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Abstract Sensory systems reliably process incoming stimuli in spite of changes in context. Most 
recent models accredit this context invariance to an extraction of increasingly complex sensory 
features in hierarchical feedforward networks. Here, we study how context-invariant representations 
can be established by feedback rather than feedforward processing. We show that feedforward 
neural networks modulated by feedback can dynamically generate invariant sensory representa-
tions. The required feedback can be implemented as a slow and spatially diffuse gain modulation. 
The invariance is not present on the level of individual neurons, but emerges only on the population 
level. Mechanistically, the feedback modulation dynamically reorients the manifold of neural activity 
and thereby maintains an invariant neural subspace in spite of contextual variations. Our results 
highlight the importance of population-level analyses for understanding the role of feedback in flex-
ible sensory processing.

Editor's evaluation
One of the key questions in sensory neuroscience is how cortical networks extract invariant percepts 
from variable sensory inputs. While much of the literature focuses on the role of feedforward hier-
archical processing for extracting invariant percepts, this study proposes a novel implementation 
based on top-down feedback. The article analyses the underlying mechanism based on an invariant 
subspace and presents instantiations of this mechanism at different levels of biophysical realism.

Introduction
In natural environments, our senses are exposed to a colourful mix of sensory impressions. Behaviourally 
relevant stimuli can appear in varying contexts, such as variations in lighting, acoustics, stimulus posi-
tion, or the presence of other stimuli. Different contexts may require different responses to the same 
stimulus, for example, when the behavioural task changes (context dependence). Alternatively, the 
same response may be required for different stimuli, for example, when the sensory context changes 
(context invariance). Recent advances have elucidated how context-dependent processing can be 
performed by recurrent feedback in neural circuits (Mante et al., 2013; Wang et al., 2018a; Dubreuil 
et al., 2020). In contrast, the role of feedback mechanisms in context-invariant processing is not well 
understood.

In the classical view, stimuli are hierarchically processed towards a behaviourally relevant percept 
that is invariant to contextual variations. This is achieved by extracting increasingly complex features 
in a feedforward network (Kriegeskorte, 2015; Zhuang et al., 2021; Yamins and DiCarlo, 2016). 
Models of such feedforward networks have been remarkably successful at learning complex percep-
tual tasks (LeCun et al., 2015), and they account for various features of cortical sensory representa-
tions (DiCarlo and Cox, 2007; Kriegeskorte et al., 2008; DiCarlo et al., 2012; Hong et al., 2016; 
Cichy et al., 2016). Yet, these models neglect feedback pathways, which are abundant in sensory 
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cortex (Felleman and Van Essen, 1991; Markov et al., 2014) and shape sensory processing in critical 
ways (Gilbert and Li, 2013). Incorporating these feedback loops into models of sensory processing 
increases their flexibility and robustness (Spoerer et al., 2017; Alamia et al., 2021; Nayebi et al., 
2021) and improves their fit to neural data (Kar et al., 2019; Kietzmann et al., 2019; Nayebi et al., 
2021). At the neuronal level, feedback is thought to modulate rather than drive local responses 
(Sherman and Guillery, 1998), for instance, depending on behavioural context (Niell and Stryker, 
2010; Vinck et al., 2015; Kuchibhotla et al., 2017; Dipoppa et al., 2018).

Here, we investigate the hypothesis that feedback modulation provides a neural mechanism 
for context-invariant perception. To this end, we trained a feedback-modulated network model to 
perform a context-invariant perceptual task and studied the resulting neural mechanisms. We show 
that the feedback modulation does not need to be temporally or spatially precise and can be real-
ised by feedback-driven gain modulation in rate-based networks of excitatory and inhibitory neurons. 
To solve the task, the feedback loop dynamically maintains an invariant subspace in the population 
representation (Hong et al., 2016). This invariance is not present at the single-neuron level. Finally, 
we find that the feedback conveys a nonlinear representation of the context itself, which can be hard 
to discern by linear decoding methods.

These findings corroborate that feedback-driven gain modulation of feedforward networks enables 
context-invariant sensory processing. The underlying mechanism links single-neuron modulation with 
its function at the population level, highlighting the importance of population-level analyses.

Results
As a simple instance of a context-invariant task, we considered a dynamic version of the blind source 
separation problem. The task is to recover unknown sensory sources, such as voices at a cocktail party 
(McDermott, 2009), from sensory stimuli that are an unknown mixture of the sources. In contrast to 
the classical blind source separation problem, the mixture can change in time, for example, when 
the speakers move around, thus providing a time-varying sensory context. Because the task requires 
a dynamic inference of the context, it cannot be solved by feedforward networks (Figure 1—figure 
supplement 1) or standard blind source separation algorithms (e.g. independent component anal-
ysis; Bell and Sejnowski, 1995; Hyvärinen and Oja, 2000). We hypothesised that this dynamic task 
can be solved by a feedforward network that is subject to modulation from a feedback signal. In our 
model, the feedback signal is provided by a modulatory system that receives both sensory stimuli and 
network output (Figure 1a).

Dynamic blind source separation by modulation of feedforward 
weights
Before we gradually take this to the neural level, we illustrate the proposed mechanism in a simple 
example, in which the modulatory system provides a time-varying multiplicative modulation of a 
linear two-layer network (see ‘Materials and methods’). For illustration, we used compositions of sines 
with different frequencies as source signals (‍s‍, Figure 1b, top). These sources were linearly mixed 
to generate the sensory stimuli (‍x‍) that the network received as input; ‍x = At s‍ (Figure 1a and b). 
The linear mixture (‍At‍) changed over time, akin to varying the location of sound sources in a room 
(Figure 1a). These locations provided a time-varying sensory context that changed on a slower times-
cale than the sources themselves. The feedforward network had to recover the sources from the 
mixed sensory stimuli. To achieve this, we trained the modulator to dynamically adjust the weights of 
the feedforward network (W0) such that the network output (‍y‍) matches the sources:

	﻿‍ y = Wt x = (Mt ⊙ W0) x‍�

	﻿‍ Mt = modulator(history of x, y) .‍�

Because the modulation requires a dynamic inference of the context, the modulator is a recur-
rent neural network. The modulator was trained using supervised learning. Afterwards, its weights 
were fixed and it no longer had access to the target sources (see ‘Materials and methods,’ Figure 8). 
The modulator therefore had to use its recurrent dynamics to determine the appropriate modulatory 
feedback for the time-varying context, based on the sensory stimuli and the network output. Put 

https://doi.org/10.7554/eLife.76096
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Figure 1. Dynamic blind source separation by modulation of feedforward connections. (a) Schematic of the feedforward network model receiving 
feedback modulation from a modulator (a recurrent network). (b) Top: sources (‍s1,2‍), sensory stimuli (‍x1,2‍), and network output (‍y1,2‍) for two different 
source locations (contexts). Bottom: deviation of output from the sources. (c) Top: modulated readout weights across six contexts (source locations); 
dotted lines indicate the true weights of the inverted mixing matrix. Bottom: deviation of readout from target weights. (d) Correlation between the 
sources and the sensory stimuli (left), the network outputs (centre), and calculation of the signal clarity (right). Error bars indicate standard deviation 
across 20 contexts. (e) Violin plot of the signal clarity for different noise levels in the sensory stimuli across 20 different contexts.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The dynamic blind source separation task cannot be solved with a feedforward network unless the network receives a sequence 
of inputs at once. This would require an additional mechanism to retain information over time.

Figure supplement 2. Robustness of the feedback-driven modulation mechanism.

Figure supplement 3. Model performance for two different sets of source signals.

Figure supplement 4. Model performance for three source signals.

Figure supplement 5. The modulated network model generalises across frequencies.

Figure supplement 6. The modulator learns a model of the sources and contexts, and infers the current context from the stimuli. Testing the network 
on sources and contexts with different statistics than during training thus impairs its performance.

https://doi.org/10.7554/eLife.76096
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differently, the modulator had to learn an internal model of the sensory data and the contexts, and 
use it to establish the desired context invariance in the output.

After learning, the modulated network disentangled the sources, even when the context changed 
(Figure 1b, Figure 1—figure supplement 1a and b). Context changes produced a transient error in 
the network’s output, but it quickly resumed matching the sources (Figure 1b, bottom). The transient 
errors occur because the modulator needs time to infer the new context from the time-varying inputs 
before it can provide the appropriate feedback signal to the feedforward network (Figure 1—figure 
supplement 6a, compare with Figure  1—figure supplement 1g–i). The modulated feedforward 
weights inverted the linear mixture of sources by switching on the same timescale (Figure 1c).

To quantify how well the sources were separated, we measured the correlation coefficient of the 
outputs with each source over several contexts. Consistent with a clean separation, we found that each 
of the two outputs strongly correlated with only one of the sources. In contrast, the sensory stimuli 
showed a positive average correlation for both sources as expected given the positive linear mixture 
(Figure 1d, left). We determined the signal clarity as the absolute difference between the correlation 
with the first compared to the second source, averaged over the two outputs, normalised by the sum 
of the correlations (Figure 1d, right; see ‘Materials and methods’). The signal clarity thus determines 
the degree of signal separation, where a value close to 1 indicates a clean separation as in Figure 1d. 
Note that the signal clarity of the sensory stimuli is around 0.5 and can be used as a reference.

We next probed the network’s robustness by adding noise to the sensory stimuli. We found that 
the signal clarity gradually decreased with increasing noise levels, but only degraded to chance 
performance when the signal-to-noise ratio was close to 1 (1.1 dB, Figure  1e, Figure  1—figure 
supplement 2e). The network performance did not depend on the specific source signals (Figure 1—
figure supplement 3) or the number of sources (Figure 1—figure supplement 4) as long as it had 
seen them during training. Yet, because the network had to learn an internal model of the task, we 
expected a limited degree of generalisation to new situations. Indeed, the network was able to inter-
polate between source frequencies seen during training (Figure 1—figure supplement 5), but failed 
on sources and contexts that were qualitatively different (Figure 1—figure supplement 6b–d). The 
specific computations performed by the modulator are therefore idiosyncratic to the problem at hand. 
Hence, we did not investigate the internal dynamics of the modulator in detail, but concentrated on 
its effect on the feedforward network.

Since feedback-driven modulation enables flexible context-invariant processing in a simple abstract 
model, we wondered how this mechanism might be implemented at the neural level. For example, 
how does feedback-driven modulation function when feedback signals are slow and imprecise? And 
how does the modulation affect population activity? In the following, we will gradually increase the 
model complexity to account for biological constraints and pinpoint the population-level mechanisms 
of feedback-mediated invariance.

Invariance can be established by slow feedback modulation
Among the many modulatory mechanisms, even the faster ones are believed to operate on times-
cales of hundreds of milliseconds (Bang et al., 2020; Molyneaux and Hasselmo, 2002), raising the 
question if feedback-driven modulation is sufficiently fast to compensate for dynamic changes in envi-
ronmental context.

To investigate how the timescale of modulation affects the performance in the dynamic blind 
source separation task, we trained network models, in which the modulatory feedback had an intrinsic 
timescale that forced it to be slow. We found that the signal clarity degraded only when this timescale 
was on the same order of magnitude as the timescale of contextual changes (Figure 2a). Note that 
timescales in this model are relative and could be arbitrarily rescaled. While slower feedback modu-
lation produced a larger initial error (Figure 2b and c), it also reduced the fluctuations in the readout 
weights such that they more closely follow the optimal weights (Figure  2b). This speed-accuracy 
trade-off explains the lower and more variable signal clarity for slow modulation (Figure 2a) because 
the signal clarity was measured over the whole duration of a context and the transient onset error 
dominated over the reduced fluctuations.

To determine architectural constraints on the modulatory system, we asked how these results 
depended on the input it received. So far, the modulatory system received the feedforward network’s 
inputs (the sensory stimuli) and its outputs (the inferred sources, see Figure  1a), but are both of 

https://doi.org/10.7554/eLife.76096
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these necessary to solve the task? We found that when the modulatory system only received the 
sensory stimuli, the model could still learn the task, though it was more sensitive to slow modulation 
(Figure 2d, Figure 2—figure supplement 1). When the modulatory system had to rely on the network 
output alone, task performance was impaired even for fast modulation (Figure 2e, Figure 2—figure 
supplement 1). Thus, while the modulatory system is more robust to slow modulation when it receives 
the network output, the output is not sufficient to solve the task.

Taken together, these results show that the biological timescale of modulatory mechanisms does 
not pose a problem for flexible feedback-driven processing as long as the feedback modulation 
changes on a faster timescale than variations in the context. In fact, slow modulation can increase 

Figure 2. The network model is not sensitive to slow feedback modulation. (a) Signal clarity in the network output for varying timescales of modulation 
relative to the intervals at which the source locations change. (b) Modulated readout weights across four source locations (contexts) for fast (top) and 
slow (centre) feedback modulation; dotted lines indicate the optimal weights (the inverse of the mixing matrix). Bottom: deviation of the readout 
weights from the optimal weights for fast and slow modulation. Colours correspond to the relative timescales in (a). Fast and slow timescales are 
0.001 and 1, respectively. (c) Mean deviation of readout from optimal weights within contexts; averaged over 20 contexts. Colours code for timescale 
of modulation (see (a)). (d, e) Same as (a) but for models in which the modulatory system only received the sensory stimuli ‍x‍ or the network output ‍y‍, 
respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Robustness to slow feedback modulation depends on the inputs to the modulatory system.

https://doi.org/10.7554/eLife.76096
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processing accuracy by averaging out fluctuations in the feedback signal. Nevertheless, slow modu-
lation likely requires the modulatory system to receive both input and output of the sensory system 
it modulates.

Invariance can be established by spatially diffuse feedback modulation
Neuromodulators are classically believed to diffusely affect large areas of the brain. Furthermore, 
signals in the brain are processed by populations of neurons. We wondered if the proposed modu-
lation mechanism is consistent with such biological constraints. We therefore extended the network 
model such that the sensory stimuli are projected to a population of 100 neurons. A fixed linear 
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Figure 3. Feedback modulation in the model can be spatially diffuse. (a) Schematic of the feedforward network 
with a population that receives diffuse feedback-driven modulation. (b) Spatial spread of the modulation mediated 
by four modulatory feedback signals with a width of 0.2. (c) Top: per neuron modulation during eight different 
contexts. Bottom: corresponding deviation of the network output from sources. (d) Mean signal clarity across 20 
contexts for different numbers of feedback signals; modulation width is 0.2. Error bars indicate standard deviation. 
Purple triangle indicates default parameters used in (c). (e) Same as (d) but for different modulation widths; number 
of feedback signals is 4. The modulation width ‘‍∞‍’ corresponds to uniform modulation across the population.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Robustness to the spatial scale of feedback modulation.

https://doi.org/10.7554/eLife.76096
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readout of this population determined the network output. The neurons in the population received 
spatially diffuse modulatory feedback (Figure 3a) such that the feedback modulation affected neigh-
bouring neurons similarly. We here assume that all synaptic weights to a neuron receive the same 
modulation, such that the feedback performs a gain modulation of neural activity (Ferguson and 
Cardin, 2020). The spatial specificity of the modulation was determined by the number of distinct 
feedback signals and their spatial spread (Figure 3b, Figure 3—figure supplement 1a).

This population-based model with less specific feedback modulation could still solve the dynamic 
blind source separation task. The diffuse feedback modulation switched when the context changed, 
but was roughly constant within contexts (Figure 3c), as in the simple model. The effective weight 
from the stimuli to the network output also inverted the linear mixture of the sources (Figure 3—
figure supplement 1d, compare with Figure 1c).

We found that only a few distinct feedback signals were needed for a clean separation of the 
sources across contexts (Figure 3d). Moreover, the feedback could have a spatially broad effect on the 
modulated population without degrading the signal clarity (Figure 3e, Figure 3—figure supplement 
1), consistent with the low dimensionality of the context.

We conclude that, in our model, neuromodulation does not need to be spatially precise to enable 
flexible processing. Given that the suggested feedback-driven modulation mechanism works for slow 
and diffuse feedback signals, it could in principle be realised by neuromodulatory pathways present 
in the brain.

Invariance emerges at the population level
Having established that slow and spatially diffuse feedback modulation enables context-invariant 
processing, we next investigated the underlying mechanisms at the single-neuron and popu-
lation level. Given that the readout of the population activity was fixed, it is not clear how the 

Figure 4. Invariance emerges at the population level. (a) Population activity in two contexts. (b) Violin plot of the signal clarity in the sensory stimuli (‍x‍), 
neural population (‍z‍), and network output (‍y‍), computed across 20 different contexts. (c) Signal clarity of single neurons in the modulated population 
for different contexts. (d) Correlation between average signal clarity over contexts and magnitude of neurons’ readout weight. Corresponding Pearson 
‍r ‍ and ‍p‍-value are indicated in the panel. (e) Violin plot of the linear decoding performance of the sources from different stages of the feedforward 
network, computed across 20 contexts. The decoder was trained on a different set of 20 contexts.

https://doi.org/10.7554/eLife.76096
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context-dependent modulation of single neurons could give rise to a context-independent network 
output. One possible explanation is that some of the neurons are context-invariant and are exploited 
by the readout. However, a first inspection of neural activity indicated that single neurons are strongly 
modulated by context (Figure 4a). To quantify this, we determined the signal clarity for each neuron 
at each stage of the feedforward network, averaged across contexts (Figure 4b). As expected, the 
signal clarity was low for the sensory stimuli. Intriguingly, the same was true for all neurons of the 
modulated neural population, indicating no clean separation of the sources at the level of single 
neurons. Although most neurons had a high signal clarity in some of the contexts, there was no 
group of neurons that consistently represented one or the other source (Figure 4c). Furthermore, 
the average signal clarity of the neurons did not correlate with their contribution to the readout 
(Figure 4d). Since single-neuron responses were not invariant, context invariance must arise at the 
population level.

To confirm this, we asked how well the sources could be decoded at different stages of the feedfor-
ward network. We trained a single linear decoder of the sources on one set of contexts and tested its 
generalisation to novel contexts. We found that the decoding performance was poor for the sensory 
stimuli (Figure 4e), indicating that these did not contain a context-invariant representation. In contrast, 
the sources could be decoded with high accuracy from the modulated population.

This demonstrates that while individual neurons were not invariant, the population activity 
contained a context-invariant subspace. In fact, the population had to contain an invariant subspace 
because the fixed linear readout of the population was able to extract the sources across contexts. 
However, the linear decoding approach shows that this subspace can be revealed from the population 
activity itself with only a few contexts and no knowledge of how the neural representation is used 
downstream. The same approach could therefore be used to reveal context-invariant subspaces in 
neural data from population recordings. Note that the learned readout and the decoder obtained 
from population activity are not necessarily identical due to the high dimensionality of the population 
activity compared to the sources.

Feedback reorients the population representation
The question remains how exactly the context-invariant subspace is maintained by feedback modu-
lation. In contrast to a pure feedforward model of invariant perception (Kriegeskorte, 2015; Yamins 
and DiCarlo, 2016), feedback-mediated invariance requires time to establish after contextual changes. 
Experimentally, hallmarks of this adaptive process should be visible when comparing the population 
representations immediately after a change and at a later point in time. Our model allows to cleanly 
separate the early and late representation by freezing the feedback signals in the initial period after 
a contextual change (Figure 5a), thereby disentangling the effects of feedback and context on popu-
lation activity.

The simulated experiment consisted of three stages: first, the feedback was intact for a particular 
context and the network outputs closely tracked the sources. Second, the context was changed but 
the feedback modulation was frozen at the same value as before. As expected, this produced devia-
tions of the output from the sources. Third, for the same context the feedback modulation was turned 
back on, which reinstated the source signals in the output. In this experiment, we used pure sines as 
signals for visualisation purposes (Figure 5a and c). To visualise the population activity in the three 
stages of the experiment, we considered the space of the two readout dimensions and the first prin-
cipal component (Figure 5b). We chose this space rather than, for example, the first three principal 
components (Figure  5—figure supplement 1), because it provides an intuitive illustration of the 
invariant subspace.

Because the sources were two-dimensional, the population activity followed a pattern within a two-
dimensional subspace (Figure 5b, left; Figure 5—figure supplement 1a). For intact feedback, this 
population activity matched the sources when projected onto the readout (Figure 5c, left). Changing 
the context while freezing the feedback rotated and stretched this representation within the same 
subspace, such that the readout did not match the sources (Figure 5b and c, centre). Would turning 
the feedback modulation back on simply reverse this transformation to re-establish an invariant 
subspace? We found that this was not the case. Instead, the feedback rotated the representation out 
of the old subspace (Figure 5b, right), thereby reorienting it into the invariant readout (Figure 5c, 
right).

https://doi.org/10.7554/eLife.76096
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Figure 5. Feedback reorients the population representation. (a) Network output (top) and feedback modulation (bottom) for two contexts. The 
feedback modulation is frozen for the initial period after the context changes. (b) Population activity in the space of the two readout axes and the first 
principal component. Projection onto the readout is indicated at the bottom (see (c)). The signal representation is shown for different phases of the 
experiment. Left: context 1 with intact feedback; centre: context 2 with frozen feedback; right: context 2 with intact feedback. The blue plane spans 
the population activity subspace in context 1 (left). (c) Same as (b), but projected onto the readout space (dotted lines in (b)). The light blue trace 
corresponds to the sources. (d) Left: change in subspace orientation across 40 repetitions of the experiment, measured by the angle between the 
original subspace and the subspace for context changes (ctx change), feedback modulation (FB mod), and feedback modulation for similar contexts (ctx 
close) or dissimilar contexts (ctx far). Right: two-dimensional context space, defined by the coefficients in the mixing matrix. Arrows indicate similar (light 
blue) and dissimilar contexts (purple). (e) Distance between pairs of contexts versus the angle between population activity subspaces for these contexts. 
Circles indicate similar contexts (from the same side of the diagonal, see (d)) and triangles dissimilar contexts (from different sides of the diagonal). 
Pearson ‍r ‍ and ‍p‍-value indicated in the panel.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Principal component (PC) analysis captures the low-dimensional population subspaces and the subspace reorientation with 
feedback.

https://doi.org/10.7554/eLife.76096
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To quantify the transformation of the population representation, we repeated this experiment 
multiple times and determined the angle between the neural subspaces. Consistent with the illustra-
tion in Figure 5b, changing the context did not change the subspace orientation, whereas unfreezing 
the feedback caused a consistent reorientation (Figure 5d). The magnitude of this subspace reori-
entation depended on the similarity of the old and new context. Similar contexts generally evoked 
population activity with similar subspace orientations (Figure 5d and e). This highlights that there is a 
consistent mapping between contexts and the resulting low-dimensional population activity.

In summary, the role of feedback-driven modulation in our model is to reorient the population 
representation in response to changing contexts such that an invariant subspace is preserved.

The mechanism generalises to a hierarchical Dalean network
So far, we considered a linear network, in which neural activity could be positive and negative. More-
over, feedback modulation could switch the sign of the neurons’ downstream influence, which is incon-
sistent with Dale’s principle. We wondered if the same population-level mechanisms would operate 
in a Dalean network, in which feedback is implemented as a positive gain modulation. Although gain 
modulation is a broadly observed phenomenon that is attributed to a range of cellular mechanisms 
(Ferguson and Cardin, 2020; Salinas and Thier, 2000), its effect at the population level is less clear 
(Shine et al., 2021).

We extended the feedforward model as follows (Figure 6a): first, all neurons had positive firing 
rates. Second, we split the neural population (‍z‍ in the previous model) into a ‘lower-level’ (‍zL‍) and 
‘higher-level’ population (‍zH‍). The lower-level population served as a neural representation of the 
sensory stimuli, whereas the higher-level population was modulated by feedback. This allowed a 
direct comparison between a modulated and an unmodulated neural population. It also allowed us 
to include Dalean weights between the two populations. Direct projections from the lower-level to 
the higher-level population were excitatory. In addition, a small population of local inhibitory neurons 
provided feedforward inhibition to the higher-level population. Third, the modulation of the higher-
level population was implemented as a local gain modulation that scaled the neural responses. As a 
specific realisation of gain modulation, we assumed that feedback targeted inhibitory interneurons 
(e.g. in layer 1; Abs et al., 2018; Ferguson and Cardin, 2020; Cohen-Kashi Malina et al., 2021) that 
mediate the modulation in the higher-level population (e.g. via presynaptic inhibition; Pardi et al., 
2020; Naumann and Sprekeler, 2020). This means that stronger feedback decreased the gain of 
neurons (Figure 4b). We will refer to these modulatory interneurons as modulation units ‍m‍ (green 
units in Figure 4a).

We found that this biologically more constrained model could still learn the context-invariant 
processing task (Figure 6—figure supplement 1a and b). Notably, the network’s performance did 
not depend on specifics of the model architecture, such as the target of the modulation or the number 
of inhibitory neurons (Figure 6—figure supplement 1c–e). In analogy to the previous model, the gain 
modulation of individual neurons changed with the context and thus enabled the flexible processing 
required to account for varying context (Figure 4c). The average gain over contexts was similar across 
neurons, whereas within a context the gains were broadly distributed (Figure 4d).

To verify if the task is solved by the same population-level mechanism, we repeated our previous 
analyses on the single-neuron and population level. Indeed, all results generalised to the Dalean 
network with feedback-driven gain modulation (compare with Figures 4–6). Single neurons in the 
higher- and lower-level population were not context-invariant (Figure 6e), but the higher-level popu-
lation contained a context-invariant subspace (Figure 6f). This was not the case for the lower-level 
population, underscoring that invariant representations do not just arise from projecting the sensory 
stimuli into a higher dimensional space. Instead, the invariant subspace in the higher-level popula-
tion was again maintained by the feedback modulation, which reoriented the population activity in 
response to context changes (Figure 6g).

Feedback conveys a nonlinear representation of the context
Since single neurons in the higher-level population were not invariant to context, the population repre-
sentation must also contain contextual information. Indeed, contextual variables could be linearly 
decoded from the higher-level population activity (Figure 7a). In contrast, decoding the context from 
the lower-level population gave much lower accuracy. This shows that the contextual information is 
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not just inherited from the sensory stimuli but conveyed by the feedback via the modulatory units. 
We therefore expected that the modulatory units themselves would contain a representation of the 
context. To our surprise, decoding accuracy on the modulatory units was low. This seems counterintu-
itive, especially since the modulatory units clearly covaried with the contextual variables (Figure 7b). 
To understand these seemingly conflicting results, we examined how the context was represented in 
the activity of the modulation units.

We found that the modulation unit activity did encode the contextual variables, albeit in a nonlinear 
way (Figure 7c). The underlying reason is that the feedback modulation needs to remove contex-
tual variations, which requires nonlinear computations. Specifically, the blind source separation task 
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Figure 6. Feedback-driven gain modulation in a hierarchical rate network. (a) Schematic of the Dalean network comprising a lower- and higher-level 
population (‍zL‍ and ‍zH‍), a population of local inhibitory neurons (blue), and diffuse gain modulation mediated by modulatory interneurons (green). 
(b) Decrease in gain (i.e. release probability) with stronger modulatory feedback. (c) Top: modulation of neurons in the higher-level population for 
10 different contexts. Bottom: corresponding deviation of outputs ‍y‍ from sources ‍s‍. (d) Histogram of neuron-specific release probabilities averaged 
across 20 contexts (filled, light green) and during two different contexts (yellow and dark green, see (c)). (e) Violin plot of signal clarity at different stages 
of the Dalean model: sensory stimuli (‍x‍), lower-level (‍zL‍) and higher-level population (‍zH‍), modulatory units (‍m‍), and network output (‍y‍), computed 
across 20 contexts (compare with Figure 4a). (f) Violin plot of linear decoding performance of the sources from the same stages as in (e) (compare with 
Figure 4d). (g) Feedback modulation reorients the population activity (compare with Figure 5d).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The Dalean network can learn the dynamic blind source separation task, and the performance does not depend on specifics of 
the model architecture.
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requires an inversion of the linear mixture of sources. Consistent with this idea, nonlinear decoding 
approaches performed better (Figure 7d). In fact, the modulatory units contained a linear representa-
tion of the ‘inverse context’ (i.e. the inverse mixing matrix, see ‘Materials and methods’).

In summary, the higher-level population provides a linear representation not only of the stimuli, 
but also of the context. In contrast, the modulatory units contained a nonlinear representation of the 
context, which could not be extracted by linear decoding approaches. We speculate that if contextual 
feedback modulation is mediated by interneurons in layer 1, they should represent the context in a 
nonlinear way.

Discussion
Accumulating evidence suggests that sensory processing is strongly modulated by top-down feed-
back projections (Gilbert and Li, 2013; Keller and Mrsic-Flogel, 2018). Here, we demonstrate 
that feedback-driven gain modulation of a feedforward network could underlie stable perception in 
varying contexts. The feedback can be slow, spatially diffuse, and low-dimensional. To elucidate how 
the context invariance is achieved, we performed single-neuron and population analyses. We found 
that invariance was not evident at the single-neuron level, but only emerged in a subspace of the 
population representation. The feedback modulation dynamically transformed the manifold of neural 
activity patterns such that this subspace was maintained across contexts. Our results provide further 
support that gain modulation at the single-cell level enables nontrivial computations at the population 
level (Failor et al., 2021; Shine et al., 2021).

Figure 7. Feedback conveys a nonlinear representation of the context. (a) Linear decoding performance of the context (i.e. mixing) from the network. 
(b) Context variables (e.g. source locations, top) and activity of modulatory interneurons (bottom) over contexts; one of the modulatory interneurons is 
silent in all contexts. (c) Left: activity of the three active modulatory interneurons (see (b)) for different contexts. The context variables are colour-coded 
as indicated on the right. (d) Performance of different decoders trained to predict the context from the modulatory interneuron activity. Decoder types 
are a linear decoder, a decoder on a quadratic expansion, and a linear decoder trained to predict the inverse of the mixing matrix.

https://doi.org/10.7554/eLife.76096
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Invariance in sensory processing
As an example of context-invariant sensory processing, we chose a dynamic variant of the blind source 
separation task. This task is commonly illustrated by a mixture of voices at a cocktail party (Cherry, 
1953; McDermott, 2009). For auditory signals, bottom-up mechanisms of frequency segregation 
can provide a first processing step for the separation of multiple sound sources (Bronkhorst, 2015; 
McDermott, 2009). However, separating more complex sounds requires additional active top-down 
processes (Parthasarathy et al., 2020; Oberfeld and Klöckner-Nowotny, 2016). In our model, top-
down feedback guides the source separation itself, while the selection of a source would occur at a 
later processing stage – consistent with recent evidence for ‘late selection’ (Brodbeck et al., 2020; 
Har-Shai Yahav and Zion Golumbic, 2021).

Although blind source separation is commonly illustrated with auditory signals, the suggested 
mechanism of context-invariant perception is not limited to a given sensory modality. The key nature 
of the task is that it contains stimulus dimensions that need to be encoded (the sources) and dimen-
sions that need to be ignored (the context). In visual object recognition, for example, the identity 
of visual objects needs to be encoded, while contextual variables such as size, location, orientation, 
or surround need to be ignored. Neural hallmarks of invariant object recognition are present at the 
population level (DiCarlo and Cox, 2007; DiCarlo et al., 2012; Hong et al., 2016), and to some 
extent also on the level of single neurons (Quiroga et al., 2005). Classically, the emergence of invari-
ance has been attributed to the extraction of invariant features in feedforward networks (Riesenhuber 
and Poggio, 1999; Wiskott and Sejnowski, 2002; DiCarlo and Cox, 2007; Kriegeskorte, 2015), 
but recent work also highlights the role of recurrence and feedback (Gilbert and Li, 2013; Kar et al., 
2019; Kietzmann et al., 2019; Thorat et al., 2021). Here, we focused on the role of feedback, but 
clearly, feedforward and feedback processes are not mutually exclusive and likely work in concert to 
create invariance. Their relative contribution to invariant perception requires further studies and may 
depend on the invariance in question.

Similarly, how invariance can be learned will depend on the underlying mechanism. The feedback-
driven mechanism we propose is reminiscent of meta-learning consisting of an inner and an outer 
loop (Hochreiter et al., 2001; Wang et al., 2018b). In the inner loop, the modulatory system infers 
the context to modulate the feedforward network accordingly. This process is unsupervised. In the 
outer loop, the modulatory system is trained to generalise across contexts. Here, we performed this 
training using supervised learning, which requires the modulatory system to experience the sources 
in isolation (or at least obtain an error signal). Such an identification of the individual sources could, 
for example, be aided by other sensory modalities (McDermott, 2009). However, the optimisation of 
the modulatory system does not necessarily require supervised learning. It could also be guided by 
task demands via reinforcement learning or by unsupervised priors such as a non-Gaussianity of the 
outputs.

Mechanisms of feedback-driven gain modulation
There are different ways in which feedback can affect local processing. Here, we focused on gain modu-
lation (McAdams and Maunsell, 1999; Reynolds and Heeger, 2009; Vinck et al., 2015). Neuronal 
gains can be modulated by a range of mechanisms (Ferguson and Cardin, 2020; Shine et al., 2021). 
In our model, the mechanism needs to satisfy a few key requirements: (i) the modulation is not uniform 
across the population, (ii) it operates on a timescale similar to that of changes in context, and (iii) it is 
driven by a brain region that has access to the information needed to infer the context.

Classical neuromodulators such as acetylcholine (Disney et al., 2007; Kawai et al., 2007), dopa-
mine (Thurley et al., 2008), or serotonin (Azimi et al., 2020) are signalled through specialised neuro-
modulatory pathways from subcortical nuclei (van den Brink et al., 2019). These neuromodulators 
can control the neural gain depending on behavioural states such as arousal, attention, or expectation 
of rewards (Ferguson and Cardin, 2020; Hasselmo and McGaughy, 2004; Bayer and Glimcher, 
2005; Polack et al., 2013; Kuchibhotla et al., 2017). Their effect is typically thought to be brain-wide 
and long-lasting, but recent advances in measurement techniques (Sabatini and Tian, 2020; Lohani 
et al., 2020) indicate that it could be area- or even layer-specific, and vary on sub-second timescales 
(Lohani et al., 2020; Bang et al., 2020; Poorthuis et al., 2013; Pinto et al., 2013).

More specific feedback projections arrive in layer 1 of the cortex, where they target the distal 
dendrites of pyramidal cells and inhibitory interneurons (Douglas and Martin, 2004; Roth et  al., 

https://doi.org/10.7554/eLife.76096


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Naumann et al. eLife 2022;11:e76096. DOI: https://​doi.​org/​10.​7554/​eLife.​76096 � 14 of 27

2016; Marques et al., 2018). Dendritic input can change the gain of the neural transfer function on 
fast timescales (Larkum et al., 2004; Jarvis et al., 2018). The spatial scale of the modulation will 
depend on the spatial spread of the feedback projections and the dendritic arbourisation. Feedback 
to layer 1 interneurons provides an alternative mechanism of local gain control. In particular, neuron-
derived neurotrophic factor-expressing interneurons (NDNF) in layer 1 receive a variety of top-down 
feedback projections and produce GABAergic volume transmission (Abs et al., 2018), thereby down-
regulating synaptic transmission (Miller, 1998; Laviv et al., 2010). This gain modulation can act on a 
timescale of hundreds of milliseconds (Branco and Staras, 2009; Urban-Ciecko et al., 2015; Cohen-
Kashi Malina et al., 2021; Molyneaux and Hasselmo, 2002), and, although generally considered 
diffuse, can also be synapse type-specific (Chittajallu et al., 2013).

The question remains where in the brain the feedback signals originate. Our model requires the 
responsible network to receive feedforward sensory input to infer the context. In addition, feedback 
inputs from higher-level sensory areas to the modulatory system allow a better control of the modu-
lated network state. Higher-order thalamic nuclei are ideally situated to integrate different sources 
of sensory inputs and top-down feedback (Sampathkumar et al., 2021) and mediate the resulting 
modulation by targeting layer 1 of lower-level sensory areas (Purushothaman et  al., 2012; Roth 
et al., 2016; Sherman, 2016). In our task setting, the inference of the context requires the integration 
of sensory signals over time and therefore recurrent neural processing. For this kind of task, thal-
amus may not be the site of contextual inference because it lacks the required recurrent connectivity 
(Halassa and Sherman, 2019). However, contextual inference may be performed by higher-order 
cortical areas and could either be relayed back via the thalamus or transmitted directly, for example, 
via cortico-cortical feedback connections.

Testable predictions
Our model makes several predictions that could be tested in animals performing invariant sensory 
perception. Firstly, our model indicates that invariance across contexts may only be evident at the 
neural population level, but not on the single-cell level. Probing context invariance at different hierar-
chical stages of sensory processing may therefore require population recordings and corresponding 
statistical analyses such as neural decoding (Glaser et  al., 2020). Secondly, we assumed that this 
context invariance is mediated by feedback modulation. The extent to which context invariance is 
enabled by feedback on a particular level of the sensory hierarchy could be studied by manipulating 
feedback connections. Since layer 1 receives a broad range of feedback inputs from different sources, 
this may require targeted manipulations. If no effect of feedback on context invariance is found, 
this may either indicate that feedforward mechanisms dominate or that the invariance in question is 
inherited from an earlier stage, in which it may well be the result of feedback modulation. Given that 
feedback is more pronounced in higher cortical areas (McAdams and Maunsell, 1999; Pardi et al., 
2020), we expect that the contribution of feedback may play a larger role for the more complex forms 
of invariance further up in the sensory processing hierarchy. Thirdly, for feedback to mediate context 
invariance, the feedback projections need to contain a representation of the contextual variables. 
Our findings suggest, however, that the detection of this representation may require a nonlinear 
decoding method. Finally, a distinguishing feature of feedback and feedforward mechanisms is that 
feedback mechanisms take more time. We found that immediately following a sudden contextual 
change, the neuronal representation initially changes within the manifold associated with the previous 
context. Later, the feedback reorients the manifold to re-establish the invariance on the population 
level. Whether these dynamics are a signature of feedback processing or also present in feedforward 
networks will be an interesting question for future work.

Comparison to prior work
Computational models have implicated neuronal gain modulation for a variety of functions (Salinas 
and Sejnowski, 2001; Reynolds and Heeger, 2009). Even homogeneous changes in neuronal gain 
can achieve interesting population effects (Shine et al., 2021), such as orthogonalisation of sensory 
responses (Failor et al., 2021). More heterogeneous gain modulation provides additional degrees of 
freedom that enables, for example, attentional modulation (Reynolds and Heeger, 2009; Carandini 
and Heeger, 2011), coordinate transformations (Salinas and Thier, 2000), and – when amplified by 
recurrent dynamics – a rich repertoire of neural trajectories (Stroud et al., 2018). Gain modulation has 
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also been suggested as a means to establish invariant processing (Salinas and Abbott, 1997), as a 
biological implementation of dynamic routing (Olshausen et al., 1993). While the modulation in these 
models of invariance can be interpreted as an abstract form of feedback, the resulting effects on the 
population level were not studied.

An interesting question is by which mechanisms the appropriate gain modulation is computed. 
In previous work, gain factors were often learned individually for each context, for example, by 
gradient descent or Hebbian plasticity (Olshausen et al., 1993; Salinas and Abbott, 1997; Stroud 
et al., 2018), mechanisms that may be too slow to achieve invariance on a perceptual timescale (van 
Hemmen and Sejnowski, 2006). In our model, by contrast, the modulation is dynamically controlled 
by a recurrent network. Once it has been trained, such a recurrent modulatory system can rapidly infer 
the current context and provide an appropriate feedback signal on a timescale only limited by the 
modulatory mechanism.

Limitations and future work
In our model, we simplified many aspects of sensory processing. Using simplistic sensory stimuli 
– compositions of sines – allowed us to focus on the mechanisms at the population level, while 
avoiding the complexities of natural sensory stimuli and deep sensory hierarchies. Although we 
do not expect conceptual problems in generalising our results to more complex stimuli, such as 
speech or visual stimuli, the associated computational challenges are substantial. For example, the 
feedback in our model was provided by a recurrent network, whose parameters were trained by 
backpropagating errors through the network and through time. This training process can get very 
challenging for large networks and long temporal dependencies (Bengio et  al., 1994; Pascanu 
et al., 2013).

In our simulations, we trained the whole model – the modulatory system, the sensory representa-
tion, and the readout. For the simplistic stimuli we used, we observed that the training process mostly 
concentrated on optimising the modulatory system and readout, while a random mapping of sensory 
stimuli to neural representations seemed largely sufficient to solve the task. For more demanding 
stimuli, we expect that the sensory representation the modulatory system acts upon may become 
more important. A well-suited representation could minimise the need for modulatory interventions 
(Finn et al., 2017), in a coordinated interaction of feedforward and feedback.

To understand the effects of feedback modulation on population representations, we included 
biological constraints in the feedforward network and the structure of the modulatory feedback. 
However, we did not strive to provide a biologically plausible implementation for the computation of 
the appropriate feedback signals and instead used an off-the-shelf recurrent neural network (Hoch-
reiter and Schmidhuber, 1997). The question how these signals could be computed in a biologically 
plausible way remains for future studies. The same applies to the question how the appropriate feed-
back signals can be learned by local learning rules (Lillicrap et al., 2020) and how neural representa-
tions and modulatory systems learn to act in concert.

Materials and methods
To study how feedback-driven modulation can enable flexible sensory processing, we built models 
of feedforward networks that are modulated by feedback. The feedback was dynamically generated 
by a modulatory system, which we implemented as a recurrent network. The weights of the recurrent 
network were trained such that the feedback modulation allowed the feedforward network to solve a 
flexible invariant processing task.

The dynamic blind source separation task
As an instance of flexible sensory processing, we used a dynamic variant of blind source separation. In 
classical blind source separation, two or more unknown time-varying sources ‍⃗s(t)‍ need to be recovered 
from a set of observations (i.e. sensory stimuli) ‍⃗x(t)‍. The sensory stimuli are composed of an unknown 
linear mixture of the sources such that ‍⃗x(t) = A⃗s(t)‍ with a fixed mixing matrix ‍A‍. Recovering the sources 
requires to find weights ‍W ‍ such that ‍Wx⃗(t) ≈ s⃗(t)‍. Ideally, ‍W ‍ is equal to the pseudo-inverse of the 
unknown mixing matrix ‍A‍, up to permutations.

https://doi.org/10.7554/eLife.76096
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In our dynamic blind source separation task, we model variations in the stimulus context by 
changing the linear mixture over time – albeit on a slower timescale than the time-varying signals. 
Thus, the sensory stimuli are constructed as

	﻿‍ x⃗(t) = A(t)⃗s(t) + σnξ⃗(t) ,‍� (1)

where ‍A(t)‍ is a time-dependent mixing matrix and ‍σn‍ is the amplitude of additive white noise ‍⃗ξ(t)‍. 
The time-dependent mixing matrix determines the current context and was varied in discrete time 
intervals ‍nt‍, meaning that the mixing matrix ‍A(t)‍ (i.e. the context) was constant for ‍nt‍ samples before it 
changed. The goal of the dynamic blind source separation task is to recover the original signal sources 
‍⃗s ‍ from the sensory stimuli ‍⃗x ‍ across varying contexts. Thus, the network model output needs to be 
invariant to the specific context of the sources. Note that while the context was varied, the sources 
themselves were the same throughout the task, unless stated otherwise. Furthermore, in the majority 
of experiments the number of source signals and sensory stimuli was ‍ns = 2‍. A list of default parame-
ters for the dynamic blind source separation task can be found in Table 1.

Source signals
As default source signals, we used two compositions of two sines each (‘chords’) with a sampling rate 
of ‍fs = 8000‍ Hz that can be written as

	﻿‍ s1(t) = sin(2πf11t/fs) + sin(2πf12t/fs)‍� (2)

	﻿‍ s2(t) = sin(2πf21t/fs) + sin(2πf22t/fs)‍� (3)

with frequencies ‍f11 = 100‍ Hz, ‍f12 = 125‍ Hz, ‍f21 = 150‍ Hz, and ‍f22 = 210‍ Hz. Note that in our model 
we measure time as the number of samples from the source signals, meaning that timescales are rela-
tive and could be arbitrarily rescaled.

In Figure 5, we used pure sine signals with frequency ‍f ‍ for visualisation purposes: ‍si = sin(2πft/fs)‍. 
We also validated the model on signals that are not made of sine waves, as a sawtooth and a square 
wave signal (Figure 1—figure supplement 4). Unless stated otherwise, the same signals were used 
for training and testing the model.

Time-varying contexts
We generated the mixing matrix ‍A‍ for each context by drawing random weights from a uniform distri-
bution between 0 and 1, allowing only positive mixtures of the sources. Unless specified otherwise, 
we sampled new contexts for each training batch and for the test data, such that the training and test 
data followed the same distribution without necessarily being the same. The dimension of the mixing 
matrices was determined by number of signals ‍ns‍ such that ‍A‍ was of shape ‍ns × ns‍. To keep the overall 
amplitude of the sensory stimuli in a similar range across different mixtures, we normalised the row 
sums of each mixing matrix to one. In the case of ‍ns = 2‍, this implies that the contexts (i.e. the mixing 
matrices) are drawn from a two-dimensional manifold (see Figure 8, bottom left). In addition, we only 
used the randomly generated mixing matrices whose determinant was larger than some threshold 
value. We did this to ensure that each signal mixture was invertible and that the weights needed to 
invert the mixing matrix were not too extreme. A threshold value of 0.2 was chosen based on visual 
inspection of the weights from the inverted mixing matrix.

Table 1. Default parameters of the dynamic blind source separation task.

Parameter Symbol Value

Number of signals ‍ns‍ 2

Number of samples in context ‍nt‍ 1000

Additive noise ‍σn‍ 0.001

Sampling frequency ‍fs‍ 8 KHz

https://doi.org/10.7554/eLife.76096
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Modulated feedforward network models
Throughout this work, we modelled feedforward networks of increasing complexity. Common to all 
networks was that they received the sensory stimuli ‍⃗x ‍ and should provide an output ‍⃗y ‍ that matches 
the source signals ‍⃗s ‍. In the following, we first introduce the simplest model variant and how it is 
affected by feedback from the modulatory system, and subsequently describe the different model 
extensions.

Modulation of feedforward weights by a recurrent network
In the simplest feedforward network, the network output ‍⃗y(t)‍ is simply a linear readout of the sensory 
stimuli ‍⃗x(t)‍, with readout weights that are dynamically changed by the modulatory system:

	﻿‍ y⃗(t) = (M(t) ⊙ W0) x⃗(t)‍� (4)
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Figure 8. Schematic of the dynamic blind source separation task, context space, and the modulated feedforward network. Information flow is indicated 
by black arrows, and the flow of the error during training with backpropagation through time (BPTT) is shown in yellow.

Table 2. Default parameters of the network models.

Parameter Symbol Value

Number of hidden units in long-short-term memory 
network ‍Nh‍ 100

Number of units in middle layer z ‍Nz‍ 100

Number of distinct feedback signals ‍NFB‍ 4

Number of neurons in lower-level population ‍NL‍ 40

Number of neurons in higher-level population ‍NH ‍ 100

Number of inhibitory neurons ‍NI ‍ 20

Timescale of modulation ‍τ ‍ 100

Spatial spread of modulation ‍σ
2
m‍ 0.2
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where ‍W0‍ are the baseline weights and ‍M(t)‍ the modulation provided by the modulatory system. 

‍M(t)‍ is of the same shape as ‍W0‍ and determines the element-wise multiplicative modulation of the 
baseline weights. Because the task requires the modulatory system to dynamically infer the context, 
we modelled it as a recurrent network – more specifically, a long-short-term memory network (LSTMs; 
Hochreiter and Schmidhuber, 1997) – with ‍Nh = 100‍ hidden units. In particular, we used LSTMs with 
forget gates (Gers et al., 2000) but no peephole connections (for an overview of LSTM variants, see 
Greff et al., 2017).

In this work, we treated the LSTM as a black-box modulatory system that receives the sensory 
stimuli and the feedforward network’s output and provides the feedback signal in return (Figure 1a). 
A linear readout of the LSTM’s output determines the modulation ‍M(t)‍ in Equation 4. In brief, this 
means that

	﻿‍ M(t) = LSTM(⃗x(t), y⃗(t)) ,‍� (5)

where ‍LSTM(·)‍ is a function that returns the LSTM readout. For two-dimensional sources and 
sensory stimuli, for instance, ‍LSTM(·)‍ receives a concatenation of the two-dimensional vectors ‍⃗x(t)‍ 
and ‍⃗y(t)‍ as input and returns a two-by-two feedback modulation matrix – one multiplicative factor 
for each weight in W0. The baseline weights W0 were randomly drawn from the Gaussian distribution 

‍N (1, 0.001)‍ and fixed throughout the task. The LSTM parameters and readout were learned during 
training of the model.

Extension 1: Reducing the temporal specificity of feedback modulation
To probe our model’s sensitivity to the timescale of the modulatory feedback (Figure 2), we added a 
temporal filter to Equation 5. In that case, the modulation ‍M(t)‍ followed the dynamics

	﻿‍ τ dM(t)
t = −M(t) + LSTM(⃗x(t), y⃗(t)) ,‍� (6)

with ‍τ ‍ being the time constant of modulation. For small ‍τ ‍, the feedback rapidly affects the feedfor-
ward network, whereas larger ‍τ ‍ imply a slowly changing modulatory feedback signal. The unit of this 
timescale is the number of samples from the source signals. Note that the timescale of the modulation 
should be considered relative to the timescale of the context changes nt. As a default time constant, 
we used ‍τ = 100 < nt‍ (see Table 2).

Extension 2: Reducing the spatial specificity of feedback modulation
To allow for spatially diffuse feedback modulation (Figure 3), we added an intermediate layer between 
the sensory stimuli and the network output. This intermediate layer consisted of a population of 

‍Nz = 100‍ units that were modulated by the feedback, where neighbouring units were modulated simi-
larly. More specifically, the units were arranged on a ring to allow for a spatially constrained modula-
tion without boundary effects. The population’s activity vector ‍⃗z(t)‍ is described by

	﻿‍ z⃗(t) = m⃗(t) ⊙ (Wxx⃗(t)) ,‍� (7)

with the sensory stimuli ‍⃗x(t)‍, a weight matrix ‍Wx‍ of size ‍Nz × ns‍, and the vector of unit-specific 
multiplicative modulations ‍⃗m(t)‍. Note that the activity of the units was not constrained to be positive 
here. The output of the network was then determined by a linear readout of the population activity 
vector according to

	﻿‍ y⃗(t) = Wro⃗z(t)‍� (8)

with a fixed readout matrix ‍Wro‍.
The modulation to a single unit ‍‍ was given by

	﻿‍ τ dmi(t)
t = −mi(t) +

∑NFB
j=1 Kij lj ,‍� (9a)

	﻿‍ with lj = LSTM(x(t), y(t))j .‍� (9b)

Here, ‍τ ‍ is the modulation time constant, ‍K ‍ is a kernel that determines the spatial specificity of 
modulation, ‍LSTM(·)j‍ the ‍j‍th feedback signal from the LSTM, and ‍NFB‍ is the total number of feedback 
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signals. As in the simple model, the ‍NFB‍ feedback signals were determined by a linear readout from 
LSTM.

The modulation kernel ‍K ‍ was defined as a set of von Mises functions:

	﻿‍
Kij = exp( 1

σ2
m

cos(zloc
i − lloc

j )) ,
‍�

(10)

where ‍z
loc
i = 2πi

Nz
∈ [0, 2π]‍ represents the location of the modulated unit i on the ring and ‍l

loc
j ‍ the 

‘preferred location’ of modulatory unit ‍j‍, that is, the location on the ring that it modulates most effec-
tively. These ‘preferred locations’ ‍l

loc
j ‍ of the feedback units were evenly distributed on the ring. The 

variance parameter ‍σ
2
m‍ determines the spatial spread of the modulatory effect of the feedback units, 

that is, the spatial specificity of the modulation. Overall, the spatial distribution of the modulation was 
therefore determined by the number of distinct feedback signals ‍NFB‍ and their spatial spread ‍σ

2
m‍ (see 

Table 2 for a list of network parameters).

Extension 3: Hierarchical rate-based network
We further extended the model with spatial modulation (Equation 7–Equation 10) to include a two-
stage hierarchy, positive rates and synaptic weights that obey Dale’s law. Furthermore, we imple-
mented the feedback modulation as a gain modulation that scales neural rates but keeps them 
positive. To this end, we modelled the feedforward network as a hierarchy of a lower-level and a 
higher-level population. Only the higher-level population received feedback modulation. Splitting the 
neural populations in this way allowed us to model the connections between them with weights that 
follow Dale’s law. Furthermore, the unmodulated lower-level population could serve as a control for 
the emergence of context-invariant representations. The lower-level population consisted of ‍NL = 40‍ 
rate-based neurons and the population activity vector was given by

	﻿‍
z⃗L(t) =

[
WLxx⃗(t)

]
+

,
‍� (11)

where ‍WLx‍ is a fixed weight matrix, ‍⃗x(t)‍ the sensory stimuli, and the rectification ‍
[
·
]

+ = max(0, ·)‍ 
ensures that rates are positive. The lower-level population thus provides a neural representation of the 
sensory stimuli. The higher-level population consisted of ‍NH = 100‍ rate-based neurons that received 
feedforward input from the lower-level population. The feedforward input consisted of direct excit-
atory projections as well as feedforward inhibition through a population of ‍NI = 20‍ local inhibitory 
neurons. The activity vector of the higher-level population ‍⃗zH(t)‍ was thus given by

	﻿‍
z⃗H(t) =

[
p⃗(t) ⊙ (WHL⃗zL(t) − WHI⃗zI(t))

]
+‍� (12)

Table 3. Distributions used for randomly initialised weight parameters.

Weights Distribution

‍W0‍ ‍N (1, 0.001)‍

‍Wx‍ ‍N (0, 0.5)‍

‍WLx‍ ‍N (0, 0.5)‍

‍Wro‍ ‍N (0, 0.5)‍

‍WHL‍ ‍N (1, 0.5) · 20/NH‍

‍WIL‍ ‍N (1, 0.5)/NI‍

‍WHI‍ ‍N (1, 1) · 20/NH‍

Long-short-term memory 
network parameters ‍U (−

√
1/NH,

√
1/NH)‍

Long-short-term memory 
network readout ‍U (−

√
1/NFB,

√
1/NFB)‍

https://doi.org/10.7554/eLife.76096
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	﻿‍
z⃗I(t) =

[
WIL⃗zL(t)

]
+

.
‍� (13)

Here, ‍WHL‍, ‍WHI‍, and ‍WIL‍ are positive weight matrices, ‍⃗zI(t)‍ is the inhibitory neuron activities, and 

‍⃗p(t)‍ is the neuron-specific gain modulation factors. As for the spatially modulated network of Exten-
sion 2, the network output ‍⃗y(t)‍ was determined by a fixed linear readout ‍Wro‍ (see Equation 8). The 
distributions used to randomly initialise the weight matrices are provided in Table 3.

Again, the modulation was driven by feedback from the LSTM, but in this model variant we assumed 
inhibitory feedback, that is, stronger feedback signals monotonically decreased the gain. More specif-
ically, we assumed that the feedback signal targets a population of modulation units ‍⃗m‍, which in turn 
modulate the gain in the higher-level population. The gain modulation of neuron ‍‍ was constrained 
between 0 and 1 and determined by

	﻿‍
pi(t) = 1

1 + exp(mi(t))‍�
(14)

with ‍mi(t)‍ being the activity of a modulation unit ‍‍, which follows the same dynamics as in Equation 
9a (see Figure 6a).

Training the model
We used gradient descent to find the model parameters that minimise the difference between the 
source signal ‍⃗s(t)‍ and the feedforward network’s output ‍⃗y(t)‍:

	﻿‍
L =

nt∑
t=1

dist(⃗s(t), y⃗(t))
‍�

(15)

with a distance measure ‍dist(·)‍. We used the machine learning framework PyTorch (Paszke et al., 
2019) to simulate the network model, obtain the gradients of the objective ‍L‍ by automatic differenti-
ation, and update the parameters of the LSTM using the Adam optimiser (Kingma and Ba, 2014) with 
a learning rate of ‍η = 10−3

‍. As distance measure in the objective, we used a smooth variant of the L1 
norm (PyTorch’s smooth L1 loss variant) because it is less sensitive to outliers than the mean squared 
error (Huber, 1964).

During training, we simulated the network dynamics over batches of 32 trials using forward Euler 
with a time step of ‍∆t = 1‍. Each trial consisted of nt time steps (i.e. samples) and the context (i.e. 
mixing matrix) differed between trials. Since the model contains feedback and recurrent connections, 
we trained it using backpropagation through time (Werbos, 1990). This means that for each trial we 
simulated the model and computed the loss for every time step. At the end of the trial, we propa-
gated the error through the nt steps of the model to obtain the gradients and updated the parameters 
accordingly (Figure 8). Although the source signals were the same in every trial, we varied their phase 
independently across trials to prevent the LSTM from learning the exact signal sequence. To this end, 
we generated 16,000 samples of the source signals and in every batch randomly selected chunks of nt 
samples independently from each source. Model parameters were initialised according to the distri-
butions listed in Table 3.

In all model variants, we optimised the parameters of the modulator (input, recurrent, and readout 
weights as well as the biases of the LSTM; see Equation 5 and Equation 9b). The parameters were 
initialised with the defaults from the corresponding PyTorch modules, as listed in Table 3. To facilitate 
the training in the hierarchical rate-based network despite additional constraints, we also optimised 
the feedforward weights ‍WHL‍, ‍WHI‍, ‍WIL‍, ‍WLx‍, and ‍Wro‍. In principle, this allows to adapt the represen-
tation in the two intermediate layers such that the modulation is most effective. However, although 
we did not quantify it, we observed that optimising the network readout ‍Wro‍ facilitated the training 
the most, suggesting that a specific format of the sensory representations was not required for an 
effective modulation.

To prevent the gain modulation factor from saturating at 0 or 1, we added a regularisation term ‍R‍ 
to the loss function Equation 15 that keeps the LSTM’s output small:

https://doi.org/10.7554/eLife.76096


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Naumann et al. eLife 2022;11:e76096. DOI: https://​doi.​org/​10.​7554/​eLife.​76096 � 21 of 27

	﻿‍
R = λout

nt∑
t=1

NFB∑
j=1

��LSTM(x(t), y(t))j
��
‍�

(16)

with ‍λout = 10−5‍.
Gradient values were clipped between –1 and 1 before each update to avoid large updates. For 

weights that were constrained to be positive, we used their absolute value in the model. Each network 
was trained for 10,000–12,000 batches and for 5 random initialisations (Figure 1—figure supplement 
2).

Testing and manipulating the model
We tested the network model performance on an independent random set of contexts (i.e. mixing 
matrices), but with the same source signals as during training. During testing, we also changed the 
context every nt steps, but the length of this interval was not crucial for performance (Figure 1—
figure supplement 1d).

To manipulate the feedback modulation in the hierarchical rate-based network (Figure  4), we 
provided an additional input to the modulation units ‍m‍ in Equation 9a. We used an input of 3 or –3 
depending on whether the modulation units were activated or inactivated, respectively. To freeze the 
feedback modulation (Figure 6), we discarded the feedback signal and held the local modulation ‍p‍ in 
Equation 14 at a constant value determined by the feedback before the manipulation. The dynamics 
of the LSTM were continued, but remained hidden to the feedforward network until the freezing was 
stopped.

Unmodulated feedforward network models
Linear regression
As a control, we trained feedforward networks with weights that were not changed by a modulatory 
system. First, we used the simplest possible network architecture, in which the sensory stimuli are 
linearly mapped to the outputs (Figure 1—figure supplement 1a):

	﻿‍ y(t) = Wx(t).‍� (17)

It is intuitive that a fixed set of weights ‍W ‍ cannot invert two different contexts (i.e. different mixing 
matrices A1 and A2). As an illustration, we trained this simple feedforward network on one context and 
tested it on different contexts. To find the weights ‍W ‍, we used linear regression to minimise the mean 
squared error between the source signal ‍s(t)‍ and the network’s output ‍y(t)‍. The training data consisted 
of 1024 consecutive time steps of the sensory stimuli for a fixed context, and the test data consisted of 
different 1024 time steps generated under a potentially different mixing. We repeated this procedure 
by training and testing a network for all combinations of 20 random contexts.

Multilayer nonlinear network
Since solving the task was not possible with a single set of readout weights, we extended the feedfor-
ward model to include three hidden layers consisting of 32, 16, and 8 rectified linear units (Figure 1—
figure supplement 1d). The input to this network was one time point from the sensory stimuli and the 
target output the corresponding time point of the sources. We trained the multilayer network on 5000 
batches of 32 contexts using Adam (learning rate 0.001) to minimise the mean squared error between 
the network output and the sources.

Multilayer network with sequences as input
Solving the task requires the network to map the same sensory stimulus to different outputs depending 
on the context. However, inferring the context takes more than one time point. To test if a feedfor-
ward network with access to multiple time points at once could in principle solve the task, we changed 
the architecture of the multilayer network, such that it receives a sequence of the sensory stimuli 
(Figure 1—figure supplement 1g). The output of the network was a sequence of equal length. We 
again trained this network on 5000 batches of 32 contexts to minimise the error between its output 
and the target sources, where both the network input and output were sequences. The length of 
these sequences was varied between 1 and 150.

https://doi.org/10.7554/eLife.76096


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Naumann et al. eLife 2022;11:e76096. DOI: https://​doi.​org/​10.​7554/​eLife.​76096 � 22 of 27

Data analysis
Signal clarity
To determine task performance, we measured how clear the representation of the source signals is in 
the network output. We first computed the correlation coefficient of each signal si with each output yj

	﻿‍
rij =

∑
t(si(t) − s̄i)(yj(t) − ȳj)

σs,iσy,j
,
‍�

(18)

where ‍̄si‍ and ‍̄yj‍ are the respective temporal mean and ‍σs,i‍ and ‍σy,j‍ the respective temporal standard 
deviations. The signal clarity in output yj is then given by the absolute difference between the absolute 
correlation with one compared to the other signal:

	﻿‍ cj = | |r1j| − |r2j| | .‍� (19)

By averaging over outputs, we determined the overall signal clarity within the output. Note that the 
same measure can be computed on other processing stages of the feedforward network. For instance, 
we used the signal clarity of sources in the sensory stimuli as a baseline control.

Signal-to-noise ratio
The signal-to-noise ratio in the sensory stimuli was determined as the variability in the signal compared 
to the noise. Since the mean of both the stimuli and the noise was zero, the signal-to-noise ratio could 
be computed by

	﻿‍
SNR = σ2

s
σ2

n
,
‍�

where ‍σn‍ is the standard deviation of the additive white noise and ‍σs‍ is the measured standard 
deviation in the noise-free sensory stimuli, which was around 0.32. As a scale of the signal-to-noise 
ratio, we used decibels (‍dB‍), that is, we used ‍dB = 10 log10(SNR)‍.

Linear decoding analysis
Signal decoding
We investigated the population-level invariance by using a linear decoding approach. If there was 
an invariant population subspace, the source signals could be decoded by the same decoder across 
different contexts. We therefore performed linear regression between the activity in a particular 
population and the source signals. This linear decoder was trained on ‍nc = 10‍ different contexts with 
‍nt = 1, 000‍ time points each, such that the total number of samples was 10,000. The linear decoding 
was then tested on 10 new contexts and the performance determined using the R2 measure.

Context decoding
We took a similar approach to determine from which populations the context could be decoded. For 
the dynamic blind source separation task, the context is given by the source mixture, as determined by 
the mixing matrix. Since we normalised the rows of each mixing matrix, the context was determined 
by two context variables. We calculated the temporal average of the neuronal activities within each 
context and performed a linear regression of the context variables onto these averages. To exclude 
onset transients, we only considered the second half (500 samples) of every context. Contexts were 
sampled from the two-dimensional grid of potential contexts. More specifically, we sampled 20 points 
along each dimension and excluded contexts, in which the sensory stimuli were too similar (analo-
gously to the generation of mixing matrices), leaving 272 different contexts (see Figure 7c, right). The 
linear decoding performance was determined with a fivefold cross-validation and measured using R2. 
Since the modulatory feedback signals depend nonlinearly on the context (Figure 7c), we tested two 
nonlinear versions of the decoding approach. First, we performed a quadratic expansion of the aver-
aged population activity before a linear decoding. Second, we tested a linear decoding of the inverse 
mixing matrix (four weights) instead of the two variables determining the context.

https://doi.org/10.7554/eLife.76096
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Population subspace analysis
We visualised the invariant population subspaces by projecting the activity vector onto the two 
readout dimensions and the first principal component. To measure how the orientation of the 
subspaces changes when the context or feedback changes, we computed the angle between the 
planes spanned by the respective subspaces. These planes were fitted on the three-dimensional data 
described above using the least-squares method. Since we were only interested in the relative orien-
tation of the subspaces, we used a circular measure of the angles, such that a rotation of 180° corre-
sponded to 0°. This means that angles could range between 0 and 90°.

Code availability
The code for models and data analysis is publicly available under https://github.com/sprekelerlab/​
feedback_modulation_Naumann22, (copy archived at swh:1:rev:05373b093803e464082ad5b9e-
8ab2dbbf43bb23e; Naumann, 2022).

Acknowledgements
We thank Owen Mackwood for providing a code framework that manages simulations on a compute 
cluster, Loreen Hertäg and Johannes Letzkus for feedback on the manuscript, and the members of the 
Sprekeler lab for valuable discussions. No external funding was received for this work.

Additional information

Funding
No external funding was received for this work.

Author contributions
Laura B Naumann, Conceptualization, Formal analysis, Investigation, Methodology, Project adminis-
tration, Software, Visualization, Writing – original draft, Writing – review and editing; Joram Keijser, 
Conceptualization, Methodology, Project administration, Supervision, Writing – original draft, Writing 
– review and editing; Henning Sprekeler, Conceptualization, Funding acquisition, Methodology, 
Project administration, Resources, Supervision, Writing – original draft, Writing – review and editing

Author ORCIDs
Laura B Naumann ‍ ‍ http://orcid.org/0000-0002-7919-7349
Henning Sprekeler ‍ ‍ http://orcid.org/0000-0003-0690-3553

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.76096.sa1
Author response https://doi.org/10.7554/eLife.76096.sa2

Additional files
Supplementary files
•  MDAR checklist 

Data availability
The current manuscript is a computational study, so no data have been generated for this manu-
script. Modelling code is available under https://github.com/sprekelerlab/feedback_modulation_​
Naumann21, (copy archived at swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e) upon 
publication.

https://doi.org/10.7554/eLife.76096
https://github.com/sprekelerlab/feedback_modulation_Naumann22
https://github.com/sprekelerlab/feedback_modulation_Naumann22
https://archive.softwareheritage.org/swh:1:dir:ee3aa6ce292eea649252b7f5b3175b3561e7d8ed;origin=https://github.com/sprekelerlab/feedback_modulation_Naumann22;visit=swh:1:snp:7225dc0edc82b286290d94bb47dd51093317e3dc;anchor=swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e
https://archive.softwareheritage.org/swh:1:dir:ee3aa6ce292eea649252b7f5b3175b3561e7d8ed;origin=https://github.com/sprekelerlab/feedback_modulation_Naumann22;visit=swh:1:snp:7225dc0edc82b286290d94bb47dd51093317e3dc;anchor=swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e
http://orcid.org/0000-0002-7919-7349
http://orcid.org/0000-0003-0690-3553
https://doi.org/10.7554/eLife.76096.sa1
https://doi.org/10.7554/eLife.76096.sa2
https://github.com/sprekelerlab/feedback_modulation_Naumann21
https://github.com/sprekelerlab/feedback_modulation_Naumann21
https://archive.softwareheritage.org/swh:1:dir:ee3aa6ce292eea649252b7f5b3175b3561e7d8ed;origin=https://github.com/sprekelerlab/feedback_modulation_Naumann22;visit=swh:1:snp:7225dc0edc82b286290d94bb47dd51093317e3dc;anchor=swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Naumann et al. eLife 2022;11:e76096. DOI: https://​doi.​org/​10.​7554/​eLife.​76096 � 24 of 27

References
Abs E, Poorthuis RB, Apelblat D, Muhammad K, Pardi MB, Enke L, Kushinsky D, Pu DL, Eizinger MF, 

Conzelmann KK, Spiegel I, Letzkus JJ. 2018. Learning-Related Plasticity in Dendrite-Targeting Layer 1 
Interneurons. Neuron 100:684–699. DOI: https://doi.org/10.1016/j.neuron.2018.09.001, PMID: 30269988

Alamia A, Mozafari M, Choksi B, VanRullen R. 2021. On the Role of Feedback in Visual Processing: A Predictive 
Coding Perspective. arXiv. https://​arxiv.​org/​abs/​2106.​04225

Azimi Z, Barzan R, Spoida K, Surdin T, Wollenweber P, Mark MD, Herlitze S, Jancke D. 2020. Separable gain 
control of ongoing and evoked activity in the visual cortex by serotonergic input. eLife 9:e53552. DOI: https://​
doi.org/10.7554/eLife.53552, PMID: 32252889

Bang D, Kishida KT, Lohrenz T, White JP, Laxton AW, Tatter SB, Fleming SM, Montague PR. 2020. Sub-second 
Dopamine and Serotonin Signaling in Human Striatum during Perceptual Decision-Making. Neuron 108:999–
1010. DOI: https://doi.org/10.1016/j.neuron.2020.09.015, PMID: 33049201

Bayer HM, Glimcher PW. 2005. Midbrain dopamine neurons encode a quantitative reward prediction error 
signal. Neuron 47:129–141. DOI: https://doi.org/10.1016/j.neuron.2005.05.020, PMID: 15996553

Bell AJ, Sejnowski TJ. 1995. An information-maximization approach to blind separation and blind deconvolution. 
Neural Computation 7:1129–1159. DOI: https://doi.org/10.1162/neco.1995.7.6.1129, PMID: 7584893

Bengio Y, Simard P, Frasconi P. 1994. Learning long-term dependencies with gradient descent is difficult. 
IEEE Transactions on Neural Networks 5:157–166. DOI: https://doi.org/10.1109/72.279181, PMID: 
18267787

Branco T, Staras K. 2009. The probability of neurotransmitter release: variability and feedback control at single 
synapses. Nature Reviews. Neuroscience 10:373–383. DOI: https://doi.org/10.1038/nrn2634, PMID: 19377502

Brodbeck C, Jiao A, Hong LE, Simon JZ. 2020. Neural speech restoration at the cocktail party: Auditory cortex 
recovers masked speech of both attended and ignored speakers. PLOS Biology 18:e3000883. DOI: https://doi.​
org/10.1371/journal.pbio.3000883, PMID: 33091003

Bronkhorst AW. 2015. The cocktail-party problem revisited: early processing and selection of multi-talker 
speech. Attention, Perception & Psychophysics 77:1465–1487. DOI: https://doi.org/10.3758/s13414-015-0882-​
9, PMID: 25828463

Carandini M, Heeger DJ. 2011. Normalization as a canonical neural computation. Nature Reviews. Neuroscience 
13:51–62. DOI: https://doi.org/10.1038/nrn3136, PMID: 22108672

Cherry EC. 1953. Some Experiments on the Recognition of Speech, with One and with Two Ears. The Journal of 
the Acoustical Society of America 25:975–979. DOI: https://doi.org/10.1121/1.1907229

Chittajallu R, Pelkey KA, McBain CJ. 2013. Neurogliaform cells dynamically regulate somatosensory integration 
via synapse-specific modulation. Nature Neuroscience 16:13–15. DOI: https://doi.org/10.1038/nn.3284, PMID: 
23222912

Cichy RM, Khosla A, Pantazis D, Torralba A, Oliva A. 2016. Comparison of deep neural networks to spatio-
temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific 
Reports 6:1–13. DOI: https://doi.org/10.1038/srep27755, PMID: 27282108

Cohen-Kashi Malina K, Tsivourakis E, Kushinsky D, Apelblat D, Shtiglitz S, Zohar E, Sokoletsky M, Tasaka G-I, 
Mizrahi A, Lampl I, Spiegel I. 2021. NDNF interneurons in layer 1 gain-modulate whole cortical columns 
according to an animal’s behavioral state. Neuron 109:2150–2164. DOI: https://doi.org/10.1016/j.neuron.2021.​
05.001, PMID: 34038743

DiCarlo JJ, Cox DD. 2007. Untangling invariant object recognition. Trends in Cognitive Sciences 11:333–341. 
DOI: https://doi.org/10.1016/j.tics.2007.06.010, PMID: 17631409

DiCarlo JJ, Zoccolan D, Rust NC. 2012. How does the brain solve visual object recognition? Neuron 73:415–434. 
DOI: https://doi.org/10.1016/j.neuron.2012.01.010, PMID: 22325196

Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, Harris KD. 2018. Vision and Locomotion Shape the 
Interactions between Neuron Types in Mouse Visual Cortex. Neuron 98:602–615. DOI: https://doi.org/10.1016/​
j.neuron.2018.03.037, PMID: 29656873

Disney AA, Aoki C, Hawken MJ. 2007. Gain modulation by nicotine in macaque v1. Neuron 56:701–713. DOI: 
https://doi.org/10.1016/j.neuron.2007.09.034, PMID: 18031686

Douglas RJ, Martin KAC. 2004. Neuronal circuits of the neocortex. Annual Review of Neuroscience 27:419–451. 
DOI: https://doi.org/10.1146/annurev.neuro.27.070203.144152, PMID: 15217339

Dubreuil A, Valente A, Beiran M, Mastrogiuseppe F, Ostojic S. 2020. Complementary Roles of Dimensionality 
and Population Structure in Neural Computations. bioRxiv. DOI: https://doi.org/10.1101/2020.07.03.185942

Failor SW, Carandini M, Harris KD. 2021. Learning Orthogonalizes Visual Cortical Population Codes. bioRxiv. 
DOI: https://doi.org/10.1101/2021.05.23.445338

Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cerebral 
Cortex (New York, N.Y 1:1–47. DOI: https://doi.org/10.1093/cercor/1.1.1-a, PMID: 1822724

Ferguson KA, Cardin JA. 2020. Mechanisms underlying gain modulation in the cortex. Nature Reviews. 
Neuroscience 21:80–92. DOI: https://doi.org/10.1038/s41583-019-0253-y, PMID: 31911627

Finn C, Abbeel P, Levine S. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In 
International Conference on Machine Learning. 1126–1135.

Gers FA, Schmidhuber J, Cummins F. 2000. Learning to forget: continual prediction with LSTM. Neural 
Computation 12:2451–2471. DOI: https://doi.org/10.1162/089976600300015015, PMID: 11032042

Gilbert CD, Li W. 2013. Top-down influences on visual processing. Nature Reviews. Neuroscience 14:350–363. 
DOI: https://doi.org/10.1038/nrn3476, PMID: 23595013

https://doi.org/10.7554/eLife.76096
https://doi.org/10.1016/j.neuron.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30269988
https://doi.org/10.7554/eLife.53552
https://doi.org/10.7554/eLife.53552
http://www.ncbi.nlm.nih.gov/pubmed/32252889
https://doi.org/10.1016/j.neuron.2020.09.015
http://www.ncbi.nlm.nih.gov/pubmed/33049201
https://doi.org/10.1016/j.neuron.2005.05.020
http://www.ncbi.nlm.nih.gov/pubmed/15996553
https://doi.org/10.1162/neco.1995.7.6.1129
http://www.ncbi.nlm.nih.gov/pubmed/7584893
https://doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
https://doi.org/10.1038/nrn2634
http://www.ncbi.nlm.nih.gov/pubmed/19377502
https://doi.org/10.1371/journal.pbio.3000883
https://doi.org/10.1371/journal.pbio.3000883
http://www.ncbi.nlm.nih.gov/pubmed/33091003
https://doi.org/10.3758/s13414-015-0882-9
https://doi.org/10.3758/s13414-015-0882-9
http://www.ncbi.nlm.nih.gov/pubmed/25828463
https://doi.org/10.1038/nrn3136
http://www.ncbi.nlm.nih.gov/pubmed/22108672
https://doi.org/10.1121/1.1907229
https://doi.org/10.1038/nn.3284
http://www.ncbi.nlm.nih.gov/pubmed/23222912
https://doi.org/10.1038/srep27755
http://www.ncbi.nlm.nih.gov/pubmed/27282108
https://doi.org/10.1016/j.neuron.2021.05.001
https://doi.org/10.1016/j.neuron.2021.05.001
http://www.ncbi.nlm.nih.gov/pubmed/34038743
https://doi.org/10.1016/j.tics.2007.06.010
http://www.ncbi.nlm.nih.gov/pubmed/17631409
https://doi.org/10.1016/j.neuron.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22325196
https://doi.org/10.1016/j.neuron.2018.03.037
https://doi.org/10.1016/j.neuron.2018.03.037
http://www.ncbi.nlm.nih.gov/pubmed/29656873
https://doi.org/10.1016/j.neuron.2007.09.034
http://www.ncbi.nlm.nih.gov/pubmed/18031686
https://doi.org/10.1146/annurev.neuro.27.070203.144152
http://www.ncbi.nlm.nih.gov/pubmed/15217339
https://doi.org/10.1101/2020.07.03.185942
https://doi.org/10.1101/2021.05.23.445338
https://doi.org/10.1093/cercor/1.1.1-a
http://www.ncbi.nlm.nih.gov/pubmed/1822724
https://doi.org/10.1038/s41583-019-0253-y
http://www.ncbi.nlm.nih.gov/pubmed/31911627
https://doi.org/10.1162/089976600300015015
http://www.ncbi.nlm.nih.gov/pubmed/11032042
https://doi.org/10.1038/nrn3476
http://www.ncbi.nlm.nih.gov/pubmed/23595013


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Naumann et al. eLife 2022;11:e76096. DOI: https://​doi.​org/​10.​7554/​eLife.​76096 � 25 of 27

Glaser JI, Benjamin AS, Chowdhury RH, Perich MG, Miller LE, Kording KP. 2020. Machine Learning for Neural 
Decoding. ENeuro 7:ENEURO.0506-19.2020. DOI: https://doi.org/10.1523/ENEURO.0506-19.2020, PMID: 
32737181

Greff K, Srivastava RK, Koutnik J, Steunebrink BR, Schmidhuber J. 2017. LSTM: A Search Space Odyssey. IEEE 
Transactions on Neural Networks and Learning Systems 28:2222–2232. DOI: https://doi.org/10.1109/TNNLS.​
2016.2582924, PMID: 27411231

Halassa MM, Sherman SM. 2019. Thalamocortical Circuit Motifs: A General Framework. Neuron 103:762–770. 
DOI: https://doi.org/10.1016/j.neuron.2019.06.005, PMID: 31487527

Har-Shai Yahav P, Zion Golumbic E. 2021. Linguistic processing of task-irrelevant speech at a cocktail party. eLife 
10:e65096. DOI: https://doi.org/10.7554/eLife.65096, PMID: 33942722

Hasselmo ME, McGaughy J. 2004. High acetylcholine levels set circuit dynamics for attention and encoding and 
low acetylcholine levels set dynamics for consolidation. Progress in Brain Research 145:207–231. DOI: https://​
doi.org/10.1016/S0079-6123(03)45015-2, PMID: 14650918

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation 9:1735–1780. DOI: https://​
doi.org/10.1162/neco.1997.9.8.1735, PMID: 9377276

Hochreiter S, Younger AS, Conwell PR. 2001. Learning to learn using gradient descent. In International 
Conference on Artificial Neural Networks. 87–94. DOI: https://doi.org/10.1007/3-540-44668-0

Hong H, Yamins DLK, Majaj NJ, DiCarlo JJ. 2016. Explicit information for category-orthogonal object properties 
increases along the ventral stream. Nature Neuroscience 19:613–622. DOI: https://doi.org/10.1038/nn.4247, 
PMID: 26900926

Huber PJ. 1964. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics 35:73–101. 
DOI: https://doi.org/10.1214/aoms/1177703732

Hyvärinen A, Oja E. 2000. Independent component analysis: algorithms and applications. Neural Networks 
13:411–430. DOI: https://doi.org/10.1016/s0893-6080(00)00026-5, PMID: 10946390

Jarvis S, Nikolic K, Schultz SR. 2018. Neuronal gain modulability is determined by dendritic morphology: A 
computational optogenetic study. PLOS Computational Biology 14:e1006027. DOI: https://doi.org/10.1371/​
journal.pcbi.1006027, PMID: 29522509

Kar K, Kubilius J, Schmidt K, Issa EB, DiCarlo JJ. 2019. Evidence that recurrent circuits are critical to the ventral 
stream’s execution of core object recognition behavior. Nature Neuroscience 22:974–983. DOI: https://doi.org/​
10.1038/s41593-019-0392-5, PMID: 31036945

Kawai H, Lazar R, Metherate R. 2007. Nicotinic control of axon excitability regulates thalamocortical 
transmission. Nature Neuroscience 10:1168–1175. DOI: https://doi.org/10.1038/nn1956, PMID: 17704774

Keller GB, Mrsic-Flogel TD. 2018. Predictive Processing: A Canonical Cortical Computation. Neuron 100:424–
435. DOI: https://doi.org/10.1016/j.neuron.2018.10.003, PMID: 30359606

Kietzmann TC, Spoerer CJ, Sörensen LKA, Cichy RM, Hauk O, Kriegeskorte N. 2019. Recurrence is required to 
capture the representational dynamics of the human visual system. PNAS 116:21854–21863. DOI: https://doi.​
org/10.1073/pnas.1905544116, PMID: 31591217

Kingma DP, Ba J. 2014. Adam: A Method for Stochastic Optimization. arXiv. https://​arxiv.​org/​abs/​1412.​6980
Kriegeskorte N, Mur M, Bandettini PA. 2008. Representational similarity analysis - connecting the branches of 

systems neuroscience. Frontiers in Systems Neuroscience 2:4. DOI: https://doi.org/10.3389/neuro.06.004.2008, 
PMID: 19104670

Kriegeskorte N. 2015. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain 
Information Processing. Annual Review of Vision Science 1:417–446. DOI: https://doi.org/10.1146/annurev-​
vision-082114-035447, PMID: 28532370

Kuchibhotla KV, Gill JV, Lindsay GW, Papadoyannis ES, Field RE, Sten TAH, Miller KD, Froemke RC. 2017. 
Parallel processing by cortical inhibition enables context-dependent behavior. Nature Neuroscience 20:62–71. 
DOI: https://doi.org/10.1038/nn.4436, PMID: 27798631

Larkum ME, Senn W, Lüscher HR. 2004. Top-down dendritic input increases the gain of layer 5 pyramidal 
neurons. Cerebral Cortex (New York, N.Y 14:1059–1070. DOI: https://doi.org/10.1093/cercor/bhh065, PMID: 
15115747

Laviv T, Riven I, Dolev I, Vertkin I, Balana B, Slesinger PA, Slutsky I. 2010. Basal GABA regulates GABA(B)R 
conformation and release probability at single hippocampal synapses. Neuron 67:253–267. DOI: https://doi.​
org/10.1016/j.neuron.2010.06.022, PMID: 20670833

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–444. DOI: https://doi.org/10.1038/​
nature14539, PMID: 26017442

Lillicrap TP, Santoro A, Marris L, Akerman CJ, Hinton G. 2020. Backpropagation and the brain. Nature Reviews. 
Neuroscience 21:335–346. DOI: https://doi.org/10.1038/s41583-020-0277-3, PMID: 32303713

Lohani S, Moberly AH, Benisty H, Landa B, Jing M, Li Y, Higley MJ, Cardin JA. 2020. Dual color mesoscopic 
imaging reveals spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. bioRxiv. 
DOI: https://doi.org/10.1101/2020.12.09.418632

Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013. Context-dependent computation by recurrent dynamics in 
prefrontal cortex. Nature 503:78–84. DOI: https://doi.org/10.1038/nature12742, PMID: 24201281

Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, 
Barone P, Dehay C, Knoblauch K, Kennedy H. 2014. Anatomy of hierarchy: feedforward and feedback pathways 
in macaque visual cortex. The Journal of Comparative Neurology 522:225–259. DOI: https://doi.org/10.1002/​
cne.23458, PMID: 23983048

https://doi.org/10.7554/eLife.76096
https://doi.org/10.1523/ENEURO.0506-19.2020
http://www.ncbi.nlm.nih.gov/pubmed/32737181
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
https://doi.org/10.1016/j.neuron.2019.06.005
http://www.ncbi.nlm.nih.gov/pubmed/31487527
https://doi.org/10.7554/eLife.65096
http://www.ncbi.nlm.nih.gov/pubmed/33942722
https://doi.org/10.1016/S0079-6123(03)45015-2
https://doi.org/10.1016/S0079-6123(03)45015-2
http://www.ncbi.nlm.nih.gov/pubmed/14650918
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1007/3-540-44668-0
https://doi.org/10.1038/nn.4247
http://www.ncbi.nlm.nih.gov/pubmed/26900926
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1016/s0893-6080(00)00026-5
http://www.ncbi.nlm.nih.gov/pubmed/10946390
https://doi.org/10.1371/journal.pcbi.1006027
https://doi.org/10.1371/journal.pcbi.1006027
http://www.ncbi.nlm.nih.gov/pubmed/29522509
https://doi.org/10.1038/s41593-019-0392-5
https://doi.org/10.1038/s41593-019-0392-5
http://www.ncbi.nlm.nih.gov/pubmed/31036945
https://doi.org/10.1038/nn1956
http://www.ncbi.nlm.nih.gov/pubmed/17704774
https://doi.org/10.1016/j.neuron.2018.10.003
http://www.ncbi.nlm.nih.gov/pubmed/30359606
https://doi.org/10.1073/pnas.1905544116
https://doi.org/10.1073/pnas.1905544116
http://www.ncbi.nlm.nih.gov/pubmed/31591217
https://doi.org/10.3389/neuro.06.004.2008
http://www.ncbi.nlm.nih.gov/pubmed/19104670
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.1146/annurev-vision-082114-035447
http://www.ncbi.nlm.nih.gov/pubmed/28532370
https://doi.org/10.1038/nn.4436
http://www.ncbi.nlm.nih.gov/pubmed/27798631
https://doi.org/10.1093/cercor/bhh065
http://www.ncbi.nlm.nih.gov/pubmed/15115747
https://doi.org/10.1016/j.neuron.2010.06.022
https://doi.org/10.1016/j.neuron.2010.06.022
http://www.ncbi.nlm.nih.gov/pubmed/20670833
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1038/s41583-020-0277-3
http://www.ncbi.nlm.nih.gov/pubmed/32303713
https://doi.org/10.1101/2020.12.09.418632
https://doi.org/10.1038/nature12742
http://www.ncbi.nlm.nih.gov/pubmed/24201281
https://doi.org/10.1002/cne.23458
https://doi.org/10.1002/cne.23458
http://www.ncbi.nlm.nih.gov/pubmed/23983048


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Naumann et al. eLife 2022;11:e76096. DOI: https://​doi.​org/​10.​7554/​eLife.​76096 � 26 of 27

Marques T, Nguyen J, Fioreze G, Petreanu L. 2018. The functional organization of cortical feedback inputs to 
primary visual cortex. Nature Neuroscience 21:757–764. DOI: https://doi.org/10.1038/s41593-018-0135-z, 
PMID: 29662217

McAdams CJ, Maunsell JH. 1999. Effects of attention on orientation-tuning functions of single neurons in 
macaque cortical area V4. The Journal of Neuroscience 19:431–441. DOI: https://doi.org/10.1523/JNEUROSCI.​
19-01-00431.1999, PMID: 9870971

McDermott JH. 2009. The cocktail party problem. Current Biology 19:R1024–R1027. DOI: https://doi.org/10.​
1016/j.cub.2009.09.005, PMID: 19948136

Miller RJ. 1998. Presynaptic receptors. Annual Review of Pharmacology and Toxicology 38:201–227. DOI: 
https://doi.org/10.1146/annurev.pharmtox.38.1.201, PMID: 9597154

Molyneaux BJ, Hasselmo ME. 2002. GABA(B) presynaptic inhibition has an in vivo time constant sufficiently rapid 
to allow modulation at theta frequency. Journal of Neurophysiology 87:1196–1205. DOI: https://doi.org/10.​
1152/jn.00077.2001, PMID: 11877493

Naumann LB, Sprekeler H. 2020. Presynaptic inhibition rapidly stabilises recurrent excitation in the face of 
plasticity. PLOS Computational Biology 16:e1008118. DOI: https://doi.org/10.1371/journal.pcbi.1008118, 
PMID: 32764742

Naumann LB. 2022. sprekelerlab/feedback_modulation_Naumann22. 
swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e. Software Heritage. https://archive.​
softwareheritage.org/swh:1:dir:ee3aa6ce292eea649252b7f5b3175b3561e7d8ed;origin=https://github.com/​
sprekelerlab/feedback_modulation_Naumann22;visit=swh:1:snp:7225dc0edc82b286290d94bb47dd5109​
3317e3dc;anchor=swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e

Nayebi A, Sagastuy-Brena J, Bear DM, Kar K, Kubilius J, Ganguli S, Sussillo D, DiCarlo JJ, Yamins DL. 2021. 
Goal-Driven Recurrent Neural Network Models of the Ventral Visual Stream. bioRxiv. DOI: https://doi.org/10.​
1101/2021.02.17.431717

Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 
65:472–479. DOI: https://doi.org/10.1016/j.neuron.2010.01.033, PMID: 20188652

Oberfeld D, Klöckner-Nowotny F. 2016. Individual differences in selective attention predict speech identification 
at a cocktail party. eLife 5:e16747. DOI: https://doi.org/10.7554/eLife.16747, PMID: 27580272

Olshausen BA, Anderson CH, Van Essen DC. 1993. A neurobiological model of visual attention and invariant 
pattern recognition based on dynamic routing of information. The Journal of Neuroscience 13:4700–4719. 
DOI: https://doi.org/10.1523/JNEUROSCI.13-11-04700.1993, PMID: 8229193

Pardi MB, Vogenstahl J, Dalmay T, Spanò T, Pu DL, Naumann LB, Kretschmer F, Sprekeler H, Letzkus JJ. 2020. A 
thalamocortical top-down circuit for associative memory. Science (New York, N.Y.) 370:844–848. DOI: https://​
doi.org/10.1126/science.abc2399, PMID: 33184213

Parthasarathy A, Hancock KE, Bennett K, DeGruttola V, Polley DB. 2020. Bottom-up and top-down neural 
signatures of disordered multi-talker speech perception in adults with normal hearing. eLife 9:e51419. DOI: 
https://doi.org/10.7554/eLife.51419, PMID: 31961322

Pascanu R, Mikolov T, Bengio Y. 2013. On the Difficulty of Training Recurrent Neural Networks. arXiv. https://​
arxiv.​org/​abs/​1211.​5063

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L. 2019. 
Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information 
Processing Systems. 8026–8037.

Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC, Lee SH, Harrison TC, Feng G, Dan Y. 2013. Fast modulation of 
visual perception by basal forebrain cholinergic neurons. Nature Neuroscience 16:1857–1863. DOI: https://doi.​
org/10.1038/nn.3552, PMID: 24162654

Polack PO, Friedman J, Golshani P. 2013. Cellular mechanisms of brain state-dependent gain modulation in 
visual cortex. Nature Neuroscience 16:1331–1339. DOI: https://doi.org/10.1038/nn.3464, PMID: 23872595

Poorthuis RB, Bloem B, Schak B, Wester J, de Kock CPJ, Mansvelder HD. 2013. Layer-specific modulation of the 
prefrontal cortex by nicotinic acetylcholine receptors. Cerebral Cortex (New York, N.Y) 23:148–161. DOI: 
https://doi.org/10.1093/cercor/bhr390, PMID: 22291029

Purushothaman G, Marion R, Li K, Casagrande VA. 2012. Gating and control of primary visual cortex by pulvinar. 
Nature Neuroscience 15:905–912. DOI: https://doi.org/10.1038/nn.3106, PMID: 22561455

Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. 2005. Invariant visual representation by single neurons in the 
human brain. Nature 435:1102–1107. DOI: https://doi.org/10.1038/nature03687, PMID: 15973409

Reynolds JH, Heeger DJ. 2009. The normalization model of attention. Neuron 61:168–185. DOI: https://doi.org/​
10.1016/j.neuron.2009.01.002, PMID: 19186161

Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nature Neuroscience 
2:1019–1025. DOI: https://doi.org/10.1038/14819, PMID: 10526343

Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB. 2016. Thalamic nuclei convey diverse contextual 
information to layer 1 of visual cortex. Nature Neuroscience 19:299–307. DOI: https://doi.org/10.1038/nn.​
4197, PMID: 26691828

Sabatini BL, Tian L. 2020. Imaging Neurotransmitter and Neuromodulator Dynamics In Vivo with Genetically 
Encoded Indicators. Neuron 108:17–32. DOI: https://doi.org/10.1016/j.neuron.2020.09.036, PMID: 33058762

Salinas E, Abbott LF. 1997. Invariant visual responses from attentional gain fields. Journal of Neurophysiology 
77:3267–3272. DOI: https://doi.org/10.1152/jn.1997.77.6.3267, PMID: 9212273

Salinas E, Thier P. 2000. Gain modulation: a major computational principle of the central nervous system. Neuron 
27:15–21. DOI: https://doi.org/10.1016/s0896-6273(00)00004-0, PMID: 10939327

https://doi.org/10.7554/eLife.76096
https://doi.org/10.1038/s41593-018-0135-z
http://www.ncbi.nlm.nih.gov/pubmed/29662217
https://doi.org/10.1523/JNEUROSCI.19-01-00431.1999
https://doi.org/10.1523/JNEUROSCI.19-01-00431.1999
http://www.ncbi.nlm.nih.gov/pubmed/9870971
https://doi.org/10.1016/j.cub.2009.09.005
https://doi.org/10.1016/j.cub.2009.09.005
http://www.ncbi.nlm.nih.gov/pubmed/19948136
https://doi.org/10.1146/annurev.pharmtox.38.1.201
http://www.ncbi.nlm.nih.gov/pubmed/9597154
https://doi.org/10.1152/jn.00077.2001
https://doi.org/10.1152/jn.00077.2001
http://www.ncbi.nlm.nih.gov/pubmed/11877493
https://doi.org/10.1371/journal.pcbi.1008118
http://www.ncbi.nlm.nih.gov/pubmed/32764742
https://archive.softwareheritage.org/swh:1:dir:ee3aa6ce292eea649252b7f5b3175b3561e7d8ed;origin=https://github.com/sprekelerlab/feedback_modulation_Naumann22;visit=swh:1:snp:7225dc0edc82b286290d94bb47dd51093317e3dc;anchor=swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e
https://archive.softwareheritage.org/swh:1:dir:ee3aa6ce292eea649252b7f5b3175b3561e7d8ed;origin=https://github.com/sprekelerlab/feedback_modulation_Naumann22;visit=swh:1:snp:7225dc0edc82b286290d94bb47dd51093317e3dc;anchor=swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e
https://archive.softwareheritage.org/swh:1:dir:ee3aa6ce292eea649252b7f5b3175b3561e7d8ed;origin=https://github.com/sprekelerlab/feedback_modulation_Naumann22;visit=swh:1:snp:7225dc0edc82b286290d94bb47dd51093317e3dc;anchor=swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e
https://archive.softwareheritage.org/swh:1:dir:ee3aa6ce292eea649252b7f5b3175b3561e7d8ed;origin=https://github.com/sprekelerlab/feedback_modulation_Naumann22;visit=swh:1:snp:7225dc0edc82b286290d94bb47dd51093317e3dc;anchor=swh:1:rev:05373b093803e464082ad5b9e8ab2dbbf43bb23e
https://doi.org/10.1101/2021.02.17.431717
https://doi.org/10.1101/2021.02.17.431717
https://doi.org/10.1016/j.neuron.2010.01.033
http://www.ncbi.nlm.nih.gov/pubmed/20188652
https://doi.org/10.7554/eLife.16747
http://www.ncbi.nlm.nih.gov/pubmed/27580272
https://doi.org/10.1523/JNEUROSCI.13-11-04700.1993
http://www.ncbi.nlm.nih.gov/pubmed/8229193
https://doi.org/10.1126/science.abc2399
https://doi.org/10.1126/science.abc2399
http://www.ncbi.nlm.nih.gov/pubmed/33184213
https://doi.org/10.7554/eLife.51419
http://www.ncbi.nlm.nih.gov/pubmed/31961322
https://doi.org/10.1038/nn.3552
https://doi.org/10.1038/nn.3552
http://www.ncbi.nlm.nih.gov/pubmed/24162654
https://doi.org/10.1038/nn.3464
http://www.ncbi.nlm.nih.gov/pubmed/23872595
https://doi.org/10.1093/cercor/bhr390
http://www.ncbi.nlm.nih.gov/pubmed/22291029
https://doi.org/10.1038/nn.3106
http://www.ncbi.nlm.nih.gov/pubmed/22561455
https://doi.org/10.1038/nature03687
http://www.ncbi.nlm.nih.gov/pubmed/15973409
https://doi.org/10.1016/j.neuron.2009.01.002
https://doi.org/10.1016/j.neuron.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19186161
https://doi.org/10.1038/14819
http://www.ncbi.nlm.nih.gov/pubmed/10526343
https://doi.org/10.1038/nn.4197
https://doi.org/10.1038/nn.4197
http://www.ncbi.nlm.nih.gov/pubmed/26691828
https://doi.org/10.1016/j.neuron.2020.09.036
http://www.ncbi.nlm.nih.gov/pubmed/33058762
https://doi.org/10.1152/jn.1997.77.6.3267
http://www.ncbi.nlm.nih.gov/pubmed/9212273
https://doi.org/10.1016/s0896-6273(00)00004-0
http://www.ncbi.nlm.nih.gov/pubmed/10939327


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Naumann et al. eLife 2022;11:e76096. DOI: https://​doi.​org/​10.​7554/​eLife.​76096 � 27 of 27

Salinas E, Sejnowski TJ. 2001. Gain modulation in the central nervous system: where behavior, neurophysiology, 
and computation meet. The Neuroscientist 7:430–440. DOI: https://doi.org/10.1177/107385840100700512, 
PMID: 11597102

Sampathkumar V, Miller-Hansen A, Sherman SM, Kasthuri N. 2021. Integration of signals from different cortical 
areas in higher order thalamic neurons. PNAS 118:e2104137118. DOI: https://doi.org/10.1073/pnas.​
2104137118, PMID: 34282018

Sherman SM, Guillery RW. 1998. On the actions that one nerve cell can have on another: distinguishing “drivers” 
from “modulators.” PNAS 95:7121–7126. DOI: https://doi.org/10.1073/pnas.95.12.7121, PMID: 9618549

Sherman SM. 2016. Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience 19:533–
541. DOI: https://doi.org/10.1038/nn.4269, PMID: 27021938

Shine JM, Müller EJ, Munn B, Cabral J, Moran RJ, Breakspear M. 2021. Computational models link cellular 
mechanisms of neuromodulation to large-scale neural dynamics. Nature Neuroscience 24:765–776. DOI: 
https://doi.org/10.1038/s41593-021-00824-6, PMID: 33958801

Spoerer CJ, McClure P, Kriegeskorte N. 2017. Recurrent Convolutional Neural Networks: A Better Model of 
Biological Object Recognition. Frontiers in Psychology 8:1551. DOI: https://doi.org/10.3389/fpsyg.2017.01551, 
PMID: 28955272

Stroud JP, Porter MA, Hennequin G, Vogels TP. 2018. Motor primitives in space and time via targeted gain 
modulation in cortical networks. Nature Neuroscience 21:1774–1783. DOI: https://doi.org/10.1038/s41593-​
018-0276-0, PMID: 30482949

Thorat S, Aldegheri G, Kietzmann TC. 2021. Category-Orthogonal Object Features Guide Information 
Processing in Recurrent Neural Networks Trained for Object Categorization. arXiv. https://​arxiv.​org/​abs/​2111.​
07898

Thurley K, Senn W, Lüscher H-R. 2008. Dopamine increases the gain of the input-output response of rat 
prefrontal pyramidal neurons. Journal of Neurophysiology 99:2985–2997. DOI: https://doi.org/10.1152/jn.​
01098.2007, PMID: 18400958

Urban-Ciecko J, Fanselow EE, Barth AL. 2015. Neocortical somatostatin neurons reversibly silence excitatory 
transmission via GABAb receptors. Current Biology 25:722–731. DOI: https://doi.org/10.1016/j.cub.2015.01.​
035, PMID: 25728691

van den Brink RL, Pfeffer T, Donner TH. 2019. Brainstem Modulation of Large-Scale Intrinsic Cortical Activity 
Correlations. Frontiers in Human Neuroscience 13:340. DOI: https://doi.org/10.3389/fnhum.2019.00340, PMID: 
31649516

van Hemmen JL, Sejnowski TJ. 2006. How Does Our Visual System Achieve Shift and Size Invariance. van 
Hemmen JL (Ed). Problems in Systems Neuroscience. Oxford University Press. p. 322–340. DOI: https://doi.​
org/10.1093/acprof:oso/9780195148220.003.0016

Vinck M, Batista-Brito R, Knoblich U, Cardin JA. 2015. Arousal and locomotion make distinct contributions to 
cortical activity patterns and visual encoding. Neuron 86:740–754. DOI: https://doi.org/10.1016/j.neuron.2015.​
03.028, PMID: 25892300

Wang JX, Kurth-Nelson Z, Kumaran D, Tirumala D, Soyer H, Leibo JZ, Hassabis D, Botvinick M. 2018a. Prefrontal 
cortex as a meta-reinforcement learning system. Nature Neuroscience 21:860–868. DOI: https://doi.org/10.​
1038/s41593-018-0147-8, PMID: 29760527

Wang J, Narain D, Hosseini EA, Jazayeri M. 2018b. Flexible timing by temporal scaling of cortical responses. 
Nature Neuroscience 21:102–110. DOI: https://doi.org/10.1038/s41593-017-0028-6, PMID: 29203897

Werbos PJ. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE 
78:1550–1560. DOI: https://doi.org/10.1109/5.58337

Wiskott L, Sejnowski TJ. 2002. Slow feature analysis: unsupervised learning of invariances. Neural Computation 
14:715–770. DOI: https://doi.org/10.1162/089976602317318938, PMID: 11936959

Yamins DLK, DiCarlo JJ. 2016. Using goal-driven deep learning models to understand sensory cortex. Nature 
Neuroscience 19:356–365. DOI: https://doi.org/10.1038/nn.4244, PMID: 26906502

Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank MC, DiCarlo JJ, Yamins DLK. 2021. Unsupervised neural network 
models of the ventral visual stream. PNAS 118:e2014196118. DOI: https://doi.org/10.1073/pnas.2014196118, 
PMID: 33431673

https://doi.org/10.7554/eLife.76096
https://doi.org/10.1177/107385840100700512
http://www.ncbi.nlm.nih.gov/pubmed/11597102
https://doi.org/10.1073/pnas.2104137118
https://doi.org/10.1073/pnas.2104137118
http://www.ncbi.nlm.nih.gov/pubmed/34282018
https://doi.org/10.1073/pnas.95.12.7121
http://www.ncbi.nlm.nih.gov/pubmed/9618549
https://doi.org/10.1038/nn.4269
http://www.ncbi.nlm.nih.gov/pubmed/27021938
https://doi.org/10.1038/s41593-021-00824-6
http://www.ncbi.nlm.nih.gov/pubmed/33958801
https://doi.org/10.3389/fpsyg.2017.01551
http://www.ncbi.nlm.nih.gov/pubmed/28955272
https://doi.org/10.1038/s41593-018-0276-0
https://doi.org/10.1038/s41593-018-0276-0
http://www.ncbi.nlm.nih.gov/pubmed/30482949
https://doi.org/10.1152/jn.01098.2007
https://doi.org/10.1152/jn.01098.2007
http://www.ncbi.nlm.nih.gov/pubmed/18400958
https://doi.org/10.1016/j.cub.2015.01.035
https://doi.org/10.1016/j.cub.2015.01.035
http://www.ncbi.nlm.nih.gov/pubmed/25728691
https://doi.org/10.3389/fnhum.2019.00340
http://www.ncbi.nlm.nih.gov/pubmed/31649516
https://doi.org/10.1093/acprof:oso/9780195148220.003.0016
https://doi.org/10.1093/acprof:oso/9780195148220.003.0016
https://doi.org/10.1016/j.neuron.2015.03.028
https://doi.org/10.1016/j.neuron.2015.03.028
http://www.ncbi.nlm.nih.gov/pubmed/25892300
https://doi.org/10.1038/s41593-018-0147-8
https://doi.org/10.1038/s41593-018-0147-8
http://www.ncbi.nlm.nih.gov/pubmed/29760527
https://doi.org/10.1038/s41593-017-0028-6
http://www.ncbi.nlm.nih.gov/pubmed/29203897
https://doi.org/10.1109/5.58337
https://doi.org/10.1162/089976602317318938
http://www.ncbi.nlm.nih.gov/pubmed/11936959
https://doi.org/10.1038/nn.4244
http://www.ncbi.nlm.nih.gov/pubmed/26906502
https://doi.org/10.1073/pnas.2014196118
http://www.ncbi.nlm.nih.gov/pubmed/33431673

	Invariant neural subspaces maintained by feedback modulation
	Editor's evaluation
	Introduction
	Results
	Dynamic blind source separation by modulation of feedforward weights
	Invariance can be established by slow feedback modulation
	Invariance can be established by spatially diffuse feedback modulation
	Invariance emerges at the population level
	Feedback reorients the population representation
	The mechanism generalises to a hierarchical Dalean network
	Feedback conveys a nonlinear representation of the context

	Discussion
	Invariance in sensory processing
	Mechanisms of feedback-driven gain modulation
	Testable predictions
	Comparison to prior work
	Limitations and future work

	﻿Materials and methods﻿﻿﻿
	The dynamic blind source separation task
	Source signals
	Time-varying contexts

	Modulated feedforward network models
	Modulation of feedforward weights by a recurrent network
	Extension 1: Reducing the temporal specificity of feedback modulation
	Extension 2: Reducing the spatial specificity of feedback modulation
	Extension 3: Hierarchical rate-based network
	Training the model
	Testing and manipulating the model

	Unmodulated feedforward network models
	Linear regression
	Multilayer nonlinear network
	Multilayer network with sequences as input

	Data analysis
	Signal clarity
	Signal-to-noise ratio

	Linear decoding analysis
	Signal decoding
	Context decoding

	Population subspace analysis
	Code availability

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


