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Factor VII promotes hepatocellular carcinoma progression
through ERK-TSC signaling
M-C Tsai1,2,7, K-D Chen3,7, C-C Wang3, K-T Huang3, C-H Wu3, I-Y Kuo3, L-Y Chen3, T-H Hu1, S Goto3,4, T Nakano2, A Dorling5, JH McVey6,
C-L Chen3 and C-C Lin3

We previously demonstrated PAR2 starts upstreamed with tissue factor (TF) and factor VII (FVII), inhibited autophagy via mTOR
signaling in HCC. However, the mechanism underlying for merging functions of PAR2 with the coagulation system in HCC
progression remained unclear. The present study aimed to investigate the role of TF, FVII and PAR2 in tumor progression of HCC.
The expressions of TF, FVII and PAR2 from HCC specimens were evaluated by immunohistochemical stains and western blotting. We
found that the expression of FVII, but not TF and PAR2, directly related to the vascular invasion and the clinical staging. Importantly,
a lower level of FVII expression was significantly associated with the longer disease-free survival. The addition of FVII but not TF
induced the expression of PAR2 and phosphorylation of ERK1/2, whereas knockdown of FVII decreased PAR2 expression and
ERK1/2 phosphorylation in HCC cell lines. Furthermore, levels of phosphor-TSC2 (Ser664) were increased after treatment with FVII
and PAR2 agonist whereas these were significantly abolished in the presence of a potent and specific MEK/ERK inhibitor U0126.
Moreover, mTOR knockdown highly reduced Hep3B migration, which could be reverted by FVII but not TF and PAR2. These results
indicated that FVII/PAR2 signaling through MEK/ERK and TSC2 axis for mTOR activation has potent effects on the migration of HCC
cells. In addition, FVII/PAR2 signaling elicits an mTOR-independent signaling, which promotes hepatoma cell migration in consistent
with the clinical observations. Our study indicates that levels of FVII, but not TF, are associated with tumor migration and
invasiveness in HCC, and provides clues that evaluation of FVII expression in HCC may be useful as a prognostic indicator in patients
with HCC and may form an alternative target for further therapy.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the seventh most common
malignancy worldwide.1 The current options for the treatment of
this cancer consist of surgical resection, liver transplantation,
percutaneous locoregional ablation therapy and chemotherapy
including molecular targeted therapy.2,3 However, the high
recurrence rate is still a major concern after any treatment,
although the underlying mechanisms are still not fully defined.4 A
better understanding of these mechanisms may lead to novel
therapeutic approaches. Recent advances have highlighted that
protease-activated receptor-2 (PAR2) has a regulatory function in
HCC cell invasion.5 Therefore, a crucial role for a PAR2-mediated
signaling pathway in HCC progression can be hypothesized.
Coagulation factor VII (FVII) participates in the initiation of the

extrinsic pathway by binding to tissue factor (TF).6 Formation of
TF-FVIIa complex leads to activation of coagulation cascade and
platelet activation.7 In addition, increasing evidence indicates that
the TF-FVII complex is also involved in physiological and
pathophysiological processes involved in the development and
spread of cancer, including angiogenesis, tumor migration and
invasion and cell survival.8–10 On tumor cells, TF/FVII-dependent
signaling primarily activates PAR2, which belongs to a family of

four G-protein-coupled receptors,11 and thereby shapes the tumor
microenvironment by inducing an array of pro-angiogenic and
immune modulating cytokines, chemokines and growth factors.12

Several studies have documented that increased expression of TF
mediated by TF-FVII-PAR2 signaling correlates with aggressive
phenotypes in colorectal, breast, pancreatic cancers and
gliomas.13,14 Hence, targeting the pathway may be an effective
approach for cancer therapy. However, the role of TF-FVII-PAR2
signaling in HCC has not been well investigated.
Herein, we present evidence that FVII-PAR2 signaling but not TF

plays an important role in HCC cell migration and invasion mediated
through the p44/42 mitogen-activated protein kinase (MAPK)
pathway. Of importance, our study indicates that FVII plays a critical
role in HCC tumor biology regulating TF-FVII-PAR2 signaling.

RESULTS
Correlation of TF, FVIIa and PAR2 with clinicopathologic
characteristics of 100 HCC patients
The expression of TF, FVII and PAR2 were examined by western
blot analysis in 100 pairs of HCC patients (representative pairs
shown in Figures 1a and b). Compared with the paired non-tumor

1Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; 2Graduate Institute of Clinical Medical
Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan; 3Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and
Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; 4Fukuoka Institution of Occupational Health, Fukuoka, Japan; 5Division of Transplantation
Immunology and Mucosal Biology, Guy’s Hospital, King’s College London, MRC Centre for Transplantation, London, UK and 6Department of Biochemical Sciences, Faculty of
Health and Medical Sciences, University of Surrey, Guildford, UK.
Correspondence: C-C Lin (immunologylin@gmail.com)
7These authors contributed equally to this work.
The data in this manuscript were in part presented at the 57th Annual SCC Meeting of the International Society on Thrombosis and Haemostasis, Kyoto, Japan, July 2011.
Received 7 September 2015; accepted 17 September 2015; Edited by N Barlev

Citation: Cell Death Discovery (2015) 1, 15051; doi:10.1038/cddiscovery.2015.51
© 2015 Cell Death Differentiation Association All rights reserved 2058-7716/15

www.nature.com/cddiscovery

http://dx.doi.org/10.1038/cddiscovery.2015.51
mailto:immunologylin@gmail.com
http://dx.doi.org/10.1038/cddiscovery.2015.51
http://www.nature.com/cddiscovery


Figure 1. FVII overexpression correlates with PAR2 in human HCC and disease-free survival. (a) Western blot analysis of TF, FVII and PAR2 in
four representative HCC tissues (T) and their paired non-tumor (N) tissues. β-Actin was used as a loading control. (b) FVII and PAR2 over
expressed (defined as greater than onefold increase) in human HCC tumor compared with adjacent non-tumor tissues, and they are positively
correlated with no significant difference among 100 cases (P= 0.845). (c) The typical profiles of IHC staining with anti-TF, FVII or PAR2 antibody
illustrated that greater immunoreactivity for FVII and PAR2 were found in the tumor region than in the non-tumor. (d) The endothelial cells of
blood vessels were stained by IHC with an anti-CD34 antibody in one paired HCC and non-tumor tissues. (e) Relationship between FVII
expression and microvessel count in paired HCC and non-tumor tissues. The lines through the idle of the boxes represent the median, while
the top and bottom of the boxes are the 25th and 75th percentiles. The error bars represent measurement range, original magnification: ×200.
(f) Overexpression of FVII (defined as greater than onefold increase in tumor tissue compared to its paired non-tumor tissue) is associated with
the recurrence in patients with HCC after curative resection.

FVII in progression of hepatocellular carcinoma
M-C Tsai et al

2

Cell Death Discovery (2015) 15051 © 2015 Cell Death Differentiation Association



tissues, high levels (defined as greater than onefold increase) of
both FVII and PAR2 expression in 83 of 100 HCC cases. In contrast,
the expression of TF was greater in only 37% of HCC specimens.
Furthermore, an association analysis showed no significant
difference between FVII and PAR2 expression among these 100
HCC specimens (P=0.845). We further examined the correlation
between the expression of TF, FVII and PAR2 and clinicopathologic
parameters (Table 1). The results indicated that TNM stage
(Po0.001), tumor capsule (P=0.029) and microvenous invasion
(P=0.003) were significantly correlated with FVII expression. But the
size and number of tumors were not associated with FVII
expression. However, microvenous invasion (P=0.059) was almost
significantly correlated with PAR2 expression. The findings
suggested that FVII and PAR2 may be involved in HCC progression.

Correlation between FVII and microvascular density
To further investigate the correlations between FVII, TF and PAR2
and tumor characteristics, the levels of FVII, TF and PAR2 were
compared by immunohistochemistry (IHC; Figure 1c). Consistently,
compared with the non-tumor tissues, a profound increase in
expression of FVII and PAR2 was detected in HCC tissue (85 and
80% of samples, respectively). Likewise, increased expression of TF
was detected in 33.3% of samples. To estimate the correlation

between microvascular density (MVD) and expression of FVII and
PAR2, specific staining of capillary-like vessels by anti-CD34 was
examined (Figure 1d). The MVD was significantly higher in tumors
with high-level FVII than those with low level of FVII (median, 46
versus 81/high-power field (HPF), P= 0.001; Figure 1e).

FVII levels predict disease-free survival in HCC patients after
curative resection
All 100 HCC patients undergoing hepatectomy were followed up at
regular intervals until death or until the time of this writing, and the
median duration of follow-up was 18 months (range 1–27 months).
The tumors in these patients were categorized as high (n=83) or
low (n=17) expressers of FVII according to the results of the western
blots. Patients with high FVII levels had a significantly shorter
disease-free survival than those with low FVII levels (P=0.026;
Figure 1f). However, there was no correlation between tissue TF and
PAR2 levels and disease-free survival rates (data not shown).

FVII regulates p-ERK1/2 via PAR2 in vitro
We primarily examined four HCC cell lines (Hep3B, HepG2, Huh
and PLC) and two breast cancer cell lines as positive control
(MDA-MB-231 and MCF7)15,16 to assess whether these cells
endogenously express TF, FVII and PAR2. As expected, western

Table 1. Correlation of TF, FVII and PAR2 expression with clinicopathological characteristics in 100 patients with HCC

Variable Total FVII P-valuea TF P-valuea PAR2 P-valuea

T4N N4T T4N N4T T4N N4T

Age 0.779 0.532 0.709
≥ 50 years 79 66 13 28 51 65 14
o50 years 21 17 4 9 12 18 3

Sex 0.270 0.257 0.779
Male 79 68 11 27 52 66 13
Female 21 15 7 10 11 17 4

Cirrhosis 0.661 0.993 0.132
Present 54 44 10 20 34 42 12
Absent 46 39 7 17 29 41 5

Hepatitis 0.707 0.454 0.321
B 57 48 9 21 36 48 9
C 22 17 5 9 13 18 4
B+C 4 4 0 0 4 2 2
NBNC 17 14 3 7 10 15 2

AFP 0.270 0.619 0.222
≥ 200 ng/ml 30 23 7 10 20 27 3
o200 ng/ml 70 60 10 27 43 56 14

Tumor size 0.316 0.847 0.940
≥ 5 cm 42 33 9 16 26 35 7
o5 cm 58 50 8 21 37 48 10

TNM stage o0.001 0.880 0.187
I 24 13 11 8 16 17 7
II 51 50 1 20 31 44 7
III 25 20 5 9 16 22 3

Encapsulation 0.029 0.199 0.703
Present 21 14 7 5 16 17 4
Absent 77 68 9 30 47 65 12

Microvenous invasion 0.003 0.593 0.059
Present 56 52 4 22 34 50 6
Absent 44 31 13 15 29 33 11

Satellite nodule 0.195 0.304 0.566
Present 24 22 2 11 13 19 5
Absent 79 61 15 26 50 64 12

Abbreviations: N, non-tumor; T, tumor. aCategorical data were compared using a chi-square test.
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blot analysis showed that HCC cell lines can express TF, FVII and
PAR2 proteins (Supplementary Figure 1). To determine how
TF/FVII/PAR2 signaling is working in HCC cells, activated FVII
(FVIIa, 200 ng/ml) were added to the cultures of Hep3B cell line,
and the expression of PAR2 was qualitatively observed on
immunofluorescence (IF) microscopy. The levels of PAR2 and
phosphorylated ERK1/2 (p-ERK1/2) were quantitatively deter-
mined by western blot analysis. As shown in Figure 2, FVIIa
increased the expression of PAR2 as detected qualitatively by IF
staining, which shown marked expression of PAR2 in cell
membrane after FVIIa treatment. The dose-dependent increase
of PAR2 and p-ERK1/2 were observed in both Hep3B and HepG2
cell lines by western blot (Figures 3a and b), whereas knockdown
of FVII by siRNA demonstrated notable reduction in the levels of
PAR2 and p-ERK1/2 (Figure 3c). However, TF treatment (200 ng/ml)
did not alter PAR2 and p-ERK1/2 levels (Figure 3d). Furthermore,
FVIIa also exhibited a time-dependent upregulation in levels of
PAR2 and p-ERK1/2 in Hep3B cells (Figure 3e).

FVII/PAR2 signaling regulates TSC2/mTOR phosphorylation via ERK
The mammalian target of rapamycin (mTOR) is frequently
dysregulated in various cancer cells and abnormally activated in
a proportion of HCC patients,17 which is under investigation
as a potential target to suppress liver tumor growth and
metastasis.18,19 We have previously demonstrated that TF/FVII/
PAR2 signaling negatively regulates autophagy via mTOR activa-
tion, which promotes proliferation of Hep3B cells in vitro.20 To
investigate the potential role of ERK1/2 in mTOR activation by this
coagulation signaling, we first examined the effect of a specific
MEK/ERK inhibitor U0126 in FVII/PAR2-mediated mTOR activation.
Western blot analysis demonstrated that levels of the phos-

phorylated ERK1/2 (p-ERK), mTOR (p-mTOR, Ser2448, active form) as
well as the downstream substrate 4EBP1 (p-4EBP1, Ser65/Thr70),
which were activated by FVII/PAR2 signaling were suppressed
by U0126 treatment in a dose-dependent manner (Figure 4).
In addition, levels of the phosphorylated TSC2 (p-Ser664) induced
by FVII/PAR2 signaling were also reverted by U0126 treatment

indicated that mTOR activation by FVII/PAR2 activities relies upon
ERK-mediated TSC2 phosphorylation.

Knockdown of FVII and PAR2 inhibits cell invasion and migration
via MEK/ERK and TSC2/mTOR pathway
We further investigated the role of TF/FVII/PAR2 signaling in tumor
cell invasion and migration. As shown in Figure 6, the invasion of
Hep3B cells were significantly suppressed by knockdown of FVII
and PAR2 genes, however, no significant effect of TF knockdown
on Hep3B cell invasion was observed (Figure 5a). In the scratch
migration assay, knockdown of TF, FVII and PAR2 significantly
reduced migration of Hep3B cells (Figure 5b). Furthermore,
migration of Hep3B cells was significantly attenuated by mTOR
knockdown (Figure 5c). Similar results were also observed in the
invasion assay of Hep3B cells (data not shown). The results
indicated that the signal through FVII/PAR2/mTOR axis via ERK
activity was involved in HCC cell migration and invasion.
Moreover, Hep3B cells reveal reduced migration activity upon
knockdown of mTOR was significantly restored by treatment of
FVIIa and PAR2 agonist (Figure 5d). This result suggested that
FVII/PAR2 signaling might promote HCC cell migration through
both mTOR-dependent and -independent pathways.

FVII increased expression of p-ERK1/2 and MVD in a xenograft
mouse model
In a mouse xenograft tumor model, normal saline (control), FVIIa,
TF and PAR2 agonist were injected into growing subcutaneous
tumors every other day for 30 days. Although the number and size
of tumors were similar (data not shown), injection of FVIIa, but not
TF, increased the expression of PAR2 and levels of p-ERK1/2 in
tumor cells, analyzed by both western blot and IHC (Figures 6a
and b). Importantly, injection of FVIIa also increased MVD as
evidenced by CD34 staining (Figure 6b).

DISCUSSION
Recent studies showed that PAR2 plays an important role
in promoting HCC cell invasion, through the pathway of

Figure 2. The effects of FVIIa on the expression of PAR2 in Hep3B cell line. Immunofluorescence was also used to detect the upregulation and
downregulation of PAR2 in Hep3B cells treated with activated FVII (FVIIa) and FVII siRNA, respectively. In cells treated with FVIIa, prominent
PAR2 staining was detected in the cell membrane (arrow, magnification ×200).
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p42/p44 MAPKs.5 The upstream stimulators of TF and FVII,
which form a binary complex, have also been shown to
be involved with tumor biology in various cancers such as breast,

colorectal cancer, as well as glioma.14,15,21 However, the role of TF
and FVII in tumor progression of HCC has until now remained
elusive.

Figure 3. FVII, but not TF, increases PAR2 expression and p-ERK1/2 levels in dose-dependent and time-dependent manners. Quiescent
monolayers of Hep3B (a) and HepG2 (b) cells (1 × 105) were treated with a control serum-free medium or medium supplemented with
recombinant FVIIa (NovoSeven RT) for series of concentrations (10, 20, 40, 60, 80, 100, 150 and 200 ng/ml). After 6 h, cells were harvested and
detected for TF, FVII, PAR2, p-ERK1/2 and β-actin by western blot analysis. The levels of PAR2 and p-ERK1/2 were gradually increased both in
Hep3B and HepG2 cells. (c) The levels of PAR2 and p-ERK1/2 were significantly reduced by knockdown of FVII using siRNA both in Hep3B and
HepG2 cells. (d) Hep3B cells were treated with a control serum-free medium or medium supplemented with TF (Merck) for series of
concentrations (10, 20, 40, 60, 80, 100, 150 and 200 ng/ml). After 6 h, cells were harvested and detected for TF, FVII, PAR2, p-ERK1/2 and β-actin
by western blot analysis. The levels of PAR2 and p-ERK1/2 were not gradually increased by increasing concentration of TF. (e) Hep3B cells were
treated with medium supplemented with FVIIa for a time-series analysis (0, 1, 3, 6, 12 and 24 h). The levels of PAR2, p-ERK1/2 but not TF were
gradually increased in a time-dependent manner.
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It is universally accepted that FVII is manufactured by liver cells
and circulates in the bloodstream, primarily in a zymogen
(inactive) form, that is, FVII.6 Only ~ 1% of total FVII antigen
circulates in the activated enzyme (FVIIa) form, which is insufficient
to initiate coagulation under physiological conditions.22 The
presence of procoagulant TF increases the conversion of inactive
FVII, to the activated two-chain form, and this initiates the
coagulation serine protease cascade when FVIIa forms a binary
complex with the extracellular domain of TF. In addition to this
central role in initiation of coagulation, recent studies have shown
that ectopic synthesis of FVII by cancer cells activates cancer cell
migration and metastasis.16,23 Recent studies further indicated
that reduction of TF and FVIIa exerted an inhibitory effect on
tumor growth in xenograft models of breast and colorectal
cancer.24,25 Our previous study also demonstrated that TF/FVII/
PAR2 signaling regulates autophagy mainly via mTOR signaling
and impacts on cell survival of hepatoma cells.20 These findings
suggest that FVII is indispensable in coagulation-mediated
enhancement of tumor growth.
In the present study, despite a wide variation in the expression

of TF, FVII and PAR2 by HCC tumors and non-tumor tissues, we
observed a significant correlation between the expression of FVII
and PAR2 by tumor specimens and a significant association
between FVII and the clinical staging. Furthermore, patients with
high levels of FVII expression in HCCs had a significantly worse
disease-free survival than those tumors with low levels of FVII
expression. Importantly, expression of FVII was exclusively
associated with the presence of PAR2 but not downstream
products of coagulation function such thrombin and its signal

transduction effecter PAR1 (data not shown). Therefore, the
clinical observations suggest that FVII plays an important role in
tumorigenesis of HCC through a PAR2 signaling pathway.
Our in vitro data confirmed that FVII, but not soluble TF,

upregulates the p-ERK1/2 mediated with PAR2. Moreover, the
invasion- and migration-associated phenotypes could be effectively
abolished by silencing FVII expression in HCC cells. Although many
studies have revealed that TF-FVII-PAR2 signaling can initiate cell
signal transduction in the pathogenesis of cancers and promotes
cell migration and invasion,14,15,21 the detailed signaling transduc-
tion mechanisms responsible for the TF-FVII-PAR2 in HCC are not
fully understood. Here, we showed that FVII and PAR2 agonist
increase the phosphorylation of ERK1/2, however, no significant
change in ERK phosphorylation was observed in TF treatment. We
speculate that TF is expressed in HCC tissue with an excess amount,
whereas the amount of FVII determines the proportion of TF that is
engaged with FVII in the binary complex (active form) to regulate
HCC tumor progression. Our data from the mouse xenograft model
showed that injection of FVIIa increased vascular density but not
the size and number of the tumors. The results are consistent with
our clinical findings, which demonstrated that the expression of FVII
by HCC was associated with vascular invasion and capsulations of
tumor but not the number and size.
Recent studies have documented that the levels of TF

expression in primary colorectal, breast and lung cancer correlate
with aggressive cancer phenotypes and metastatic disease.25–29

Poon et al.30 indicated a correlation between TF expression and
invasiveness in human HCC. However, in the present study, there
was no correlation between TF and the presence of FVII, PAR2 or
clinicopathological features. Our results are thus more consistent
with the findings of Rullier et al.,31 who reported no correlation
between TF and HCC progression.31 Similarly, other studies
indicate that TF is not required for tumor growth.32–34 Taking all
together, TF could play an important role in tumor progression in
many but not all cancers. Although our previous findings have
shown that TF indeed regulates survival of HCC cells via
antagonizing autophagy through mTOR signaling, our results
indicated that TF will not become a reliable prognostic marker at
least in part for HCC progression.
It has been generally accepted that tumor cell motility is necessary

for cancer dissemination.35 The molecular basis to acquire ability to
colonize other organs by invading tumor cells has been long studied,
but it still remains a largely unmet challenge in therapeutic control
on metastatic dissemination.36,37 Especially in China and other East
Asian countries, survival of HCC patients has improved due to
advances in surgical techniques such as orthotopic liver transplanta-
tion and perioperative nursing care, long-term survival after surgical
resection remains low owing to risk of recurrence and metastasis.38,39

Thus, to investigate the molecular mechanisms of HCC metastasis, it
is of great interest to identify impaired metastatic suppressors
responsible for the metastatic potential.
In this study, we have shown that knockdown of FVII and PAR2

significantly reduced HCC invasion and migration. We also showed
that FVII-PAR2 signaling is a contributor to tumor migration
in HCC, which may through both mTOR-dependent and mTOR-
independent pathways. Inhibition of FVII-PAR2 signaling may thus
represent an effective approach to targeted cancer therapy.
Although there is an increased risk of bleeding with specific FVIIa
inhibitors,24,40 a recent phase I study indicated that PCI-27483, a
selective inhibitor of FVIIa, which promotes a 2.5- to 3.0-fold
change in prothrombin time in animal studies, is nevertheless well
tolerated in advanced pancreatic cancer patients.41 Although
phase II study of this agent is ongoing, based on our results, it
might prove to be an agent with therapeutic utility in HCC.
Furthermore, we confirmed that metastatic suppressors NME1 and
BHLHE41 were highly induced in Hep3B cells with FVII and PAR2
knockdown. Indeed, we also found treatment of FVII and
PAR2 agonist significantly decrease expression of NME1 and

Figure 4. The effects of MEK/ERK inhibition by U0126 on the levels
of p-ERK, p-mTOR, p-4EBP1 and p-TSC2-Ser664 in Hep3B cells.
Hep3B cells were treated with FVIIa (200 ng/ml) in the absence or
presence of U0126 (10 or 20 μM) 24 h, and total amount of cells were
harvested and detected for ERK1/2, p-ERK1/2, mTOR, p-mTOR,
4EBP1, p-4EBP1, p-TSC2-Ser664, TSC2 and β-actin by western blot
assay. All results are expressed as the mean± S.D. from three
independent experiments. The levels of p-ERK1/2, p-mTOR, p-4EBP1
as well as p-TSC2-Ser664 induced by FVIIa were significantly
abolished by U0126.
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BHLHE41 (Supplementary Figure 2). Moreover, another abundantly
expressed member of NME gene family NME2 was highly
increased only in HCC cells with FVII knockdown, but not in cells
with PAR2 silencing (data not shown). These results indicate that
metastatic suppressors could play a pivotal role in FVII-associated
vascular invasion and poor prognosis in HCC patients. However,
the details of the underlying mechanism need to be further
clarified.
Taken together, we suggest that FVII levels in HCC patients may

have prognostic significance, which may be particularly useful in
the management of patients after HCC resection. It might be useful
to offer adjuvant therapy after HCC resection to those patients with
high levels of FVII expression, who have a poor disease-free survival
rate. Further clinical studies are required to verify the prognostic
efficacy of FVII levels in a large cohort of HCC patients, and the trials
for adjuvant treatment after resection is approaching.
In summary, we have presented for the first time that increased

FVII expression by tumor cells correlates with progression of HCC
and acts as a poor prognostic factor after surgery and demon-
strated that FVII/PAR2 through p-ERK1/2 signaling is involved in
HCC progression. Importantly, we have presented evidence that
FVII plays a novel role of the FVII/PAR2 signaling pathway in HCC,
and provide mechanistic insights not only affecting mTOR but also
modulating metastatic suppressors into our clinical observations.
In the future, this work indicates that FVII may be a candidate
marker for the development of prognostic and therapeutic
strategies for HCC malignancy.

MATERIALS AND METHODS
Patients and tissue samples
From August 2009 to August 2010, 100 patients who underwent curative
hepatic resection for HCC at the Chang GungMemorial Hospital, were recruited
into this study. The diagnosis of HCC was based on the criteria of practice
guidelines.2,42 All patients were followed in the outpatient clinic with regular
surveillance for the recurrence by serum α-fetoprotein level and ultrasound
every 3 months and/or contrast-enhanced computerized tomography scan if
recurrent tumor was suspected. All patients were followed up until death or
June 2012. The demographics, clinical character, pathological findings of HCC,
recurrence and survival were recorded. The clinicopathologic characteristics of
100 HCC patients are summarized in Table 2. The study protocol was approved
by the ethic committee of Chang Gung Memorial Hospital. Written informed
consent was obtained from each patient. Tumor and adjacent tumor-free
specimens (control tissues) were obtained immediately after surgical resection.
The investigators who performed the laboratory studies of TF, FVIIa and PAR2
expression were blinded to the clinicopathologic data.

IHC staining
The paraffin-embedded tissue blocks were sectioned for IHC. The slides
were incubated overnight at 4 °C in humidified chambers with primary
rabbit polyclonal anti-TF (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
PAR2 (Santa Cruz Biotechnology), FVII (Abcam, Cambridge, UK ) and CD34
(Santa Cruz Biotechnology) antibody. Antigen–antibody complexes were
detected by the avidin–biotin–peroxidase method, using diaminobenzi-
dine as a chromogenic substrate (DAKO, Carpinteria, CA, USA). Finally, the
slides were counterstained with hematoxylin, and then examined under
light microscopy.

Figure 5. Effects of TF/FVII/PAR2 on the tumor phenotype. (a) Invasion: Hep3B cells transfected with TF siRNA (30 nM), FVII siRNA (30 nM) or
PAR2 siRNA (30 nM) for 48 h were placed on top of a Matrigel barrier. At the end of a 24-h incubation period at 37 °C, the number of cells that
migrated across the Matrigel barrier to the underside of the membrane was determined. (b) Migration: Hep3B cells transfected with TF siRNA
(30 nM), FVII siRNA (30 nM) or PAR2 siRNA (30 nM) for 48 h were cultivated to optical confluence, and a scratch was performed subsequently
on a medium. After 24 h of incubation at 37 °C, cell migration was measured by counting as described in experimental procedures. (c) Hep3B
cells cultured in 1% serum were pre-transfected with mTOR siRNA (30 nM) for 24 h. Knockdown of mTOR significantly attenuated the ability of
Hep3B to close the scratch. (d) The attenuated migration of Hep3B cells by mTOR knockdown was reverted partly by FVIIa and PAR2 agonist,
but not TF treatment. Representative results from three independent experiments are shown.
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Western blot analysis
Total protein were homogenized with loading buffer, separated by 10%
SDS-PAGE and transferred to nitrocellulose membranes. The membranes
were probed with primary antibodies at 4 °C overnight, and then were
incubated for 1 h with respective conjugated secondary antibodies
(1 : 2000, Cell Signaling Technology, Billerica, MA, USA). Immunoreactive
proteins were visualized by ECL western blot detection reagents (Millipore,
Billerica, MA, USA), and quantitated using a G:BOX iChemi XL imaging
systems (J&H Technology Co. Ltd., Bradenton, FL, USA). The western blot
reactivity of TF, FVII and PAR2 were classified as high if staining in the
tumor was higher than the non-tumor part of the biopsy.

Immunofluorescence studies of human HCC tissue
Cells were fixed in 4% paraformaldehyde and incubated with primary
antibody at 4 °C overnight and Texas Red (ThermoFisher, Waltham, MA, USA)
or FITC-conjugated secondary antibody for 2 h at room temperature. Extensive

washing with PBS was performed between each step and before mounting
and examination by fluorescence microscopy (Olympus, Tokyo, Japan).

Evaluation of MVD
MVD was determined by the presence of CD34 as descried by Weidner
et al.43 Briefly, tumor and non-tumor tissue sections were scanned at low-
power fields (×40) to find the areas that showed the most intense
neovascularization (hot spots). Individual microvessels were counted in five
fields at high power (×200). Any positively stained endothelial cell or
endothelial-cell cluster that was clearly separated from adjacent micro-
vessels, tumor cells and connective elements was considered to be a single
and countable microvessel. Vessel lumens were not necessary for a
structure to be defined a vessel lumen. The final MVD was the mean value
obtained from the counts of five fields, which was expressed as the
absolute number of microvessels per HPF.

Cells and culture condition
Human hepatoma cell lines, Hep3B, HepG2 and PLC, and breast cancer cell
lines, MDA-MB-231 and MCF7, obtained from American Type Culture
Collection (Manassas, VA, USA), were cultivated in an incubator under a 5%
carbon dioxide atmosphere at 37 °C in a relative humidity of 95% and were
maintained in DMEM (Invitrogen, Karlsruhe, Germany) with 10% FBS
(Invitrogen), 100 U/ml penicillin (Invitrogen), 100 mg/ml streptomycin
(Invitrogen) and 4mM L-glutamine (Invitrogen). Recombinant human TF
and FVII were purchased from R&D Systems (Minneapolis, MN, USA). PAR1
agonist peptide TFLLR-NH2 and PAR2 agonist peptide SLIGKV-NH2
were purchased from Peptides International (Louisville, KY, USA).The
working concentration of recombinant proteins and agonist peptides were
200 ng/ml.

Tumor xenograft mouse model
Severe combined immunodeficiency (SCID) mice (4 weeks old) were
housed under standard conditions and cared as per the institutional
guidelines for animal care. For the xenograft tumor growth assay, HepG2
cells (5 × 106) were injected subcutaneously into the right dorsal flank.
Treatment, which was initiated when the tumor reached 5mm in diameter,

Table 2. Clinicopathological features of 100 patients with HCC
undergoing hepatectomy

Patient demographics
Age (years; median (range)) 59 (34–83)
Sex (M : F) 79 : 21
AFP (ng/ml; median (range)) 22 (2–342193)
Tumor size (cm; median (range))a 3.9 (1.0–19.3)
Liver cirrhosis (+; %) 54 (54)
Hepatitis (B : C : B+C : NBNC) 57 : 22 : 4 : 17
TNM stage (I : II : III) 24 : 51 : 25

Pathological features
Capsule (yes : no) 21 : 77
Satellite nodule (yes : no) 24 : 76
Microvascular invasion (yes : no) 56 : 44
Histological grade (I : II : III) 9 : 82 : 5

aMeasured by the length of the largest tumor nodule.

Figure 6. The effect of FVII on PAR2, p-ERK1/2 and CD34 levels in mouse xenograft model. Subcutaneously grown HepG2 tumors were
injected into NOD/SCID mice. TF, FVIIa or PAR2 agonist was directly injected into the grafted tumors. (a) The expression levels of the three
coagulation factors and p-ERK1/2 in tumor tissue were determined by western blot analyses. (b) Immunohistochemistry for PAR2, p-ERK1/2
and CD34 in tumor tissue treated with TF, FVIIa and PAR2 were also determined. Representative results from five independent animal
experiments are shown. FVII significantly increased levels of PAR2, p-ERK1/2 and the microvessel density (MVD) in HepG2 xenograft.
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was through directly subcutaneous injection of FVIIa, TF or PAR2 (2 μg/ml)
agonist every other day. After 30 days, the mice were killed and the tumors
were excised and extract protein for western blot analysis. The mice
experiments were performed in accordance with U.S. National Institutes of
Health guidelines, and the Chang Gung Institutional Animal Care and Use
Committee Guide for Care and Use of Laboratory Animals. This study was
conducted under the approval of Chang Gung Institutionally Animal Care
and Use Committee (IACUC Approval NO 2011092001).

siRNA transient transfection
The siRNA for knocking down target gene expression was obtained from
Santa Cruz Biotechnology. In brief, cells were cultured in six-well plates and
transfected with 30 nM target gene-specific siRNA or control siRNA using
GenMute siRNA transfection reagent (signaGen Laboratories, Gaithersburg,
MD, USA), and harvested for further analysis 48 h after transfection.

Invasion assay
A polycarbonate filter (8 μm pore size) precoated with Matrigel (Becton
Dickinson, Franklin Lakes, NJ, USA) was used. Briefly, cells were
resuspended in serum-free DMEM and seeded in 6-μm PET transparent
plates (Millipore). Prior to addition of the suspended cells, the Matrigel
chambers (Becton Dickinson) were rehydrated at 37 °C in a humidified
tissue culture incubator with DMEM. Approximately, 10% FCS was used as
an invasion stimulus and added to the wells of the companion plate. After
24 h, invaded cells were fixed in 100% methanol for 2 min and
subsequently stained in 0.1% crystal violet (Sigma-Aldrich, St. Louis, MO,
USA) in ddH2O for 2 min. Invaded cells were counted under a light
microscope counting 10 HPFs per chamber.

Migration assay
Cells were seeded and grown to confluence in DMEM medium. A scratch
was made using a Ibidi culture insert (Martinsried, Germany) and another
medium change was performed. Wells were photographed using an
inverted light microscope (Nikon, Dusseldorf, Germany) and cultivated for
24 h. After incubation the wells were photographed again. A grid system
was used and the same coordinates were used for the photographs before
and after incubation to compare the same spots. For quantitative analysis,
the first and second photographs were correlated, and the number of cells
migrated into the scratch were counted.

Statistical analysis
Continuous data were presented as median and range, and compared
between groups using the Mann-Whitney U-test. Categorical variables
were compared using the chi-square test (or Fisher’s exact test where
appropriate). Correlations between continuous variables were determined
using the Spearman's rank correlation test. Survival rates were calculated
using the Kaplan-Meier method, and the difference in survival was
compared with the log-rank test. Receiver operating characteristic (ROC)
curves were generated to capture the best trade-off between sensitivity
and specificity of age, AFP level and tumor size for correlation with TF, FVII
and PAR2. Statistical analysis was performed with the SPSS software
package for Windows (SPSS 15.0 for Windows; SPSS Inc., Chicago, IL, USA).
All P-values were derived from two-tailed tests and a level of o0.05 was
accepted as statistically significant.

ABBREVIATIONS
HCC, Hepatocellular carcinoma; FVII, Factor VII; TF, tissue factor; PAR2,
Protease-activated receptor-2; ERK, extracellular-signal-regulated kinase;
TSC, tuberous sclerosis protein.
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