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Type 2 diabetes mellitus (T2DM) is no more a lifestyle disease of developed countries. 
It has emerged as a major health problem worldwide including developing countries. 
However, how diabetes could be detected at an early stage (prediabetes) to prevent 
the progression of disease is still unclear. Currently used biomarkers like glycated 
hemoglobin and assessment of blood glucose level have their own limitations. These 
classical markers can be detected when the disease is already established. Prognosis 
of disease at early stages and prediction of population at a higher risk require identifi-
cation of specific markers that are sensitive enough to be detected at early stages of 
disease. Biomarkers which could predict the risk of disease in people will be useful for 
developing preventive/proactive therapies to those individuals who are at a higher risk 
of developing the disease. Recent studies suggested that the expression of biomol-
ecules including microRNAs, proteins, and metabolites specifically change during the 
progression of T2DM and related complications, suggestive of disease pathology. Owing 
to their omnipresence in body fluids and their association with onset, progression, and 
pathogenesis of T2DM, these biomolecules can be potential biomarker for prognosis, 
diagnosis, and management of disease. In this article, we summarize biomolecules that 
could be potential biomarkers and their signature changes associated with T2DM and 
related complications during disease pathogenesis.
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iNTRODUCTiON

Type 2 diabetes mellitus (T2DM) is a metabolic disorder which is the cause of serious concern 
worldwide. According to the International Diabetes Federation report, global burden of diabetes 
affected population will be increased to ~592 million by the year 2035 (1). Developing countries 
like India will have ~109 million of affected people, making diabetes no more a developed world 
disease. Characterized by hyperglycemia, T2DM is a group of metabolic disorders resulting from 
defects in insulin secretion, action or both (2). After the onset of disease, T2DM further leads 
to macrovascular, microvascular, and neurological complications. The clinical manifestation of a 
complex metabolic disease like T2DM is delayed by years, thereby restricting its timely diagnosis.  
It has been demonstrated that there is a significant relative risk reduction of cardiovascular 
Diseases (CVDs) and all-cause mortality in individuals undergoing regular medical examination 
emphasizing the importance of early diagnosis of the disease (3). Thus, the identification of high-
risk individuals even before the prediabetes stage, when the beta cells are relatively intact, is of 
paramount importance for effective intervention, preventing progression to overt disease.
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Despite several advances in understanding of disease estab-
lishment, progression, and related pharmacotherapy, there 
has been a sustained increase in diabetes-affected population. 
The availability of effective interventions for prevention and 
delaying the onset of T2DM has created urgency for the early 
identification of individuals at risk. Besides, as larger proportion 
of affected population now comes from developing countries, 
cost-effectiveness and affordability of diagnostic tests are also an 
issue. The practical difficulty in procuring samples to test blood 
glucose and serum insulin levels, the intra-individual variability 
in blood glucose levels (4), the high-risk familial genes adding no 
value in predicting the onset of the disease (5), and the fact that 
only 20% of the obese individuals are actually at a risk of develop-
ing full-blown T2DM (6) limits the use of existing biomarkers.

A biomarker is a biomolecule/biological state that could 
be used for the prognosis, diagnosis, and follow-up of the 
pathological state of a disease. These could also be used to assess 
the severity of disease. There are different kinds of biomarkers 
[including biomolecules like proteins, microRNAs (miRNA), 
etc.] that are being used for the diagnosis of many diseases like 
T2DM, cancer, neurological diseases, etc. (7, 8). Pathophysiology 
of T2DM is substantially contributed by adipocyte signaling (9), 
inflammation (10), endothelial dysfunction (11), iron overload 
(12), incretin abnormalities (13), and inconsistencies in cir-
cadian systems (14, 15). Biomarkers that are designed taking 
into account these parameters would help improve screening 
approaches for T2DM.

CURReNT UNDeRSTANDiNG OF 
DiAGNOSTiC MARKeRS FOR T2DM

The current diagnostic thresholds for T2DM according to Expert 
Committee on the Diagnosis and Classification of Diabetes are 
fasting plasma glucose (FPG) of ≥126 mg/dl (7.0 mmol/l) and 
2-h post-prandial plasma glucose of ≥200 mg/dl (11.1 mmol/l) 
and HbA1c of ≥6.5% (47.5  mmol/mol). These criteria are 
largely based on an association of cross-sectional glycemic and 
HbA1c levels, respectively, with diabetic retinopathy (2, 16).  
Prediabetes is an intermediate group of individuals whose 
plasma glucose levels range between normoglycemia and 
diabetes. The fasting glucose concentration of 110–125 mg/dl 
(6.1–6.9  mmol/l) by World Health Organization (WHO) and 
100–125  mg/dl (5.6–6.9  mmol/l) by American diabetes asso-
ciation (ADA) [also termed impaired fasting glucose (IFG)], 
and ADA and WHO recommended 2-h glucose concentration 
cutoffs of 140–199  mg/dl (7.8–11.0  mmol/l) [also termed 
impaired glucose tolerance (IGT)] specifically define the condi-
tion of prediabetes and their long-term outcomes (16). People 
with IFG, IGT (2  h after meal), or abnormal HbA1c values 
have a higher risk of developing T2DM and associated patho-
physiology. Several clinical characteristics have been associated 
with T2DM (17). Apart from blood glucose level and HbA1c, 
other parameters like levels of blood cholesterol, lipoproteins, 
C-peptide, blood pressure, etc. are also taken into account to pre-
dict T2DM (18). However, except for blood glucose assessment 
and HbA1c, all other parameters are not specific to T2DM (18).  

Moreover, hyperglycemia assessed by fasting glucose and 2-h 
blood glucose estimation only gives an idea of the glucose level 
at a single time point. Hence, testing them more than once is 
required. Also, the complexity of clinical condition cannot be 
fully described by blood glucose level. HbA1c is a more reliable 
measurement than fasting glucose level as it indicates the aver-
age levels of plasma glucose over several weeks and is better 
correlated with chronic complications. HbA1c assessment does 
not require fasting and has a greater pre-analytical stability 
than plasma glucose. Hyperglycemia is the main biochemical 
phenomenon associated with diabetes which further leads to 
elevation in glycated proteins (HbA1c). However, there is a time 
gap between hyperglycemia and rise in glycated hemoglobin 
level, resulting in delayed diagnosis of the onset of diabetes 
using HbA1c levels. Standardization of HbA1c assay is required, 
whereas glucose assay is standardized and easier to implement. 
Moreover, most of these classical biomarkers are useful only 
after the establishment of disease and fails to predict disease at 
a prediabetic condition. Besides, classical markers are incon-
clusive to predict the pathogenesis of T2DM which eventually 
leads to severe complications including chronic heart disease, 
diabetic nephropathy (DN), retinopathy, etc. Thus, novel, more 
specific, noninvasive, stage-related biomarkers that are accurate 
in the diagnosis of initiation and progression of T2DM are 
needed.

eMeRGiNG ROLe OF miRNAs AS 
BiOMARKeRS iN TYPe 2 DiABeTeS  
AND ReLATeD COMPLiCATiONS

MicroRNAs are small, 20–25 nt long noncoding RNA molecules 
which normally binds to the 3′ end of its target mRNAs to inhibit 
its translation, eventually leading to a reduced gene expression 
(19). miRNAs can target multiple genes and are involved in the 
regulation of multiple functions in cells. It has been estimated 
that miRNA target site is conserved in the 3′  UTR of more than 
60% of all mammalian mRNAs; thus, miRNAs are likely to be 
important regulators in the cell (20). Owing to their stability and 
presence in various body fluids, miRNAs emerged as potential 
biomarkers for T2DM and related complications. Besides, the 
differential expression of miRNAs in various tissues has been 
reported in T2DM and related complications (Table  1). It has 
been suggested that miR-103 and miR-143 may regulate the 
subcutaneous adipose tissue and the development of T2DM in 
mice. miR-103 may also be involved in the regulation of adipose 
and the control of glucose metabolism in humans (21). Platelet-
derived miR-103 was found to negatively regulate the expression 
of secreted frizzled-related protein 4, which is a potential risk 
biomarker for the onset of diabetes mellitus (prediabetes). miR-
103 was downregulated in individuals with prediabetes (22). 
The expression of various miRNAs is altered in patients with 
diabetes-related complications including microvascular compli-
cations (23). It has been suggested that the expression of miRNAs 
in different tissues and body fluids also reflects disease pathology. 
For instance, the expression of five miRNAs miR-661, miR-571, 
miR-770-5p, miR-892b, and miR-1303 were increased in T2DM 
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TABLe 1 | MicroRNAs (miRNAs) associated with type 2 diabetes mellitus (T2DM) and associated complications.

S. No. miRNA Target expression level Reference

1. Obesity and T2DM miR-124a Mtpn, Foxa2, Flot2, Akt3, Sirt1, and NeuroD1 Up (22)
2. miR-101 Up (44)
3. miR-802 Up (44)
4. miR-96 Noc2 Down (35)
5. miR-103 SFRP4 Up (45)
6. miR-375 Mtpn, PDK1 Up/down (44)
7. miR-23a SMAD4 Up (21)
8. miR-132 NF-kappa B Down (46)
9. miR-34a SIRT1 Down (46)

10. miR-145 ADAM17 Down (21)
11. miR-221 CAV-1 Up (46)
12. miR-144 IRS-1 Up (21)
13. miR-146a TRAF6 Up (21)
14. miR-29 Spry1, AKT3 Up (21)
15. miR-34a FGFR1, BetaKL Up (21)
16. miR-15a UP2 Down (34)
17. miR-126 IRS-1 Down (34, 46)
18. miR-29b DNMT1 Down (34)
19. miR-223 Glut4, HDAC4, Pknox1, Nfat5 Down (34)
20. miR-335 Mest Up (47)
21. miR-107 CAV-1 Up (47)
22. miR-223 STAT3 Up (46)
23. miR-143 ORP8, AKT Up (48)
24. miR-935 CNR1, ESR1 Up (46)

25. Diabetic retinopathy miR-146a Fibronectin Down (49)
26. miR-200b VEGF Down (50)
27. miR-29b RAX Up (40)
28. miR-195 SIRT1 Up (51)
29. miR-486 p53 Up (52)

30. Diabetic nephropathy miR-192 SIP1, ZEB1/ZEB2 Up (53–55)
31. miR-21 PTEN, PI3K, Akt Up (56, 57)
32. miR-377 PAK/SOD Up (58)
33. miR-216a PTEN, Ybx1 Up (59, 60)
34. miR-217 PTEN Up (60)
35. miR-93 VEGF Up (61)
36. miR-146a Up (62)
37. miR-155 Up (63)
38. miR-25 NOX-4 Down (64)
39. miR-215 ZEB2 Down (55)
40. miR-29a/b/c Col1, Col4 Down (65)
41. miR-135 TRPC1 Up (66)
42. miR-150-5p Up (41)
43. miR-362-3p Up (41)
44. miR-877-3p Up (41)
45. miR-15-5p Down (41)

46. Diabetic cardiovascular disease miR-16 Cox-2 Down (67)
47. miR-133 RhoA, Cdc42 Down (68)
48. miR-223 GLUT4 Up (69)
49. miR-492 Resistin Down (70)
50. miR-320 IGF-1 Up (24)
51. miR-503 Ccne1, Cdc25A Up (25)
52. miR-373 Mef2C Down (71)
53. miR-1 Pim-1 Up (72)
54. miR-504 Grb10, Egr2 Up (73)
55. miR-24 Down (74)

56. Diabetic neuropathy miR-184-5p (75)
57. miR-190a-5p (75)
58. miR-182 NOX-4 Up (23)
59. miR-146a Up (76)
60. miR-29b Smad3 Down (77)
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(23). miR-126, miR-320, and miR-503 have also been shown to 
be involved in diabetic cardiovascular disease and endothelial 
function (24–27). miR-320 expression was also elevated in dia-
betic rat models (26). Increased levels of miR-18a and decreased 
levels of miR-34c in peripheral blood mononuclear cells are 
important markers of chronic stress response and may play a role 
in T2DM-risk assessment (28). miR-375, an miRNA expressed in 
pancreas reduces the level of PDK1 kinase, leading to a decreased 
glucose-stimulated insulin gene expression. The role of miR-375 
seems to be conserved across species including humans and mice. 
miR-375 plays a role in the process of re-differentiating mature 
human beta cells in vitro and hence can be useful for cell replace-
ment therapy in diabetes. An increased expression of miR-375 
in expanded islet cells dampens the PDK1–AKT pathway, as 
well as GSK3-signaling pathways leading to the regeneration of 
insulin-producing beta cells (29). Besides, the overexpression 
of miR-375 suppresses glucose-stimulated insulin secretion by 
downregulating the expression of myotrophin (30, 31). Defective 
insulin secretion is observed in many T2DM instances, and miR-
126 seems to play an important role in this process and exhibits a 
negative relationship with T1DM and T2DM (32, 33). In relation 
to T2DM, a unique circulatory miRNA signature has been identi-
fied (34). The levels of four miRNAs miR-126, miR-15a, miR-29b, 
and miR-223 decrease while miR-28-3p level increases in case of 
T2DM. These miRNAs are significantly modulated even before 
the manifestation of the disease, making these small molecules 
valuable as a prognostic marker for the prediction of T2DM 
(34). Imbalance in the exocytotic machinery components leads 
to impaired insulin secretion by the pancreatic β-cells, resulting 
in T2DM. Studies have shown the significance of miRNA in the 
regulation of glucose-stimulated insulin translation, secretion, 
and exocytosis by pancreatic cells (35–37). Increased levels of 
miR-335 lead to impaired insulin secretion (38). miR-196a was 
shown to be regulating the insulin biosynthesis, and its role was 
suggested to be important during early embryonic develop-
ment (36). Interestingly, it was shown that the restoration of 
specific miRNAs can attenuate the progression of disease in 
animal models. For instance, the rescue of a reduced level of 
miR-181b in epithelial cells of adipose tissue in a mouse model 
of obesity leads to an improvement in glucose homeostasis and 
insulin sensitivity (39). Silent mating type information regula-
tion 2 homolog 1 (Sirt1) is involved in neuroprotection and 
wound healing. Sirt1 regulates the expression of miR-182 which 
further overcomes the detrimental effects of hyperglycemia by 
decreasing the expression of NOX4, leading to corneal nerve 
regeneration (40). Progression of diabetes leads to complications 
like diabetic kidney disease (DKD). In comparison to diabetic 
individuals, patients with DKD were found to be differentially 
expressing (>2-fold) 496 urinary exosome-derived miRNA spe-
cies. Four of these were further validated, and it was reported that 
miR-362-3p, miR-877-3p, and miR-150-5p were upregulated, 
while miR-15a-5p was downregulated. These miRNAs might 
be involved in the regulation of DKD through p53, mTOR, and 
AMPK pathways (41). Similarly, various miRNAs were found to 
be involved in endothelial function and diabetic cardiovascular 
diseases (CVD) (42, 43). For instance, miR-126 exhibits a lower 
expression in coronary artery disease and myocardial infarction 

patients compared with healthy controls. It was suggested that 
miR-126 regulates endothelial cells by targeting sprout-related 
protein via Ras/ERK/VEGF and PI3K/Akt/eNOS pathways (43).

PROTeiNS AS SPeCiFiC MARKeR FOR 
T2DM

Proteomic analysis of serum, plasma, and other body fluids 
using 2D-liquid chromatography and mass spectrometric 
analysis identified many proteins as biomarkers for T2DM 
and related complications (Figure  1). Fat accumulation in 
human body before the onset of T2DM promotes the release 
of adipokines from adipocytes including adiponectin, leptin, 
glycoalbumin, and retinol-binding protein 4 (RBP4). Among 
these, adiponectin and leptin are relatively common and are 
occasionally used as biomarker for diabetes screening. Glycated 
albumin is also expressed as some percentage of serum albumin 
and is involved in only short-term glycemic control (78). RBP4 is 
another adipocyte-derived factor, reported to be involved in the 
onset of adiposity and insulin resistance. It is mainly produced 
in the liver and acts on muscle and/or liver via mechanisms that 
are either retinol-dependent or independent (79). Yang et  al. 
(2005) (80) have shown that the expression of serum RBP4 was 
higher in insulin-resistant mice and humans with obesity and 
T2DM. The overexpression of RBP4 in wild-type mice causes 
insulin resistance while genetic depletion of Rbp4 improves 
insulin sensitivity, suggesting that the depleting level of RBP4 
could be helpful in the treatment of T2DM, and levels of RBP4 
could serve as a biomarker for T2DM. Proteomic study to assess 
the association of plasma proteins with the risk of developing 
T2DM has shown that RBP4 is independently associated with 
the risk of developing T2DM (81). Similarly, low level of adi-
ponectin was found to be associated with an increased risk of 
development and progression of T2D in different populations. 
Candidates with increasing adiponectin had a reduced risk of 
developing T2D (p  <  0.001) (82, 83). Further, the proteomic 
analysis of vitreous in diabetic retinopathy has identified six 
proteins, including pigment epithelium-derived factor, ApoA-
1/4, thyroid hormone receptor interactor II, RBP4, and vitamin 
D binding, as specific marker for diabetic while control had only 
Apo-H (84). Festa et  al. 2002 (85) have shown the significant 
relation of C-reactive protein (CRP), fibrinogen, and PAI-1 to 
the development of T2DM. Serum protein profiles of normal 
and streptozotocin-induced diabetic rat have identified eight 
proteins with an increased expression in diabetes (86). One such 
protein, CRP, was found to be associated with inflammation, the 
progression of disease, and an increased cardiovascular risk in 
patients (87). Also, in comparison to healthy individuals, indi-
viduals with insulin resistance and T2DM have shown difference 
in the level of many proteins including interleukin-6, resistin, 
leptin, adiponectin, and visfatin (88–92). A panel of 64 circu-
lating candidate biomarkers was analyzed to develop a model 
for the assessment of a 5-year risk of developing T2DM and 
identified six biomarkers including adiponectin, CRP, ferritin, 
interleukin-2 receptor A, and insulin that provide a better esti-
mation of the risk of developing T2DM than that of FPG levels 
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FiGURe 1 | Schematic overview of urinary and serum proteins associated with type 2 diabetes mellitus (T2DM). The upper panel (blue) indicates upregulated 
proteins and the lower panel (yellow) indicates downregulated proteins in urine and serum.
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alone (93). Earliest marker for DN includes excreted albumin in 
urine. However, further studies revealed that albuminuria is not 
a suitable marker to assess DN. It has been found that most of 
the diabetic individuals with the progression of renal disease are 
normoalbuminuric. Also, albuminuric patients with T2DM have 
shown biopsies with normal glomerular structure or non-DKDs 
(94, 95). This suggests the assessment of DN with albuminuria 
as biomarker lack specificity and sensitivity. Therefore, more 
urinary biomarkers were investigated for T2DM complications. 
Urinary monocyte chemoattractant protein-1 (uMCP-1) and 
vitamin D-binding protein were found to be significantly elevated 
in microalbuminuric/macroalbuminuric diabetic patients (96). 
uMCP-1 and uVDBP levels for the early diagnosis and detection 
of DN exhibited high sensitivity and specificity. Both of these 
urinary proteins could be used as potential biomarker for the 

early detection of DN in T2DM patients. Similarly, E-cadherin 
levels were found to be elevated ~1.3-fold in T2DM, which 
further increases to ~5–8-fold with progression to DN (97).

In the initial phase of glucose stimulation, insulin biosynthesis 
is regulated mainly at the translation level. Previously, it was 
shown that PDI (protein disulfide isomerase) increases insulin 
translation by binding to its 5′  UTR in response to glucose 
(98). Several reports suggest that the levels of PDI increase in 
response to pathological and physiological conditions causing 
cellular stress (99). The beta cell stress may lead to an increase in 
the expression of PDI, resulting in high levels of insulin without 
circulating glucose. Hence, the amount of PDI or beta cell stress 
markers may serve as potential biomarker in prediabetes.

Recently, it was also shown that chronic hyperinsulinemia in 
the absence of sufficient glucose progresses to insulin resistance 
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faster than their corresponding controls of chronic hyperinsu-
linemia in the presence of sufficient glucose (100). These studies 
suggest that cellular stress leading to the production of insulin in 
the absence of glucose stimulation could be a trigger for insulin 
resistance. Thus, the uptake of glucose at a regular interval or a 
reduced cellular stress could be one of the therapeutic interven-
tions to arrest the progress of prediabetic to diabetic situation.

MeTABOLiTeS AS BiOMARKeRS

Recent advancement in mass spectrometry has made it possible 
to profile an organism’s metabolic status (101–104). Metabolites 
are low-molecular-weight compounds that are intermediates 
or end products of a metabolic pathway. Altered metabolite 
levels in prediabetic individuals compared to healthy ones may 
serve as diagnostic biomarkers and enable preventive action 
(105–110). A large number of metabolites originating from 
three major fuel sources (carbohydrates, lipids, and proteins) 
have been implicated as risk factors for the development of 
T2DM and hence can serve as potential and reliable biomarkers 
(Figure 2). Serum level of the amino acid glycine is decreased in 
insulin-resistant individuals. One of the reasons for this could 
be the increased expression of 5-aminolevulinate synthase 1 
(ALAS-H) (111, 112). ALAS-H catalyzes the condensation of 
glycine and succinyl-CoA into 5-aminolevulinic acid. Glycine is 
also a substrate for gluconeogenesis, and its reduction indicates 
increased hepatic gluconeogenesis. Insulin resistance entails a 
greater insulin secretion as a compensatory mechanism before 
it becomes eventually exhausted due to β cell dysfunction (113). 
Phenylalanine is positively correlated to insulin secretion and 
it may be involved in the early compensatory stage of insulin 
secretion (114). The most frequent increase in the levels of 
branched-chain amino acid (BCAA) like valine, leucine (115), 
isoleucine, and their derivatives 3-methyl-2-oxovalerate and 
3-methyl-2-oxobutyrate (116), is attributed to their reduced 
catabolism. Reduced activities of the key catabolic enzymes, 
mitochondrial branched-chain amino acid aminotransferase 
(BCATm) and branched-chain a-ketoacid dehydrogenase 
(BCKD) in liver and adipose tissue, lead to the accumulation 
of these amino acids in insulin-resistant individuals (117). 
Also, poor biotin metabolism is indicative of insulin resistance, 
leading to impaired BCAA catabolism (118). Gamma-glutamyl 
derivatives of valine and isoleucine are formed in glutathione-
dependent transport of these amino acids. An increase in the 
circulating concentration of these derivatives may indicate 
impaired transport of these amino acids in diabetic groups (119). 
High plasma concentration of α-hydroxybutryrate (2-HB) has 
been consistently shown to be positively correlated with insulin 
resistance (115, 116). It has been postulated that this increase 
in 2-HB results from alteration in methionine/cystathionine 
catabolic pathways that produces 2-KB (α-ketobutyrate) and 
cysteine through cystathionine gamma-ligase activity. An 
increased availability of precursor 2-KB leads to its higher con-
version to 2-HB via lactate dehydrogenase in insulin-resistant 
state. β-hydroxybutyrate (or 3-hydroxybutyrate, BHBA) is 
significantly elevated in diabetes group due to the depletion of 
hepatic glycogen pool in diabetes, leading to ketogenesis (115, 

119). Higher levels of 3 indole-sulfate, creatinine, and homocyst-
eine in diabetic groups may indicate the early onset of impaired 
renal function that may eventually lead to DN (119). Glomerular 
filtration rate is a strong determinant of plasma levels of homo-
cysteine and cysteine. Lower plasma levels of cysteine in diabetic 
patients are indicative of hyperfiltration (119, 120). The type of 
linkage in the phospholipid core and fatty acid residue plays a 
key role in determining the T2D risk. Lipids with shorter-chain 
lengths like pelargonate and heptanoate are depleted in IFG 
conditions when compared to controls and are associated with 
T2DM while the long unsaturated fatty acids like adrenate and 
arachidonate are elevated significantly in T2D patients and may 
help restore insulin sensitivity. Insulin triggers the expression 
of various fatty acid desaturase. The above observed changes in 
the lipid profile may be due to a diminished desaturase activity 
in insulin-resistant individuals. Also, Rhee et  al. (2011) have 
shown that longer chain triacylglycerol (TAGs) are associated 
with a decreased risk of diabetes, whereas the short chain TAGs 
are associated with an increased risk, their levels positively cor-
relate with insulin resistance (121). This may suggest impaired 
triglyceride lipolysis due to dysregulated glucose metabolism. 
A higher transcriptional level of carnitine-O-acetyl transferase 
due to the activation of PPAR–alpha pathway in peroxisome 
(122) produces acetylcarnitine from carnitine and acetyl-CoA 
in the mitochondrial matrix. This eventually results in elevated 
levels of acetylcarnitine C2 in IGT individuals (Figure 2).

Accumulating evidences indicate a positive correlation 
between serum glucose in T2DM and IGT groups compared 
to normal glucose tolerance (NGT) controls (115, 123). 
Insulin resistance and insufficient secretion lead to weakened 
gly colysis and muscle glycogen synthesis, resulting in the obvi-
ous accumulation of circulating glucose in the blood. Lactate 
is elevated in obese, insulin-resistant subjects and can serve 
as an independent risk factor for the development of T2DM 
(124–126). A community-based study on obesity and T2DM 
showed that a decreased oxidative capacity in these individuals 
leads to higher plasma levels of lactate (127). The serum and 
urinary levels of fructose are significantly increased in patients 
with diabetes due to impaired fructose metabolism in hyper-
glycemia (115, 128, 129). Elevated levels of modified forms of 
glucose like desoxyhexose (primarily deoxyglucose), uronic acid 
(primarily glucuronic acid), dihexose (primarily maltose) (119), 
and mannose (116, 119) in diabetes group reflect an increased 
availability of glucose, resulting in their biosynthesis. Reduced 
levels of 1,5 anhydroglucitol (1,5 AG), a deoxy form of glucose, 
serve as short-term glycemia marker. A decrease in plasma 
concentrations of 1,5 AG levels in diabetes as compared to the 
control results from its renal loss stimulated in hyperglycemic 
conditions by glycosuria (119).

CONCLUDiNG ReMARK AND FUTURe 
PeRSPeCTiveS

MicroRNA-based prognosis, diagnosis, and disease management 
propose an exciting idea in the context of T2DM. The expression 
level of miRNAs not only offers an assessment of pathological 
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state of disease but in some cases could also be used as a thera-
peutics target. For instance, silencing of miR-103 and miR-107 
significantly reduces hyperglycemia in murine model of obesity 

and T2DM by promoting insulin signaling in liver and adipose 
tissue (130). Even if the level of many miRNAs promisingly offers 
an idea about the pathophysiology of T2DM, many issues are yet 
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to be solved before using them in therapeutics or as predictive 
biomarkers. The development of processing procedure of the 
small biomolecules from body fluids, their storage conditions, 
and defined sample preparation is still a major issue that needs 
to be resolved. Most of these identified biomarkers have varying 
protocols for plasma preparation. Besides, these procedures can 
alter their level in the final sample. Thus, an optimized protocol for 
sample preparation needs to be developed for these biomarkers. 
The physiological issue associated with biomarkers like miRNAs 
is their implication in regulating multiple molecular pathways. 
Effect on multiple pathways is needed to be addressed to assess 
their specificity and accuracy as well as identifying the intercon-
nectivity of various networks.

Most methods for the screening and prevention of T2DM 
rely on prediabetes individuals already showing a steady 
decrease of insulin sensitivity. However, these methods may not 
be as effective as those developed to counter the disease even 
before the onset of this stage. Hence, it is important to develop 
biomarker trajectory models that can complement accurately 
with the existing individual risk assessment methods. For exam-
ple, the diagnostic potential of 1-h plasma glucose (1-h PG)  
of ≥155  mg/dl is better than the current threshold levels of 
FPG, 2-h PG, or HbAc1 for prediabetes, identifying high-risk 
individuals at the so-called pre-prediabetes stage (131). This 
is because the beta cell function is substantially intact at this 
stage, and hence lifestyle interventions might be more effective 
in potentially reducing progression to diabetes (132).

The major shortcoming of multimarker approach is the fact 
that the overlap of biomarker concentrations between indi-
viduals with and without the incidence of T2DM is significant, 
compromising its discriminative ability. Most novel circulating 
and/or genetic biomarkers show a high degree of correlation with 
the existing risk factors adding little or no value. Risk models 
containing measures of biomarkers belonging to the same casual 

pathway as that of the disease itself may not improve the predict-
ability of the disease.

OUTSTANDiNG QUeSTiONS

How do these identified signature molecules like miRNA apply 
as biomarkers in the context of larger population with genetic 
variations? Owing to their association with multiple targets, the 
specificity of miRNA is an issue. Will profiling of miRNAs in 
body fluids and proteins at different pathophysiological stages of 
disease using larger study groups help in the selection of poten-
tial candidates among identified biomarkers? Further research 
is needed to understand the mechanism of regulation of these 
biomolecules and how their altered levels in body fluids specifi-
cally relate to T2DM.
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