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A B S T R A C T

MicroRNAs (miRNAs) are short non-coding RNA species that play key roles in post-transcriptional regulation of
gene expression. MiRNAs also serve as a promising source of early biomarkers for different environmental ex-
posures and health effects, although there is limited information linking miRNA changes to specific target
pathways. In this study, we measured liver miRNAs in male B6C3F1 mice exposed to a known chemical activator
of the peroxisome proliferator-activated receptor alpha (PPARα) pathway, di(2-ethylhexyl) phthalate (DEHP),
for 7 and 28 days at concentrations of 0, 750, 1500, 3000, or 6000 ppm in feed. At the highest dose tested, DEHP
altered 61 miRNAs after 7 days and 171 miRNAs after 28 days of exposure, with 48 overlapping miRNAs be-
tween timepoints. Analysis of these 48 common miRNAs indicated enrichment in PPARα–related targets and
other pathways related to liver injury and cancer. Four of the 10 miRNAs exhibiting a clear dose trend were
linked to the PPARα pathway: mmu-miRs-125a-5p, -182−5p, -20a−5p, and -378a−3p. mmu-miRs-182−5p
and -378a−3p were subsequently measured using digital drop PCR across a dose range for DEHP and two
related phthalates with weaker PPARα activity, di-n-octyl phthalate and n-butyl benzyl phthalate, following 7-
day exposures. Analysis of mmu-miRs-182−5p and -378a−3p by transcriptional benchmark dose analysis
correctly identified DEHP as having the greatest potency. However, benchmark dose estimates for DEHP based
on these miRNAs (average 163; range 126−202 mg/kg-day) were higher on average than values for PPARα
target genes (average 74; range 29−183 mg/kg-day). These findings identify putative miRNA biomarkers of
PPARα pathway activity and suggest that early miRNA changes may be used to stratify chemical potency.

1. Introduction

In 2007, the National Research Council released guidance on next
generation toxicity testing that called for increased use of short-term
biomarkers [1,2]. A key requirement of this new paradigm is the
linkage between early molecular-based measurements and their asso-
ciated adverse health effects. This general concept has served as the
basis for the mode-of-action (MOA) and, more recently, the adverse
outcome pathway (AOP), which distill complex biological processes

into sequential key events or key event networks leading to an adverse
health outcome [3,4]. These constructs currently serve an important
role in the organization and review of mechanistic data and the iden-
tification of key data gaps. This type of pathway-based information also
supports tiered testing strategies for chemical risk determination as
required under the Frank R. Lautenberg Chemical Safety for the 21 st
Century Act, a 2016 reform of the U.S. Toxic Substances Control Act
(TSCA). Moving forward, however, predictive applications will require
more targeted pathway-specific biomarkers and a greater
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understanding of quantitative relationships between early and late key
events (Meek et al., 2014; Simon et al., 2014).

Recent work has highlighted the potential value of short-term
transcriptomic-based measurements to identify surrogate points-of-de-
parture (PODs) for chemical screening [5–11]. A common challenge in
these studies is selecting appropriate gene targets linked to specific
pathways and associated adverse effects [12]. There are a numerous
examples that have used transcriptomic biomarkers to determine cel-
lular perturbations or outcomes, including activation or suppression of
nuclear receptors, genotoxicity, cellular stress and proliferation, and a
wide variety of other biological and toxicological effects [13–16]. An-
other example is the S1500+ gene compendium, which was con-
structed to include “sentinel” genes altered by chemical exposure that
are representative of common toxicological responses in many cell
types without having to measure the full transcriptome [17]. However,
currently there are few standardized gene targets for specific MOAs/
AOPs and limited information linking quantitative changes in gene
expression to later health outcomes [6,8].

MicroRNAs (miRNAs) are short non-coding RNA molecules, usually
22–24 nucleotides in length, that regulate gene expression post-tran-
scriptionally by binding complementary sequences on messenger RNA
(mRNA) and inducing degradation of the mRNA or suppression of gene
translation [18–20]. In contrast to the tens of thousands of transcribed
mRNAs in mammals, the known complement of expressed mature
miRNAs is about a magnitude less, with approximately 2700, 2000, and
800 known in human, mice, and rats, respectively (miRBase build 22;
http://www.mirbase.org). Computational and experimental analyses
estimate that a single miRNA may have hundreds of gene targets, and
that miRNAs overall may impact approximately 30–80 % of transcribed
genes, depending on cell and tissue [19,21,22]. A small number of
miRNAs can thus impact a large number of genes, with less global cell-
to-cell variability compared to mRNAs [23,24]. In cancer profiling
studies, a select number of miRNAs can provide robust prediction of
tumor lineage and differentiation [25]. In addition, miRNAs can serve
an indicators of acute environmental chemical exposures [26], in-
cluding activation of nuclear receptors and other transcription factors
[26–28], exhibit dose-responsiveness [9], and appear in measurable
quantities within accessible biofluids [29], which may enable bio-
surveillance efforts. Given these characteristics, miRNAs are being
widely investigated as biomarkers of both chemical exposure and sus-
ceptibility to later adverse health outcomes.

In this case study, we evaluated alterations of liver miRNAs fol-
lowing short-term exposure to chemicals with documented peroxisome
proliferator-activated receptor alpha (PPARα) activity in the liver
[8,30–32]. This pathway is a common target of environmental chemi-
cals that mediates a diverse array of metabolic and carcinogenic effects
in animal models [30]. For example, it has been demonstrated that
PPARα activation may mediate developmental and immunotoxicity in
rodents induced by the persistent organic pollutants perfluorooctane
sulfonate (PFOS) and perfluorooctanoic acid (PFOA) and modulate
downstream pathways involved in metabolism, cell growth and differ-
entiation, and inflammation [33,34].

Our current work builds on previous studies showing that early
measures linked to PPARα activity, including transcriptional-based
benchmark dose (BMDT) estimates for known PPARα target genes, can
be used to estimate dose potencies and stratify chemicals based on later-
life effects [8]. Male B6C3F1 mice were exposed for 7 and 28 days to
three reference phthalates, di (2-ethylhexyl) phthalate (DEHP), di-n-
octyl phthalate (DNOP), and n-butyl benzyl phthalate (BBP). These
chemicals vary widely in PPARα activity, as indicated by our previous
data [8,32]. Effects included dose-responsive hepatocellular cyto-
plasmic alteration typical of peroxisome proliferation [35], increased
cyanide-insensitive palmitoyl CoA oxidase (PCO) activity, which is
dependent on the PPARα-dependent gene Acox1 [36], and marked gene
expression responses consistent with PPARα activation. PPARα-medi-
ated effects of DEHP were further corroborated in PPARα-null mice,

which demonstrated that approximately 94 % of the induced tran-
scriptional activity in wild-type mouse liver were dependent on PPARα
[37,38]. In the current study, we used small RNA sequencing (small
RNA-seq) to assess global alterations in mouse liver miRNAs due to
phthalate exposure and link these changes with known biological
pathways. We estimated BMDs based on sequencing and digital-drop
PCR (ddPCR) measurements, compared these values to referent BMDT

and apical (BMDA) estimates, and assessed concordance between liver
and serum miRNA targets. While our findings identify miRNAs that may
serve as early biomarkers of PPARα pathway activity, transcriptional
responses were closer to BMD estimates for adverse apical outcomes.

2. Materials and methods

2.1. Chemicals

Phthalates were purchased from Chem Service (West Chester, PA).
DEHP (99.5 % purity, lot number 253900), BBP (99 % purity, lot
number 853100), and DNOP (99.5 % purity, lot number 834400) were
added to AIN93 G rodent diet (TestDiet, Richmond, IN) by the vendor.
Control AIN93 G diet was processed in the same way as diets with
phthalate added.

2.2. Study design

The experimental design and treatment protocols have been de-
scribed previously [8]. Briefly, weanling male B6C3F1 mice were ob-
tained at approximately 21 days from Charles River Laboratories (Ra-
leigh, NC) and cared for under protocols approved by the Institutional
Animal Care and Use Committee of the U.S. Environmental Protection
Agency (EPA). Body weight and food and water consumption were
monitored throughout this period to ensure similar treatment group
starting conditions.

When the mice reached a minimum of 65 days of age, they were
dosed for 7 days with either control diet or diet containing DEHP (750,
1500, 3000, and 6000 ppm), DNOP (1250, 2500, 5000, and 10,000
ppm), or BBP (1500, 3000, 6000, and 12,000 ppm). Some mice were
also fed 6000 ppm DEHP for 28 days to examine persistent effects. On
the day of sacrifice (either 7 or 28 days after the start of treatment),
body and liver weights were recorded, and liver tissue including left
lateral, caudate, and right medial liver lobes was immediately flash
frozen in liquid nitrogen and stored at −80 °C until further processing.
Serum samples were processed from blood obtained via cardiac punc-
ture and stored at −80 °C.

2.3. RNA isolation from tissue

Total RNA was isolated from approximately 20 mg of frozen liver
tissue homogenized in

RNAzol RT (Molecular Research Center, Cincinnati, OH) followed
by purification with the RNeasy MinElute column protocol modified to
retain the small RNA (Qiagen GmbH, Hilden, Germany). Initial yield
was quantified by the NanoDrop spectrophotometer (NanoDrop
Technologies, Wilmington, DE). RNA quality was assessed by the
Agilent RNA6000 kit assay on the Agilent 2100 Bioanalyzer (Agilent
Technologies, Berlin, Germany). The RNA was DNase-treated using a
Turbo DNase treatment (ThermoFisher Scientific, Waltham, MA) fol-
lowed by Qiagen MinElute cleanup. Total RNA was quantitated using
the Qubit Broad Range RNA assay (ThermoFisher Scientific).

2.4. RNA isolation from serum

Total RNA was extracted from archived frozen serum (50 μL/mouse)
using the miRCURY RNA Isolation Kit for Biofluids (Exiqon Inc.,
Woburn, MA). Isolation followed the manufacturer’s instructions, with
the exception that glycogen carrier (ThermoFisher Scientific) and
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Exiqon RNA spike-ins were added to the lysis solution to increase small
RNA yield and serve as internal controls for sample quality control,
respectively.

2.5. miRNA library preparation and sequencing

The CleanTag Small RNA Library Prep Kit (TriLink Biotechnologies,
San Diego, CA) and protocol was used to prepare the sequencing li-
brary. For the liver samples, 500 ng of total RNA was used as input. All
reaction parameters were set as described in the protocol, including use
of Illumina small RNA index primers in the library amplification. After
amplification, the library was bead-purified according to manu-
facturer’s instructions. Purified library quality was assessed using the
High Sensitivity DNA kit on the Agilent 2100 Bioanalyzer, and con-
centration was determined by the Qubit dsDNA High Sensitivity Assay
(ThermoFisher Scientific).

Sequencing was performed on the NextSeq 500 using the NextSeq
Mid Output kit (Illumina Inc., San Diego, CA). Quantitation of the
purified libraries was based on the peaks identified on the HS DNA
Bioanalyzer chip analysis as per TriLink Biotechnologies re-
commendation. Sequencing run parameters were as specified by
Illumina using a single-end read at 50 cycles. Sequencing data have
been deposited to the National Center for Biotechnology Information
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/
) under accession number GSE144988.

2.6. Sequencing analysis

The generated reads were checked for quality and trimmed of
adapter sequence using the Illumina BaseSpace Application. The pro-
cessed FastQ files were analyzed using the Partek Flow (version 6.0)
software program (Partek, St. Louis, MO). Sequences were further
trimmed from both 5’ and 3’ ends if the Phred quality score was less
than 20. Samples were aligned with Bowtie version 1.0.0 to the mm10
reference index using up to a 1 base pair mismatch and seed length of
10. Aligned sequences were then annotated to miRBase mature miRNA
version 21 with the Partek E/M (expectation maximum) algorithm.
MiRNA counts were normalized with TMM (trimmed mean of M-va-
lues) and a 0.0001 count was added to all features. Negative binomial
regression was used to model the normalized count data when de-
termining differentially expressed miRNAs (DEmiRs). Significance
testing was corrected for multiple tests and was determined by a Storey
q-value of p ≤ 0.05. Samples were dropped from analysis if there were
less than one million total reads or less than 10 % of the counts were
fully or partially aligned within miRNA features. Features (miRNAs)
were excluded if the geometric mean across all samples was less than or
equal to 10.

2.7. ddPCR

Profiling of selected miRNAs by polymerase chain reaction (PCR)
was performed using the Universal cDNA synthesis kit and microRNA
LNA PCR primer sets (Exiqon Inc.) with the QX200 Droplet Digital PCR
(ddPCR) System and EvaGreen Supermix (Bio-Rad Laboratories,
Hercules, CA). Due to low concentration, RNA concentrations in serum
extractions cannot be determined accurately; therefore, equal starting
volumes of serum RNA were used as input. For liver, 10 ng of total RNA
was input per reverse transcriptase reaction. cDNA dilution factors were
determined empirically for each sample type and miRNA target. The
ddPCR experimental workflow consisting of droplet generation, PCR
amplification, droplet reading, and data analysis was performed ac-
cording to the manufacturer’s instructions. The droplet reader and
QuantaSoft™ software were used in absolute quantification mode to
count PCR-positive and PCR-negative droplets and determine the
starting concentration of the target DNA molecule. The threshold se-
parating positive and negative droplets was manually set at just below

the positive cluster on a well-by-well basis.

2.8. Dose-response modeling

Benchmark dose analysis was used to estimate the threshold dose at
which specific genes and apical effects were altered above (or below)
controls. BMD modeling of apical and transcriptional endpoints (BMDA

and BMDT, respectively) was performed in previous studies [8,39], and
estimates were used as reference values for this study. For BMD values
calculated for sequencing and ddPCR miRNA data (BMDmiR), the EPA
BMDS software version 2.6.0.1 was used (https://www.epa.gov/bmds).
Count data used in modeling were filtered and normalized, as described
in Sequencing Analysis. Doses (mg/kg-day) were previously calculated
from representative intake values [8]. Parameters for model calcula-
tions included a confidence level of 95 % to calculate BMD lower
confidence interval (BMDL) [40], benchmark response (BMR) to 1.349
to correspond to the amount of change required to shift the mean re-
sponse by 10 % above background [41], and constant variance was
assumed (Rho = 0), consistent with previous BMDA and BMDT mod-
eling methods [8,39].

Five continuous model types were used to fit the data: Hill, poly-
nomial (2° and 3°), linear, and power. The best-fit model was selected
using the following criteria: 1) Polynomial and linear models were
compared for best fit by comparing a nested likelihood ratio test de-
noted as Test #4 or “goodness-of-fit” value that exhibited a value> 0.1
within BMDS. If both polynomial and linear models exhibited a p-
value> 0.1, then the simpler model was selected (e.g., linear). 2) The
selected linear/polynomial model was then compared to the Hill and
Power models and the choice of the overall best-fit model was based
collectively on the weight-of-evidence considering, in preferential
order, a) the lowest Akaike Information Criterion (AIC) value, b) lower
local Chi scaled residuals (≤|2.0|), particularly in the range of the
BMD/BMDL, c) a qualitatively better visual inspection of fit, and d) the
global good-of-fit p value, with p = 1 indicating a “perfect fit” (i.e., the
predicted values are equal to the observed values). Models with p< 0.1
were excluded from consideration. 3) Finally, any calculated BMD va-
lues that were above the highest tested dose based on the best-fit model
were discarded and noted as such in the results. In both sequencing and
ddPCR data, BMD values were evaluated with and without the top
doses included, an acceptable approach when there is a plateau at the
highest dose to improve model fitting [40].

2.9. Statistics

Upward or downward trends of miRNA expression due to dose were
initially conducted using a Jonckheere–Terpstra test with significant
trends noted as p-values< 0.05. Expression results from ddPCR mea-
surements were reported as a concentration (copies of miRNA per μl of
assay volume). Boxplots of the data, which were generated using
BoxPlotR (http://shiny.chemgrid.org/boxplotr/), display the maximum
value (upper whisker), third quartile (upper box), median (midline),
first quartile (lower box), minimum (lower whisker), and mean (cross)
data values. Individual sample data are plotted as open circles, with
outliers displayed outside the minimum and maximum value whiskers.
Most groups did not display a normal distribution of data according to a
Shapiro-Wilk Normality Test (p-value< 0.05); therefore, a Mann-
Whitney U test was conducted to determine significant differences of
treatment group miRNA expression from control groups (p-value<
0.05). Clustering analysis was performed by using an average linkage
cluster distance metric and Euclidean point distance metric. Feature
signals on heatmaps were standardized by shifting the feature mean to
0 and scaling the standard deviation to 1 to normalize visualization.
Molecular and cellular function, toxicity, disease, upstream regulator,
and target mRNA predictions were performed in Ingenuity Pathway
Analysis software (IPA) (Qiagen). Pathways were considered enriched
based on a Fisher’s exact score of p-value<0.05 with false discovery
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Fig. 1. Global analysis of mouse liver miRNA alterations after short-term DEHP exposure. Male B6C3F1 mice were exposed to DEHP for 7 or 28 days through
diet and liver miRNA alterations were measured using small RNA-seq. Significant differences were observed at both timepoints, with more robust miRNA alterations
occurring at the later timepoint. (A) Average linkage clustering using normalized miRNA counts indicated clear distinct groupings of high (6000 ppm) treated and
control mice after 28 days of exposure. (B) Principal component analysis (PCA) similarly indicated these differences at 28 days, but the groups were less distinct at
the earlier time with the highest dose tested. (C) Forty-eight differentially expressed miRNAs (DEmiRs) were in common after 7 and 28 days of high DEHP exposure.
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rate correction for multiple tests.

3. Results

3.1. Global microRNA expression analysis

Small RNA-seq was used to measure altered miRNAs in liver tissue
from male mice exposed to DEHP for 7 days (750, 1500, 3000, and
6000 ppm) and 28 days (6000 ppm only). The 6000 ppm dose of DEHP
altered miRNA expression compared to the control group after 28 days
of exposure, based on hierarchal clustering of differentially expressed
miRNAs (DEmiRs) (Fig. 1A) and principal component analysis (PCA)
(Fig. 1B). A total of 171 DEmiRs were significantly altered at this later
time point. Differences in DEmiR profiles were not as apparent on PCA
among DEHP dose groups after 7 days of exposure (Supplemental
Fig. 1), similar to previous analysis of differentially expressed mRNAs in
this study [8]. Consequently, fewer DEmiRs (61) were noted between
the highest dose group and the control group (Fig. 1B). Of these, 48
overlapped with those observed after 28 days of exposure at the same
dose (with 41 altered in the same direction), indicating concordance in
miRNA responses over time (Fig. 1C; Supplemental File 1). Of note,
mmu-let-7c-5p, previously highlighted as an inhibited miRNA by acute
and long-term PPARα activation in mouse liver, was similarly inhibited
by DEHP at both 7 and 28 d in our study [27].

To examine the relationship between miRNA alterations and func-
tional or disease correlates, the 48 DEmiRs observed at both 7 and 28
days were evaluated in IPA. A core analysis was performed, which in-
cluded examination of signaling pathways and processes linked to
diseases and abnormalities, molecular and cellular functions, and de-
velopment (Supplemental File 2, Table 1). Molecular and cellular
functions that were significantly linked to these miRNAs indicated roles
in cell development, growth, proliferation, and movement (Supple-
mental File 2, Table 1 orange highlights). In addition, disease pathway
enrichment included cancer, gastrointestinal disease, organismal in-
jury/abnormalities, and inflammation (Supplemental File 2, Table 1
blue highlights and tab 2 summary). Liver-related outcomes were fre-
quently enriched in a separate “tox functions” analysis, including
pathways related to liver cancer, hepatitis B, and fatty liver disease

(Supplemental File 2, tab 3).
To predict gene targets of the DEmiRs and their involvement in

toxicity pathways, we applied RNA-seq data previously generated from
these same liver samples [39] (GEO Accession #GSE78962). Using a
combination of target prediction algorithms (TargetScan, TarBase, and
others) and experimental data within IPA, the 48 common DEmiRs
were bioinformatically linked to gene expression changes after 7 days
of treatment with 6000 ppm DEHP (Supplemental File 3). “Tox func-
tions” analysis was then repeated on these 668 unique miRNA-linked
differentially expressed genes (DEGs) (Supplemental File 4, Table 1).
Similar to the miRNA-only analysis, toxicity pathway analysis on linked
DEGs indicated roles in hepatocellular carcinoma and liver hyper-
plasia/hyperproliferation (Fig. 2A). Importantly, IPA “upstream reg-
ulator prediction” of the DEGs implicated PPARα and acyl-coenzyme A
oxidase 1 (Acox1), a PPARα-regulated gene that mediates fatty acid
beta-oxidation, as putative drivers of the gene/miRNA expression re-
sponse (Fig. 2B, left; Supplemental File 4, tab 2). Using this same
analysis module in IPA, similar upstream activators were identified
when all significant DEGs (1606) from the 6000 ppm DEHP group at 7
days were analyzed from Hester et al. [39] (Fig. 2B, right; Supplemental
File 4, tab 3). These predictions, based on gene expression analysis, are
concurrent with previous findings that PPARα mediates the primary
transcriptional response in liver in response to DEHP exposure in mice
[30].

3.2. MiRNA dose-response after 7 days of DEHP exposure

Of the 177 measured miRNAs in mice following 7 days of DEHP
exposure, 19 were identified as trending upward or downward with
increasing dose, based on a two-tailed Jonckheere-Terpstra test p-
value< 0.05 (Supplemental Table 1). Of these 19 microRNAs, 11 were
significantly altered at the 6000 ppm DEHP dose at both 7 and 28 days
exposure, and 6 have been previously linked to PPARα-dependent
transcriptional response in mouse liver with short-term agonist ex-
posure [27] (Table 1). Together, 4 miRNAs that were altered at both
timepoints and linked to PPARα regulation exhibited either upward
(mmu-miRs-182−5p, -378a−3p, and -125a−5p) or downward (mmu-
miR-125a−5p) dose trends, with mmu-miRs-182a-5p and -378a-3p

Table 1
Dose-responsive miRNAs that are significantly altered in mouse liver following exposure to DEHP (in ppm) at both 7- and 28-day timepoints.

DEHP vs. control fold change [95% upper, lower limit]

7 days 28 days

microRNA 750 1500 3000 6000 6000

mmu-miR-125a-5p┼ −3.03** −3.00** −2.54* −4.46** −2.16**
[-5.60, −1.64] [-5.20, −1.73] [-4.56, −1.42] [-8.36, −239] [-3.28, −1.42]

mmu-miR-182−5p┼ 1.79* 3.23** 5.85** 5.25** 9.06**
[1.01, 3.17] [1.93, 5.41] [3.40, 10.08] [3.00, 9.31] [4.80, 17.1]

mmu-miR-194−2-3p −1.45 −1.71 −1.79* −1.98* 1.28*
[-2.65, 1.27] [-2.95, 1.01] [-3.22, 1.00] [-3.67, −1.07] [-1.26, 2.07]

mmu-miR-20a-5p┼ 1.64 2.35 2.71 2.52* −1.35*
[-1.52, 4.07] [1.03, 5.33] [1.14, 6.47] [1.01, 6.24] [-2.42, 1.33]

mmu-miR-320−3p −5.47** −4.39** −2.39 −6.88** −2.35**
[-11.57, −2.59] ['8.55, −2.25] [-4.82, −1.19] ['14.67, −3.23] ['-4.88, −1.13]

mmu-miR-339−5p −1.27 1.55* −2.09* −1.59* 1.52*
[-1.83, 1.14] [-2.16, −1.11] [-3.02, −1.45] [-2.31, −1.09] [-1.05, 2.45]

mmu-miR-378a-3p┼ 1.12 1.13 1.58* 1.42* 2.35**
[-1.22, 1.53] [-1.17, 1.5] [1.17, 2.13] [1.04, 1.93] [1.81, 3.06]

mmu-miR-423−5p −1.95* −1.41 −1.65 −2.32* 1.26*
[-1.32, 3.6] [-1.08, 3.77] [-1.5, 2.95] [1.01, 4.78] [1.3, 2.09]

mmu-miR-455−3p −5.3** −4.93* −3.31* −12.28* −15.98**
[-12.44, −2.26] [-10.58, −2.3] [-7.42, −1.48] [-29.62, −5.09] [-28.98, −8.81]

mmu-miR-98−5p 1.65 1.87 1.4 2.2* 1.65**
[-1.32, 3.6] [-1.08, 3.77] [-1.5, 2.95] [1.01, 4.78] [1.3, 2.09]

* q-value ≤ 0.05.
** q-value ≤ 0.005; ┼PPARα dependent.
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exhibiting the lowest p-value for all significant trends (< 0.0001 and
0.0059, respectively). These miRNAs also correlated with dose-re-
sponsive expression due to DEHP exposure in genes that were linked to
the PPARα pathway [39]. The correlation between candidate miRNAs
and PPARα target gene expression (r2 = 0.11−0.67, mean = 0.41)
was generally lower than that correlations amongst the PPARα target
genes themselves (r2 = 0.45−0.99, mean = 0.80). Encouragingly,
miRNAs with the strongest dose trends exhibited the best correlations
with PPARα-linked gene expression dose response, specifically mmu-
miRs-182−5p (r2 = 0.46−0.67, mean = 0.55) and -378a-3p (r2 =
0.11−0.43, mean = 0.36) (Supplemental Fig. 2).

3.3. ddPCR validation and BMD estimates for target miRNAs

To validate sequencing values and compare responses to related
chemicals with weaker PPARα activity [8], ddPCR was used to quantify
candidate miRNA responses on 7-day exposure groups for DEHP,
DNOP, and BBP. In addition to mmu-miR-182−5p and mmu-miR-
378a−3p, mmu-let-7g−5p was measured as a putative negative con-
trol based on non-significant pairwise analysis between DEHP dose
groups and controls in the sequencing results. Mmu-miR-107−3p was
also included based on an increasing dose-trend in our data (Supple-
mental Table 1) and previous data including it as a PPARα-responsive

miRNA [27]; therefore, we wanted to further evaluate with ddPCR as
an independent measure.

Results from ddPCR confirmed many of the sequencing results from
the DEHP groups (Supplemental Fig. 4). Both mmu-miRs-182−5p and
-378a−3p increased with dose for 750, 1500, and 3000 ppm DEHP
groups, whereas values for the 6000 ppm dose was at similar or lower
levels than the 3000 ppm doses. In contrast to the sequencing data,
mmu-miR-107−3p expression was significantly increased at 3000 and
6000 ppm DEHP doses but did not exhibit a significant dose trend. BBP
treatment increased mmu-miRs-182−5p and -107−3p expression at
the highest dose. DNOP resulted in a dose-dependent increase in ex-
pression of mmu-miRs-378a−3p and -107−3p but had no observable
effect on mmu-miR-182−5p. As expected, mmu-let-7g-5p was not
significantly altered with DEHP and BBP treatments; however, expres-
sion was significantly lower at 2500 and 5000 ppm doses of DNOP.
Overall, ddPCR measurements indicated that expression of mmu-miRs-
182−5p and -378a−3p were most responsive to DEHP, whereas ex-
posure to the two weaker PPARα-activating phthalates, BBP and DNOP,
resulted in either no effect or effects only at the highest doses tested.

To further evaluate miRNA dose responses, and to generate values
that could be compared to other endpoints previously generated for this
study, BMD analyses were performed on PPARα-linked mmu-miRs-
182−5p, -378a-3p, -20a-5p, and -107−3p (BMDmiR). Negative control

Fig. 2. Ingenuity Pathway Analysis (IPA) of mRNA linked to altered miRNA at 7 and 28 days following 6000 ppm DEHP exposure. Differentially expressed
genes (DEGs) were linked to DEmiRs using the miRNA target prediction algorithms in IPA. These predicted miRNA target genes were analyzed for signaling pathway
enrichment using IPA: (A) toxicological pathway lists and (B) upstream regulator analysis. For the toxicity analysis, each dot represents a different pathway that was
significantly enriched by this DEG list (-log(p-value> 1.3) and related to the general category listed along the x-axis. These pathways are fully described in
Supplemental File 4, under “miRNA.linked DEGSs, tox function” and “miRNA.linked DEGs, upstream.reg” tabs.
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mmu-let-7g−5p was also analyzed. Using sequencing data, mmu-miR-
20a-5p did not fit tested models (based on global goodness-of-fit > 0.1)
and was not considered for further testing. For mmu-miRs-182 and
-378a, response to the 6000 ppm dose of DEHP was similar to or lower
than the response to the 3000 ppm dose; therefore, data for the highest
dose were excluded to see if model fits improved analysis of the lower
dose trend. AIC values (lower), local scaled residuals (nearer to 0), and
overall visual fit improved; therefore, only 3 doses were used to

calculate BMDmiR values (Fig. 3A, right panel). Similar to the sequen-
cing data, better low dose fit was achieved by dropping the high dose
for mmu-miRs-182−5p and -378a−3p using ddPCR data (Fig. 3B).

Referent estimates for BMDT (transcriptional) and BMDA (apical)
endpoints [8,32,39] were compared to BMDmiR values for all 3 phtha-
lates (compare Fig. 4 with Supplemental Figs. 4 and 5). Of the miRNAs
analyzed, mmu-miRs-182−5p and -378a−3p best distinguished DEHP
from BBP and DNOP. Rank potencies for mmu-miR-182−5p were

Fig. 3. BMD analysis of mmu-miR-182-5p and mmu-miR-378a-3p using 7-day DEHP exposure data. (A) Small RNA-seq data for the top two miRNA candidates
were fit to the best response model, with and without top dose, using benchmark dose (BMD) analysis. (B) Modeling was repeated for the same miRNA candidates
using ddPCR data, with and without top dose, using the best fit model. Doses were converted to mg dose per mouse weight (kg) each day. Both BMD and benchmark
dose for lower confidence interval (BMDL) are noted in each graph. See Materials and Methods for full procedure description.
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DEHP>BBP>DNOP, while potencies for mmu-miR-378a-3p were
DEHP>DNOP>BBP. Of note, BMDmiR values were approximately
twice BMDT values for expression of the most sensitive genes (Acot1,
Cyp4a12b, and Cyp4a14 for PPARα; Gstm1 for Nrf2/oxidative stress;
and Abcc3 for CAR/PXR). BMDmiR values were also well above BMDA

values calculated for liver tumor incidence after 2 years of exposure but
lower than many of the BMDA values for DEHP at 7 days, with the
exception of hepatocyte cytoplasmic alteration (similar to BMDmiR va-
lues) and relative liver weight (lower than BMDmiR values).

3.4. Serum microRNA measurements

In addition to liver miRNA measurements, we also tested whether
miRNA profiles in blood would reflect liver alterations due to DEHP
exposure and potentially serve as a non-invasive measurement (and
putative basis for POD determinations). MiRNAs were isolated from
archived study serum samples, and mmu-miRs-182−5p and -378a−3p
were measured at all 7-day DEHP doses at 7 days and the highest DEHP
dose at 28 days using ddPCR (Fig. 5A and B). We observed no sig-
nificant increase in miRNA levels at either timepoint, although both
mmu-miRs-182−5p and -378a-3p trended upward after 28 days.

4. Discussion

The primary goals of this study were to identify early miRNA in-
dicators of PPARα pathway perturbation and evaluate dose response
characteristics. We observed modest but statistically significant re-
sponses in liver miRNA profiles after 7 days of treatment with the

reference PPARα activator DEHP. Many of the miRNAs altered at 7 days
were also observed after 28 days of treatment. Approximately one-third
of the DEmiRs at 7 days were dose-responsive and many were linked to
PPARα signaling according to pathway analysis and mouse knockout
datasets. Benchmark dose estimates (or the calculated threshold doses
for an adverse chemical effect) for mmu-miRs-182−5p and -378a−3p
were lower for DEHP compared to the two other phthalates (BBP and
DNOP) with less known PPARα activity [8]. We further tested if these
miRNA candidates could be measured in the blood and reflect dose-
responses observed in the liver. MiRs-182−5p and -378a−3p were
detectable in blood using ddPCR and showed an increased trend but
were not significantly different by 28 days at the highest exposure level
of DEHP. Overall, the study indicates that miRNAs measured from a
target organ or tissue of interest can display early dose-responsive
patterns linked to the predominant signaling pathway.

We examined the early alterations of miRNA expression under the
premise that measuring small noncoding RNA could reduce the com-
plexity and variability of mRNA biomarkers. This idea is based on ob-
servations that a single miRNA can potentially have hundreds of gene
targets, either through direct regulation or through a feed-forward
regulatory loop with transcription factors [42]. As a consequence,
dysregulation of a small number of select miRNAs may potentially
impact an entire signaling pathway [43] and provide greater biological
coverage than single gene biomarkers [44], which in many cases are
arbitrarily selected. In our study, most of the dose-responsive miRNAs
after 7 days of DEHP exposure were associated with the PPARα
pathway, either through pathway analysis that indicated PPARα was an
upstream mediator of miRNA expression or by association of previously

Fig. 4. BMD analyses for miRNA, gene expression, apical, and 2-year tumor data based on DEHP exposure in mice. Benchmark dose (BMD; closed shapes) and
BMD lower confidence values (BMDL; open shapes) were calculated for select miRNA candidates and summarized for mRNA, apical measurements, and 2-year
hepatocellular carcinoma (HCC)± hepatocellular adenoma (HCA) based on previous calculations [8,32,39]. Where available, sequencing (circles), PCR (diamonds),
and microarray (triangles) data were used to calculate transcriptomic (T; here, both miRNA and mRNA) values. Associated pathways or transcriptional factors
associated with these transcripts are marked below the gene/miRNA names. Functional apical (A) BMD values, including measurements of CYP activity (PROD,
BROD, EROD), liver enzymes (ALT and AST); small cell proliferation (Ki67), hepatocyte cytoplasmic alterations, and liver weight were derived from Lake et al.
(2016) and denoted as squares. Exposure thresholds for HCC and HCC + HCA are based on two-year data, calculated in Wood et al. (2014), and shown for reference
as asterisks/solid line (BMD) or pluses/broken lines (BMDL). Special notations for BMD values: %= BMD greater than top dose tested; UF = the response was dose-
related but was an Unacceptable Fit (global goodness of fit p-value<0.1); NS = not significance compared to control values for any dose tested; NA =measurement
not available.
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generated data in PPARα-wild type and null mice exposed to a PPARα
agonist [27]. This suggests that many of the 7-day, dose-responsive
miRNAs are downstream of PPARα. This does not discount that the
miRNAs may be part of a regulatory loop with PPARα or other me-
chanisms that may contribute to eventual liver tumor formation. Indeed
multiple miRNAs that we observed altered by 28 days of DEHP ex-
posure are known to target PPARα itself (e.g., miRs-10b, -141, -21a,
-22, -21a, and -34a) [28]. Future studies should establish how these
DEHP-responsive miRNAs are involved in up- or downstream regulation
of PPARα and other transcriptional factors associated with an adverse
outcome.

In our previous study [8], BMD analysis of early gene expression
changes showed that BMDT estimates for select genes were more sen-
sitive quantitative endpoints for stratifying chemicals based on MOA/
AOP and predicting later-life effects compared to standard apical
measures. However, there was also high variability noted for many of
the dose-responsive genes. BMD estimates varied widely for many
PPARα target genes, and gene expression data from global measure-
ments pointed to multiple MOA/AOPs (e.g. CAR/PXR and oxidative
stress,). DEHP induces liver cell toxicity at higher doses [32] and
mediates a CAR/PXR response in addition to PPARα, which may have a
minor contribution to the increase in liver tumor incidence observed in
mice [37,38]. As with many transcriptional products, miRNAs are likely
not exclusively regulated by a single transcription factor (which would
reduce specificity as a biomarker). To further explore this idea in the
DEHP data set, we can compare CAR/PXR-activated DEmiRs (de-
termined by exposure to the CAR agonist, phenobarbital, in CAR/PXR-
wild type and null mice) [26] to our PPARα-linked DEmiRs. Of the nine
miRNAs that were CAR/PXR-dependent, four were also altered fol-
lowing 7- or 28-day exposure to DEHP (miRs-541−5p, -379−5p,
-411−5p, and -541−5p). Importantly, all of these miRNAs were

transcribed from the imprinted Dio-Dlk3 chromosome 12 region, known
to be responsive to CAR activation [45]. These miRNAs were down-
regulated with DEHP (not upregulated as seen with PB exposure), in-
dicating a suppression of the CAR/PXR-linked miRNAs. Previous work
has also indicated that PPARα and CAR/PXR may play antagonist roles
in gene expression regulation [38], further suggesting that down-
regulation of these CAR/PXR-linked miRNAs may be suppressed by the
predominant PPARα signal activation following DEHP exposure. This
analysis supports the premise that altered miRNAs observed in our
study is likely mediated by PPARα activity. However, caution is also
warranted when attributing transcriptional responses to a single MOA.

Few studies other have measured miRNA liver response to PPARα
agonists in rodents. In addition to the PPARα agonist, WY-14,643, ex-
posure performed in PPARα-null and -wild type mice study previously
referred to in our results [27], a comprehensive analysis of genotoxic
and nongenotoxic chemical exposures in C57BL/6 J mice, liver miRNA
alterations were measured in response to PPARα activators (DEHP,
Wyeth-14,643, and diisodecyl phthalate) [46]. The overlapping DE-
miRs of these three chemicals were surprisingly modest (seven total),
however one of these miRNAs was miR-378a−3p, which we also
identified as one of our two top DEHP-responsive candidates. Despite
the different mouse strain used, we also observed 19 shared DEmiRs at
either 7- or 28-day DEHP exposure with the Melis et al. study. One of
these miRNAs, miR-155−5p, was also altered by the known PPARα
agonist, clofibrate, in F344/DuCrl rats [9]. In this study, 20 miRNAs
were measured on a PCR-based assay panel and the investigators ob-
served lower expression of miR-122, -125a, -155, -199a−5p, and
-199a−3p. Consistent with this finding, we also noted a significant
reduction with 7 and/or 28 days of DEHP exposure in all of these
candidates except miR-199a−5p. It was not clear from the study by
Miousse et al. (2017) what other miRNAs were measured that were not

Fig. 5. Serum measurements of mmu-miR-182-5p and mmu-miR-378a-3p. Digital drop PCR (ddPCR) was performed to measure miRNA candidates in serum
isolated from DEHP treated and control mice from (A) 7-day and (B) 28-day exposures. Box plots of data shown. * = significant based on Mann-Whitney U test (p-
value< 0.05). n = 6-8.
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significantly altered with the exposures; therefore, it is unknown if our
top-performing PPARα-linked candidates were also altered with clofi-
brate exposure in the model. Despite the limited miRNA data that has
been generated in rodent liver in response to PPARα agonists, there are
some indications of similar response with specific miRNAs. Future
studies should focus on consistently responding miRNAs that are di-
rectly linked to activation of specific transcriptional factors in different
model species.

To our knowledge, Miousse et al. [9] is the first report to derive
BMD estimates from individual miRNA measurements. In their study,
investigators evaluated a variety of epigenetic, metabolic, and apical
endpoints following 7 days of exposure in male rats to the reference
liver toxicants clofibrate and phenobarbital. The observed down-
regulation of miRNAs was modest and not conducive to dose model
fitting. In our study, we also observed a modest miRNA response and,
not surprisingly, BMDmiR estimates were higher than BMDT values of
the most responsive PPARα target genes, as well as the BMDA estimates
such as liver tumor incidence at 2 years. Based on this evidence, BMD
estimates using short-term measurement of miRNAs do not suggest
doses protective of apical outcomes, at least for the PPARα pathway.
Similar to our findings, gene expression targets for nuclear receptors
linked to known MOAs for each chemical provided the most con-
servative BMD estimates. Miousse et al. concluded that the combination
of apical, transcriptional, epigenetic, and other early molecular-based
changes increase the weight-of-evidence for a MOA and enhance pre-
diction of toxicity following chemical exposures in the liver. A more
recent study calculated BMD for various small RNAs (including
miRNAs) in sperm as a measure of testicular toxicity in response to
ethylene glycol monomethyl ether exposure in rats and compared it to
the BMD of less sensitive phenotypic measurements of sperm count and
health [47]. While the study focused on sequencing metrics (e.g.,
measuring read length) rather than identifying individual miRNA, the
finding highlights further utility of quantifying small RNA as a unique
measure of toxicity.

MiRNAs can be readily measured in blood and other accessible
matrices, highlighting their potential value in biosurveillance pro-
grams. Exogenously expressed miRNAs are stable and resistant to de-
gradation in biofluids because of their association with cell-derived
exosomes, microvesicles, or other miRNA-associated components such
as lipids and proteins [48,49]. There is also evidence that miRNAs can
serve as mediators in a form of paracrine-like communication [50].
However, it is still unclear whether miRNAs released into biofluids can
provide mechanistic information for a particular cellular or tissue re-
sponse. In this study, we measured mmu-miRs-182−5p and -378a−3p
levels in serum derived from mice treated for 7 and 28 days with DEHP
to look for concordance with dose-responsive changes measured in the
liver. Using ddPCR, we measured the presence of both miRNAs in the
serum. There was an increasing trend at the highest exposure level of
DEHP at 28 days but no significant group differences in serum miRNA
concentrations after 7 or 28 days. Future studies of mmu-miRs-182−5p
and -378a−3p in serum would likely require greater sample size and/
or longer duration of exposure.

In a recent investigation into a human population with high levels of
exposure to PFAS, the study authors found alterations of serum-based
miRNA levels including miR-122−5p and PPARα-linked miRs-
101−3p, -107, and 20a-5p [51]. MiR-122−5p is the most abundant
miRNA in hepatocytes (∼70 % of expressed miRNA) [52] and has been
extensively studied as a liver toxicity biomarker [29]. However, it is
unclear whether this miRNA in the serum indicates general leakage due
to liver cell injury or secretion through exosomal or other cell-mediated
release due to a specific mechanism. Although the data were not shown,
we also included the measurement of liver-specific miR-122−5p in the
current study in blood. Similar to traditional serum biomarkers of liver
toxicity (alanine aminotransferase and sorbitol dehydrogenase) pre-
viously measured for this study [8], serum-derived miR-122−5p was
not significantly different following 7 or 28 days of DEHP treatment

compared to controls. This information, in combination with human
PFAS data mentioned above, supports the idea that miR-122−5p is
mediated predominantly via hepatocellular damage, with subsequent
release into circulation. More broadly, this issue highlights the need to
better understand the tissue-specificity of miRNA responses in the blood
and their utility in screening for exposure to specific types of chemicals
[29].

MiRNAs are small non-coding RNA molecules that may serve as
biomarkers of chemical exposure and susceptibility to adverse health
effects. In this study, we examined miRNAs as short-term indicators of
PPARα pathway perturbation in the liver. Several miRNAs were iden-
tified and shown to be dose-responsive and the majority were linked to
the known primary MOA/AOP for DEHP-mediated rodent liver tumor
formation. However, given the limited dynamic range for miRNA re-
sponses, mRNA targets provided BMD values more aligned with apical
estimates. Dose-responsive miRNAs were also detected in the blood but
did not show significant treatment effects or concordance with liver
miRNA changes. This information indicates miRNAs may be short-term
indicators of target pathway disruptions of concern when determining
chemical effects. Future work is needed to determine relevant appli-
cations in both nonclinical safety and epidemiologic studies.
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