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Solar ultraviolet radiation (UVR) is an important environmental threat for
organisms in aquatic systems, but its temporally variable nature makes the
understanding of its effects ambiguous. The aim of our study was to
assess potential fitness costs associated with fluctuating UVR in the aquatic
zooplankter Daphnia magna. We investigated individual survival, reproduc-
tion and behaviour when exposed to different UVR treatments. Individuals
exposed to fluctuating UVR, resembling natural variations in cloud cover,
had the lowest fitness (measured as the number of offspring produced
during their lifespan). By contrast, individuals exposed to the same, but
constant UVR dose had similar fitness to control individuals (not exposed
to UVR), but they showed a significant reduction in daily movement. The
re-occurring threat response to the fluctuating UVR treatment thus had
strong fitness costs for D. magna, and we found no evidence for plastic
behavioural responses when continually being exposed to UVR, despite
the regular, predictable exposure schedule. In a broader context, our results
imply that depending on how variable a stressor is in nature, populations
may respond with alternative strategies, a framework that could promote
rapid population differentiation and local adaptation.
1. Introduction
In natural environments, organisms are exposed to various threats, and escaping
from them generally implies a cost, in both energy and missed opportunities for
feeding and reproduction. Depending on the nature, duration and predictabil-
ity of the threat, different life strategies could arise [1]. In aquatic systems, solar
ultraviolet radiation (UVR) is a temporally variable abiotic threat reported to
have negative effects on a range of different aquatic organisms from different
trophic levels, thereby structuring communities [2,3]. Increased mortality
rates and reduced reproduction of several zooplankton species have been docu-
mented in response to UVR [4,5], as well as the induction of avoidance
behaviours [6–8]. The zooplankton species Daphnia magna, in particular, has
been repeatedly shown to exhibit strong negative phototaxis in response to
UVR stress [8,9].

Most studies on effects of UVR have focused on effects from constant
exposure as the treatment [8,10–13], despite the intensity of UVR in nature fluc-
tuating strongly over short time scales with the position of the Sun and rapidly
occurring variations in cloudiness. Several studies include these natural vari-
ations in UVR in their experimental design, but they do not explicitly address
the costs of the fluctuating threat per se [4,14,15]. Yet, responding to these
short-term fluctuations in UVR through avoidance behaviour likely implies a
cost, in terms of both energy and missed opportunities for feeding and
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reproduction [8]. However, in a variable but predictable
environment, phenotypically plastic responses could improve
individual performance [16,17]. To our knowledge, no study
has addressed how long-term, continuous fluctuations in
UVR, mirroring the everyday environment in natural ecosys-
tems, affect survival, reproduction and behaviour within a
single generation. Therefore, the aim of this study was to
assess the costs of fluctuating exposure of UVR in Daphnia
magna, and we hypothesized that fluctuations in UVR
would reduce the number of offspring and the survival
of individuals owing to the allocation of energy to threat
response movements. We also hypothesized that there may
be behavioural plasticity in the individual responses, possibly
accounting for part of the considerable variance observed in
natural ecosystems.
 Lett.17:20210261
2. Methods
Juvenile female Daphnia magna (8 days old) were isolated from
laboratory cultures that had been kept under constant light and
temperature conditions without UVR. Three D. magna genotypes
were used in this experiment, originally isolated from different
lakes in southern Sweden. Each treatment had all three geno-
types represented, with each genotype replicated at least three
times per treatment (figure 1a). The individuals were isolated
from the third brood of single mother per genotype. The exper-
iment was terminated at the point when fewer than three
individuals were present in all treatments (45 days).

Individual females were placed into an experimental
aquarium (plexiglass tube 25 × 10 cm, height × diameter; water
volume = 1635 ml), where they were kept throughout the exper-
iment at a constant temperature of 19 ± 1°C and a 12 L: 12 D
photoperiod, and were fed with live Tetradesmus obliquus (Chlor-
ophyceae), ad libitum (details in the electronic supplementary
material). To ensure standardized environments, the water in
all aquaria was replaced once a week with fresh, aerated water
and T. obliquus.

The treatments were control (C), intermittent UVR (iUV) and
constant UVR (UV) (figure 1a). UVR was provided using one
lamp (UVA-340 nm; Q-panel, radiation = 108.1 ± 23.5 µW cm−2),
and daylight was provided throughout the duration of the
photoperiod via a combination of cool white lamps
(OSRAM L, 18W/21-840 and AURA T8 36W/830, radiation =
36.2 ± 6.2 µmol m−2 s−1). All the treatments were exposed to the
same daylight intensity over the 12 h light part of the photo-
period, whereas the iUV was exposed to UVR for two periods
of 15 min every hour throughout the day, mirroring fluctuating
sunlight, and the UV treatment was exposed to constant UVR
during 6 h a day (figure 1a), resembling a sunny day without
cloud cover. The position of the aquaria within each treatment
was randomized twice a week.

To determine the effects of the UVR and fluctuating
exposure, Daphnia survival and reproduction were monitored
during the entire experiment. Daphnia survival was checked
every day and offspring were removed from the aquaria twice
a week.

To assess Daphnia swimming behaviour, the individual
position in each aquarium was registered as ‘bottom’ or
‘surface’ when the animal was below or above a line drawn at
the middle of the aquarium (figure 1a). The recordings were
initiated just before the UV radiation was turned on in the iUV
treatment, followed by a recording about 30 s after the UV was
turned on. The recordings in all treatments followed this sche-
dule, summing up to 46 behavioural recordings during 11 h
in each treatment, on four recording occasions during the
experimental period.
(a) Data analysis
All analyses were performed using R v. 3.5.1 [18], and figures
were drawn using the package ‘tidyverse’ [19]. Daphnia survival
was analysed as a dependent variable, registered as the day of
death for each individual. Survival analysis was performed
using the package ‘survival’ [20], and Cox proportional hazard
regression model, using a survival object (day of death and sur-
vival status) as the dependent variable, and treatment and
genotype were used as explanatory variables.

The reproductive success of each Daphniawas assessed as the
total number of neonates produced per female until the end of
the experiment (day 45). A generalized linear model (GLM)
with Poisson error distribution was used to evaluate the effects
of treatments on total Daphnia reproduction, including also
time and genotype as explanatory variables.

For the behavioural analysis, the dependent variable was the
total number of changes in position performed per individual
female at each sampling date, and it was analysed using a gener-
alized linear mixed model (GLMM) with Poisson error
distribution, using the package ‘lme4’ [21]. Date, treatment and
genotype were the explanatory variables, and the individual
Daphnia was used as random effect. All R packages used
during the analysis are detailed in electronic supplementary
material, table 1.
3. Results
Considering Daphnia survival, there were no significant
differences among treatments (table 1 and electronic supple-
mentary material, figure S1). However, individuals exposed
to the fluctuating UVR treatment (iUV) showed the lowest
reproductive success, measured as the total amount of neo-
nates produced during the experiment (table 1, Tukey’s test,
p < 0.05; figure 1b). On the other hand, the UV treatment had
a similar reproductive output compared with unexposed con-
trols (Tukey’s test, p = 0.533). The fluctuating UVR exposure
reduced Daphnia reproductive output overall. Daphnia geno-
type was a significant variable in both survival and
reproduction models (table 1).

The individuals exposed to the UV treatment (6 h of con-
tinuous dose of UVR) performed the lowest number of
changes in position (table 1, Tukey’s test, p < 0.001; figure 2)
and were more often in the lower section of the aquarium
compared with the iUV treatment group (electronic sup-
plementary material, figure S2), whereas there was no
difference in the number of changes in position in the iUV
treatment compared with the controls (Tukey’s test, p =
0.761; figure 2 and electronic supplementary material,
figure S2). Similar to the life-history models, Daphnia geno-
type was a significant variable in the model (table 1). When
analysing differences in behaviour throughout the exper-
iment, date as an explanatory variable was not significant,
i.e. we found no evidence for behavioural plasticity.
4. Discussion
Despite the importance of solar UVR in aquatic ecosystems
[5,22], the consequences of natural fluctuations in UVR are
still unclear. Threat responses to UVR have been repeatedly
demonstrated among small invertebrates, such as Daphnia
[6,15]. As organisms need to allocate their limited energy to
body maintenance/growth, reproduction and movement,
any energy diverted to repeated threat responses will not
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Figure 1. (a) Diagram of the experimental design showing the three treatments: control (C), in white, exposed to cool white light and no UVR. Intermittent UVR
treatment (iUV), in lilac, exposed to constant cool white light and fluctuating UVR, which was turned on and off every 15 min during daylight. In violet, constant UVR
treatment (UV) exposed to cool white light and constant UVR during 6 h during daylight. ‘N =’ shows the number of replicates, and the dashed line in the middle of
the aquaria represents the criterion for registering Daphnia position as ‘bottom’ or ‘surface’ during the behavioural recordings. (b) Individual reproductive success (total
number of neonates produced per female during the experiment) for each treatment: control (white symbols), intermittent UV (lilac) and constant UV (violet).
Different-shaped symbols indicate different genotypes. The black line represents a Poisson curve adjusted to data, and the grey shading, the confidence interval
(95%). Different letters (a, b) in the graphs denote significant differences between treatments (GLM Poisson, χ2(d.f.) = 13.594(2), p = 0.001; Tukey’s test, p < 0.05).
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be available for the aforementioned activities [8]. We provide
here the first evidence that the variability associated with
how an environmental stressor is delivered causes aquatic
invertebrates to adopt alternative strategies, leading to
population-level consequences.

It is well established that both UV-A and UV-B solar radi-
ation have adverse effects on zooplankton [23]. While UV-B
radiation has the potential to damage most biological macro-
molecules (including DNA [24]), UV-A radiation generates
several by-products that cause oxidative stress to numerous
cellular components [25]. Owing to the predominant form of
UVR in this study being UV-A, it is plausible to assume that
the constant production of damaging chemical by-products
required equally constant repairing at the molecular level. In
zooplankton, this could be achieved through the utilization
of either the energetically costly nucleotide excision repair
process, or the less costly photo-enzymatic repair pathway,
the latter being specifically induced by UV-A radiation [26].
It has been demonstrated that the induction of these systems
increases the survival of individuals [27], and this could
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Table 1. Results of Cox proportional hazard model, GLM and GLMM for
survival, reproduction and behaviour, respectively. LR χ2 tests (χ2), degrees
of freedom (d.f.) and p-value for each explanatory variable and interactions
are shown.

dependent
variable

explanatory
variable χ2 d.f. p-value

survival treatment 3.216 2 0.200

genotype 14.321 2 <0.001

reproduction time 217.566 1 <0.001

treatment 15.263 2 <0.001

genotype 46.909 2 <0.001

time × treatment 13.594 2 0.001

behaviour date 1.420 1 0.233

treatment 30.314 2 <0.001

genotype 23.735 2 <0.001

date × treatment 3.981 2 0.137
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explain the absence of differences when considering survival
between treatments.

The cost of the repair process could instead be covered by
the redistribution of energy from other life-history traits, such
as reproduction. Our results showed that individuals exposed
to fluctuating UVR reduced the number of offspring pro-
duced in comparison with both non-exposed individuals
and, more interestingly, those that were constantly exposed
to UVR. This indicates that the dose of UVR did not deter-
mine the reproductive success; instead, it was the temporal
variability of the stressor driving the different responses. As
environmental variability can influence population growth
and fitness in many interrelated ways [28], the fluctuating
environment in our experimental set-up could have been dif-
ficult for the organisms to predict and respond to accordingly
and indeed affected the individual fitness. Our results
suggest that despite the presence of the stressor in both
UVR-exposure treatments, the constant environment could
represent a more benign environment. The predictability of
the stressor may allow behavioural adaptations to offset
fitness costs.

Behavioural responses are well documented in zooplank-
ton exposed to UVR [5–7]. In contrast to the reproductive
output, the behaviour of individuals exposed to fluctuating
UVR closely resembled the behaviour of the non-UVR-
exposed Daphnia. Constantly exposed individuals, however,
showed a dramatic reduction in daily movement. We con-
sidered the possibility that over time Daphnia can plastically
adapt behaviourally, but we found no evidence supporting
plastic behavioural responses in this experiment. Daphnia
have long been established to be negatively phototactic,
with extreme avoidance of UVR [9]. UVR has, in fact, been
proposed as one of the key drivers in the iconic diel vertical
migration pattern that Daphnia and many other zooplankton
perform [6]. Although the costs of diel vertical migration
have been assumed negligible [29,30], there has been some
controversy over the energetics of such movements [8]. Our
results clarify this by showing that the movements to repeat-
edly avoid UVR may, indeed, increase energy demands. This
is based on the observation that the iUV-treated group was
the only one that had a reduction in reproductive output.
On the other hand, the group exposed to constant UV
showed reduced movement, staying in deeper water during
exposure, with no identifiable consequence to reproduction.

We recognize that in more natural settings, the hetero-
geneity of the environment would allow behaviour to play
a larger part in determining the optimal strategy for
maximizing fitness. For example, diel vertical migration,
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for which many zooplankton species are renowned,
drastically alters exposure to UVR. Hence, extrapolating be-
havioural results from controlled experiments into natural
environments should be done with caution. Despite these
precautions, we show here that Daphnia have the potential
to adopt alternative strategies for dealing with either constant
exposure or repeatedly fluctuating UVR, and the response to
the more variable environment represents a higher reproduc-
tive cost. It has been demonstrated that other threats, such as
predation, can cause rapid, local adaptations [31,32]; in a
broader context, the significant effect of genotype in our
study implies that, depending on how variable a stressor is
in nature, the population responses can be different, generat-
ing a framework that likely can promote rapid population
differentiation and local adaptation.
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