � �,G) can be integrated into a CCSN of cell k. On the one hand, CCSN of cell k

can be applied to compute NFE of cell k. The pseudotime of cells can be obtained based on NFE of cells. On the other hand, CNDM can be

calculated by obtaining the CCSN of each cell. The CNDM can be further applied to clustering analysis. CCSN, conditional cell-specific

network; CNDM, conditional network degree matrix; NFE, network flow entropy; t-SNE, t-distributed Stochastic Neighbor Embedding.
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Probability distribution estimation

We numerically estimate the value of qxyjz by making a scatter
diagram based on gene expression data. Suppose there are m
genes and n cells in the data. We depict the expression values
of gene x, gene y, and the conditional gene z in a three-
dimensional space (Figure S1A–G), where each dot represents

one cell. First, we draw two parallel planes which are orthog-
onal with z axis near the dot k to represent the upper and lower
bounds of the neighborhoods of zk. And the number of dots in
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the space between the two parallel planes (i.e., the neighbor-

hood of zk) is n kð Þ
z (Figure S1D). Now we get a subspace on

condition of gene z. Then, we draw other four planes near
the dot k, where two planes are orthogonal with x axis and
the other two planes are orthogonal with y axis. We can get

the neighborhoods of xk; zkð Þ, yk; zkð Þ, and xk; yk; zkð Þ accord-
ing to the intersection space of six planes (Figure S1E–G),

where the numbers of dots are n kð Þ
xz , n

kð Þ
yz , and n kð Þ

xyz, respectively.

Then, we can get the estimation of probability distributions:

p kð Þ x; yjzð Þ � n kð Þ
xyz

n
kð Þ
z

; p kð Þ xjzð Þ � n kð Þ
xz

n
kð Þ
z

; p kð Þ yjzð Þ � n kð Þ
yz

n
kð Þ
z

Based on Equation (4), we construct a statistic

q kð Þ
xyjz ¼

n kð Þ
xyz

n
kð Þ
z

� n kð Þ
xz n

kð Þ
yz

n
kð Þ
z

2
ð5Þ

to measure the conditional independence between gene x and
gene y on the condition of gene z in cell k. And when gene x
and gene y given gene z are conditionally independent, the

expectation l kð Þ
xyjz and standard deviation r kð Þ

xyjz (File S1) of the

statistic q kð Þ
xyjz can be obtained:

l kð Þ
xyjz ¼ 0

r kð Þ
xyjz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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n

kð Þ
z � 1

� �
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Then, we normalize the statistic as

bq kð Þ
xyjz ¼

q kð Þ
xyjz � l kð Þ

xyjz

r kð Þ
xyjz

ð6Þ

If gene x and y are conditionally independent on the condition

of gene z, it can be proved that the normalized statistic follows
the standard normal distribution (File S1 Note 1; Figure S2),
and it is less than or equal to 0 when gene x and y are condi-
tionally independent (File S1 Note 2).

Construction of CCSN

To estimate the conditional independency of gene x and gene y

given the conditional gene z in cell k, we first use CSN or
Equation (3) to distinguish the independence of gene x and
gene y and we then use the following hypothesis test.

H0 null hypothesisð Þ: gene x and gene y are conditionally inde-
pendent given gene z in cell k. H1 alternative hypothesisð Þ: gene
x and gene y are conditionally dependent given gene z in cell k.

If q
^ kð Þ
xyjz, the normalized statistic, is larger than Na (significance

level a, Na is the alpha quantile of the standard normal distri-

bution), the null hypothesis will be rejected and then x kð Þ
xyjz ¼ 1

(x kð Þ
xyjz is the edge weight of genes x and y on condition of gene

z).

x kð Þ
xyjz ¼

1

0

genes x and y are directly dependent given gene z

genes x and y are conditionally independent given gene z

�
ð7Þ

All gene pairs can be tested if they are conditionally indepen-

dent given gene z in cell k. And the CCSN C kð Þ
z given condi-

tional gene z is obtained for cell k.
Then, to estimate the direct association between a pair of
genes in a cell, theoretically we should use all the remaining
m � 2 genes as conditional genes, which is computationally

intensive. Suppose there are m genes in our analysis, then
m�(m � 1)/2 gene pairs should be tested. Fortunately, a
molecular network is generally sparse, which means that a pair

of genes (i.e., genes x and y) are expected to have a very small
number of commonly interactive genes (as conditional genes
z). In other words, numerically we can use a small number

of conditional genes to identify the direct association between
a pair of genes in a cell, which can significantly reduce the com-
putational cost (File S1 Note 3; Table S1). For each
gene pair in a cell, we choose G (1 � G � m � 2) genes as

the conditional genes to test if the gene pair is conditionally
independent or not. Generally, the conditional genes may be
the key regulatory genes in a biological process, such as tran-

scription factor genes and kinase genes. From a network view-
point, these genes are usually hub genes in the gene–gene
network, and the network degrees of these genes would be

higher.
Practically, the conditional genes could be obtained from

many available methods, such as highly expressed genes,

highly variable genes, key transcription factor genes, and the
hub genes in the CSN. For the c-CSN method, the conditional
gene sets were defined by CSN. Two steps were used to obtain
the conditional genes although other appropriate schemes can

also be used.

1) For a given cell, we first construct a CSN without the con-
sideration of conditional genes, where the edge between gene x
and gene y in cell k is determined by the following hypothesis

test:

H 0 null hypothesisð Þ: gene x and gene y are independent in
cell k.
H 1ðalternative hypothesisÞ: gene x and gene y are dependent in

cell k.
The statistic qxy can be used to measure the independency of

genes x and y (File S1 Note 1). If qxy is larger than a significant

level, we will reject the null hypothesis and edge kð Þ
xy = 1, other-

wise edge kð Þ
xy = 0.

edge kð Þ
xy ¼ 1

0

genes x and y are dependent

genes x and y are independent

�

Then we use DðkÞ
z to measure the importance of conditional

gene z in cell k:

D kð Þ
z ¼

XM
y¼1;y–z

edge kð Þ
zy ð8Þ

Equation (8) means that if a gene is connected to more other
genes, this gene is more important.

2) For a given cell k, we choose the topG G � 1ð Þ largest ‘impor-
tance’ genes as the conditional genes. We assume that the condi-

tional gene set is zg; g ¼ 1; 2; 3; � � � ;G� �
, and CCSN C kð Þ

zg
is

obtainedforcellkgivenconditionalgenezg.TheCCSNsofthecell

k on the condition of gene set zg; g ¼ 1; 2; 3; � � � ;G� �
are

{C kð Þ
z1
,C kð Þ

z2
; � � � ;C kð Þ

zG
}. Then, we use



Li L et al / Conditional Cell-specific Network of Single Cell 323
Ck ¼ 1

G

XG
g¼1

C kð Þ
zg

¼ c
kð Þ
ij

� �
ð9Þ

to represent the degrees of gene–gene interaction network of

cell k, where c
kð Þ
ij for i; j ¼ 1; � � � ;m is the (i, j) element of the

matrix Ck.
For scRNA-seq data with all n cells, we can construct n

CCSNs, which can be used for further dimension reduction
and clustering. In other words, instead of the originally mea-
sured gene expression data with n cells, we use the n trans-

formed CCSNs for further analysis.

Network degree matrix from CCSN

CCSN could be used for various biological studies by exploit-

ing the gene–gene conditional association network from a net-
work viewpoint. We transform Equation (9) to a conditional
network degree vector based on the following transformation

vik ¼
Xm
j¼1

c
kð Þ
ij ð10Þ

Then, for C1;C2; � � � ;Cn

� �
, an m � n matrix conditional net-

work degree matrix (CNDM) is obtained.

CNDM ¼ vikð Þ with i ¼ 1; � � � ;m; k ¼ 1; � � � ; n ð11Þ
The matrix has the same dimension with the gene expres-

sion matrix (GEM), i.e., GEM = xikð Þ (with i = 1,� � �,m; k
= 1,� � �,n), but CNDM can reflect the gene–gene direct associ-

ation in terms of interaction degrees. Moreover, this CNDM
matrix after normalization could be further analyzed by most
traditional scRNA-seq methods for dimension reduction and

clustering analysis. The input/output settings as well as appli-
cation fields of our c-CSN method are listed in File S1 Note 4.

Network analysis of c-CSN

The relationship between gene pairs can be obtained by c-CSN
at a single-cell level. c-CSN also provides a new way to build
gene–gene interaction network for each cell. And the CNDM

derived from CCSNs can be further used in dimension reduc-
tion, clustering and NFE analysis by many existing methods.

Dimension reduction

We used PCA [35] and t-SNE [36] which respectively represent
linear and nonlinear methods, to perform dimension reduction
on public scRNA-seq datasets with known cell types.

Clustering

To validate the good performance of c-CSN in clustering anal-
ysis, several traditional clustering methods such as K-means,

Hierarchical clustering analysis, and K-medoids were applied
to clustering analysis. Furthermore, state-of-the-art scRNA-
seq data clustering methods such as SC3, SIMLR, and Seurat

[20,21,37] were also used for comparison.

NFE analysis

Quantifying the differentiation potency of a single cell is one of

the important tasks in scRNA-seq studies [15,38,39]. A recent
study developed SCENT [40], which uses protein–protein
interaction (PPI) network and gene expression data as input
to obtain the potency of cells. However, SCENT depends on

the PPI network, which may ignore many important relation-
ships between genes in specific cells. In this study, we devel-
oped NFE to estimate the differentiation potency of a cell

from its CSN or CCSN, which is constructed for each cell.
The normalized gene expression profile and CSN/CCSN are
used when we compute the NFE. The value of NFE is expected

to be lower for differentiated cells, since differentiation is
accompanied by activation of a specific subnetwork, which
actually diverts the signaling flux from other parts of the
network.

Estimating NFE requires a background network, which
could be provided by CSN or CCSN. Based on CSN or CCSN,
we could know whether or not there is an edge between gene i

and gene j. We assume that the weight of an edge between gene
i and gene j, pij, is proportional to the normalized expression

levels of gene i and gene j, that is pij / xixj with
Pm
j¼1

pij ¼ 1.

These weights are interpreted as interaction probabilities.
Then, we normalize the weighted network as a stochastic

matrix, P = pij
� 	

with

pij ¼
xjP

k2E ið Þ
xk

¼ xj

Axð Þi
for i; j ¼ 1; � � � ;m

where E ið Þ contains the neighbors of gene i, and A is the CSN
or CCSN (Aij ¼ 1 if i and j are connected, otherwise Aij ¼ 0).

And then, we define the NFE as:

NFE ¼ �
X
i;j

xipijlog xipij
� 	 ð12Þ

where xi is the normalized gene expression of gene i. From the
definition, NFE is clearly different from network entropy.

Datasets used

Twelve scRNA-seq datasets and one bulk RNA-seq dataset
[15,40–47] were used to validate our c-CSN method. The num-

ber of cells in these datasets ranges from 100 to 20,000.
Table S2 gives a brief introduction of these datasets.
Results and discussion

Visualization and clustering of scRNA-seq datasets with CNDM

Characterizing cell heterogeneity is one of the important tasks
for scRNA-seq data analysis. To test whether CCSN-

transformed network data can help segregate cell types, we
performed dimension reduction and clustering on the CNDMs
of gold-standard scRNA-seq datasets, using algorithms widely

employed in scRNA-seq studies. The numbers of conditional
genes used in CCSN construction are listed in Table S2.

For visualizing the structure of these datasets in a two-
dimensional space, we used the representative linear and non-

linear dimension reduction methods, PCA [48] and t-SNE [36],
respectively. As shown in Figure 2 and Figure S3, CNDMs can
separate different cell types clearly in the low-dimensional

space by both PCA and t-SNE. Notably, they generally per-
form even better than GEM (Figure 2, Figure S3). Hence,



Figure 2 Comparison of traditional GEM and CNDM on visualization

GEM (top panel) and CNDM (bottom panel) are benchmarked for visualizing four scRNA-seq datasets (Kim [43], Buettner [15],

Kolodziejczyk [41], and Chu-time [42]) with t-SNE. Different colors represent different cell types. GEM, gene express matrix.
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the network data of CNDMs contain sufficient information
for separating cell types in scRNA-seq datasets.

To quantitatively evaluate the power of CNDMs in cell
type identification, we performed clustering on CNDMs and
computed the adjusted Rand index (ARI) for each dataset

based on the background truth (File S1 Note 5; Figure S4).
As shown in Table 1 and Figure S5, CNDM performs obvi-
ously better than GEM on all datasets. These provide a strong

support of the notion that the CCSN-transformed network
data are highly informative for characterizing single-cell popu-
lations. Interestingly, when further compared to NDM,

CNDM also shows a good performance (Table 2; Figure S6).
We further evaluated the performance of c-CSN in larger

datasets. The Tabula Muris droplet1 dataset [47] comprising
Table 1 Performance comparison of CNDM and GEM in clustering o

Method Input Buettner [15] Kolodziejczyk [4

K-means GEM 0.29 0.54

CNDM 0.87 0.85

Hierarchical GEM 0.32 0.49

CNDM 0.73 0.65

K-means (t-SNE) GEM 0.41 0.87

CNDM 0.95 0.91

Hierarchical (t-SNE) GEM 0.55 0.99

CNDM 0.95 0.99

K-medoids GEM 0.23 0.29

CNDM 0.53 0.63

SC3 GEM 0.89 1

CNDM 0.98 0.72

SIMLR GEM 0.89 0.49

CNDM 0.63 0.52

Seurat GEM 0.67 0.43

CNDM 0.90 0.56

Note: The performance of clustering is evaluated by ARI. Hierarchical (t-

conditional network degree matrix; GEM, gene expression matrix; AR

Embedding. Bold font (ARI) indicates that CNDM performs better.
more than 20,000 cells from three tissues (bladder, trachea, and
spleen) were tested. The Seurat package was used to perform

dimension reduction and clustering analysis on the CNDM
[37].Thecellswere clearly segregated into threedominantgroups
in the t-SNEmap,whichwere largely defined by their cell origins

(ARI = 0.73 and Figure S7). This indicates that CCSN can be
effectively extended to largerdatasets inaddition to the relatively
small gold-standard datasets benchmarked above.

CCSN reveals network structure and dynamics on a single-cell

basis

In this study, we applied c-CSN to Wang dataset [45], which
comes from a study of neural progenitor cells (NPCs) that dif-
f scRNA-seq data

1] Gokce [46] Chu-time [42] Chu-type [42] Kim [43]

0.42 0.17 0.22 0.20

0.75 0.45 0.57 0.81

0.47 0.22 0.22 0.12

0.92 0.47 0.61 0.77

0.43 0.33 0.55 0.53

0.36 0.56 0.70 0.93

0.50 0.39 0.67 0.73

0.39 0.61 0.80 0.95

0.40 0.33 0.33 0.79

0.81 0.17 0.38 0.61

0.56 0.66 0.78 0.89

0.72 0.63 0.98 0.96

0.43 0.30 0.48 0.38

0.85 0.58 0.54 0.95

0.35 0.52 0.52 0.41

0.32 0.56 0.69 0.84

SNE) and K-means (t-SNE) indicate clustering after t-SNE. CNDM,

I, adjusted Rand index; t-SNE, t-distributed Stochastic Neighbor



Table 2 Performance comparison of CNDM and NDM in clustering of scRNA-seq data

Method Input Buettner [15] Kim [43] Wang [45] Gokce [46] Tabula Muris [47] (aorta) Tabula Muris [47] (limb muscle)

K-means NDM 0.50 0.50 0.30 0.79 0.21 0.58

CNDM 0.87 0.81 0.45 0.75 0.63 0.66

Hierarchical NDM 0.69 0.59 0.38 0.95 0.12 0.65

CNDM 0.73 0.77 0.45 0.92 0.75 0.76

K-means (t-SNE) NDM 0.83 0.84 0.61 0.38 0.46 0.62

CNDM 0.95 0.93 0.67 0.36 0.61 0.65

Hierarchical (t-SNE) NDM 0.89 0.98 0.58 0.47 0.50 0.66

CNDM 0.95 0.95 0.72 0.39 0.50 0.66

K-medoids NDM 0.26 0.49 0.31 0.60 0.35 0.14

CNDM 0.53 0.61 0.21 0.81 0.53 0.39

SC3 NDM 0.67 1 0.70 0.45 0.29 0.66

CNDM 0.98 0.96 0.86 0.72 0.73 0.76

SIMLR NDM 0.64 0.75 0.29 0.74 0.40 0.60

CNDM 0.63 0.95 0.60 0.85 0.70 0.71

Seurat NDM 0.82 0.97 0.59 0.44 0.45 0.66

CNDM 0.90 0.84 0.59 0.32 0.76 0.75

Note: The performance of clustering is evaluated by ARI. Hierarchical (t-SNE) and K-means (t-SNE) indicate clustering after t-SNE. NDM,

network degree matrix. Bold font (ARI) indicates that CNDM performs better.
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ferentiate into mature neurons. The dataset contains six time
points over a 30-day period.

The CSN and c-CSN were performed on a single cell (Day
0, RHB1742_d0) using 195 transcription factors that are differ-
entially expressed across all the cell subpopulations and all

time points. In CCSN, two genes (HMGB1 and SOX11) of
high coefficients of variation (CV) were chosen as the condi-
tional genes. The results (Figure 3A) illustrate that the network

of CCSN is much sparser than the network of CSN. There are
three modules in the CCSN, while there is only one dense net-
work in the CSN. Furthermore, three hub genes were obtained
in three modules in the CCSN. One of the hub genes is ASCL1,

which plays an important role in neural development [13,49].
Thus, by removing indirect associations, c-CSN can extract a
more informative network structure than CSN, which could

improve the characterization of key regulatory factors in indi-
vidual cells.

c-CSN also reveals the network dynamics over the differen-

tiation trajectory. As illustrated in Figure 3B, a core neural dif-
ferentiation network composed of eight regulatory genes was
dynamically modulated through the temporal progression of
NPC differentiation. At Day 0, the associations among these

genes were the strongest, consistent with the high potency of
progenitor cells. As NPC differentiates, the network became
much sparser, suggesting more specified cell fates. In addition,

when constructing CCSN from all genes, the degrees of
MEIS2, PBX1 and POU3F2 were also larger at Day 0 and
quickly decreases afterward (Figure 3C). These indicate that

these genes are highly connected with other genes in NPCs,
which is consistent with their known important roles in early
differentiation of NPCs [45].

Both theoretically and computationally, c-CSN can also
construct a gene–gene network for a single bulk RNA-seq
sample, in addition to a single cell. To validate this biologi-
cally, we applied c-CSN to the TCGA lung adenocarcinoma

(LUAD) RNA-seq dataset. The t-SNE plot based on CNDM
reveals two obvious clusters, which respectively corresponding
to normal adjacent lung tissues and lung tumors (Figure S8A),
supporting the effective application of c-CSN to bulk RNA-
seq data as well. Moreover, the EGFR pathway, a

well-known oncogenic driver pathway for LUAD [50–52],
was densely connected in tumor samples but not in benign tis-
sues, as illustrated in the representative single-sample EGFR

networks (Figure S8B), and the CCSN degrees of EGF and
EGFR in each normal and tumor samples (Figure S8C). These
data demonstrate that c-CSN well extends to single sample

bulk RNA-seq data analysis and uncovers important biologi-
cal connections related to disease states.

CCSN-based NFE analysis

To quantify the differentiation state of cells, we further
develop a new method, NFE, to estimate the differentiation
potency of cells by exploiting the gene–gene network con-

structed by c-CSN.
To assess the performance of NFE, we applied it to two

datasets. In Wang dataset [45], there were 483 cells with 6

stages (Day 0, Day 1, Day 5, Day 7, Day 10, Day 30) and
the CCSNs with one conditional gene were used to compute
the NFE. We compared NPCs at Day 0 and Day 1 with

mature neurons at Day 30 (Figure 4A). In Yang dataset [44],
we compared the cells at embryonic day 10 (E10) with those
at embryonic day 17 (E17) in differentiation of mouse hepato-
blasts (Figure 4B) and the CSN was used to compute the NFE.

In both datasets, NFE assigned significantly higher scores to
the progenitors than the differentiated cells (one-sided Wilcox
rank sum test, P = 2.062E�12 in Wang dataset,

P = 3.756E�19 in Yang dataset).
To further validate the accuracy of NFE, we generated a

three-dimensional representation of the cell-lineage trajectory

for the Wang dataset [45]. In the time-course differentiation
experiment of NPCs into neurons [45], NFE correctly pre-
dicted a gradual decrease in differentiation potency (Figure 5).
Therefore, NFE is effectively applicable to single-cell differen-

tiation studies and highly predictive of developmental states
and directions.



Figure 3 The network analyses for single cells based on CCSN

A. CSN and CCSN of the same single cell (RHB1742_d0) from Wang dataset [45]. The same genes are used in network construction.

Three hub genes ONECUT1, ASCL1, and NAR6A1 are highlighted in yellow. B. CCSNs of six cells from six time points (from Day 0 to

Day 30) with eight genes that are involved in neuronal differentiation. The edge between two genes means the direct dependency of genes.

C. The network degrees of MEIS2, PBX1, and POU3F2 along six time points of the neuronal differentiation. Each point indicates a single

cell, colored according to the time point of sampling (from Day 0 to Day 30). The midlines indicate the median levels of network degree at

six time points.
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Figure 4 NFE analyses for differentiated cells and progenitors

A. Violin plot comparing NFE of NPCs at Day 0 and Day 1 and mature neurons at Day 30 during the differentiation of NPCs. B. Violin

plot of NFE values for cells at embryonic day 10 (E10) and embryonic day 17 (E17) during differentiation of mouse hepatoblasts. Cells of

various differentiation states are compared for their differentiation potency by NFE. Red represents more pluripotent cells; green

represents more differentiated cells. The midlines indicate the median levels of NFE in each cell type. P values are from one-sided

Wilcoxon rank-sum test. NPC, neural progenitor cell.
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Conclusion

Estimating functional gene networks from noisy single-cell

data has been a challenging task. Motivated by network-
based data transformation, we have previously developed
Figure 5 Differentiation landscape of single-cell data according to

NFE

The three-dimensional plot shows that NFE of single cells

gradually decreases along the differentiation time course of NPCs

(at Day 0 and Day 1) into mature neurons (at Day 30). The grey

arrow depicts the overall differentiation trajectory from stem cells

to differentiated cells, consistent with the trend of decrease of

NFE. Cells from the same time point are assigned the same color.

The z axis represents the NFE. The x axis and y axis represent

respectively the two components of t-SNE (t-SNE1 and t-SNE2).
CSN to uncover CSNs and successfully applied it to extract
biologically important gene interactions. However, CSN does

not distinguish direct and indirect associations and thus suffers
from the so-called overestimation problem. In this study, we
propose a more sophisticated approach termed c-CSN, which

constructs direct gene–gene associations (network) of each cell
by eliminating false connections introduced by indirect effects.

c-CSN can transform GEM to CNDM for downstream

dimension reduction and clustering analysis. These allow us
to identify cell populations, generally better than GEM in
the datasets tested above. In addition, c-CSN also shows good
performance when compared to CSN. Moreover, we can con-

struct one direct gene–gene association network by one cell
based on c-CSN. From the networks of the individual cells,
we can obtain the dynamically changed networks. As shown

in Figure 3B, the CCSNs of these cells dynamically changed
at different time points, and the network at Day 0 shows the
strongest associations. Moreover, the hub genes of the net-

works constructed by c-CSN method may play an important
role in biological processes. As shown in Figure 3A, the hub
genes of three modules in the network constructed by c-CSN
play a vital role in neural development. These clearly demon-

strate the advantages of CCSN. In addition, individual net-
works of cells constructed by c-CSN can also be applied to
construct network biomarkers [53,54] for accurate disease

diagnosis/prognosis, or dynamic network biomarkers [55–59]
for reliable disease prediction.

According to the Waddington’s landscape model of cellular

differentiation, cellular differentiation potency is decreased as
a pluripotent cell ‘‘rolls” down from a ‘‘hill” to nearby ‘‘val-
leys”, and cell fate transitions could be modeled as ‘‘canaliza-

tion” events [60–62]. The differentiation potency quantifies the
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relative number of fate choices that a cell may have and pro-
vides a useful indicator of cellular ‘‘stemness”. Recently,
SCENT [40] and MCE [63] use PPI network and gene expres-

sion data as input to obtain the potency of cells. However,
these methods estimate the entropy of cells based on the avail-
able PPI network across various tissues, which may ignore

many important relationships between genes in specific cells.
Here, we develop the NFE to integrate the scRNA-seq profile
of a cell with its gene–gene association network, and the results

show that NFE performs well in distinguishing various cells of
differential potency.

Nonetheless, the computational cost of c-CSN generally
increases by G times comparing with the original CSN due

to G conditional genes. Thus, a parallel computation scheme
is desired to reduce the computation time. Also, c-CSN is
not designed to construct the causal gene association networks,

and the directions of the gene associations cannot be obtained.
These could be our future research topics.

Code availability

CCSN is available at https://github.com/LinLi-0909/c-CSN.
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