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Microalgae are considered to be promising producers of bioactive chemicals,
feeds and fuels from carbon dioxide by photosynthesis. Thus, the prediction
of microalgal growth profiles is important for the planning of cost-effective
and sustainable cultivation–harvest cycles. This paper proposes a mathemat-
ical model capable of predicting the effect of light flux into culture and
medium concentration on the growth profiles of microalgae by incorporating
these growth-limiting factors into a logistic equation. The specific form of the
equation is derived based on the experimentally measured growth profiles
of Monoraphidium sp., a microalgal strain isolated by the authors, under 16
conditions consisting of combinations of incident light fluxes into culture
and initial medium concentrations. Using a cross-validation method, it is
shown that the proposed model has the ability to predict necessary incident
light flux into culture and initial medium concentration for harvesting target
biomass at a target time. Finally, model-guided cultivation planning is
performed and is evaluated by comparing the result with experimental data.
1. Introduction
Photosynthesis is a beneficial reaction that reconverts atmospheric carbon dioxide
produced by the consumption of fossil resources into organic carbon. It is one of
the desirable solutions for a sustainable future to substitute photosynthetic
products for fossil resources. Microalgae, which grow faster and show higher
carbon fixation rates than higher plants, are excellent candidates for carbon
neutral producers. Some species of microalgae have been used as live feed for
fish larvae and are expected as alternative feedstocks for livestock [1] and aqua-
culture [2] because of their high nutritional quality. Other species of microalgae
were reported as superior producers of bioactive chemicals [3], biofuels [4,5]
and biohydrogen [6], which would potentially revolutionize the production of
cosmetics, health foods and fossil-based energy. Among them, Monoraphidium
species classified in Selenastraceae are oleaginous microalgae showing high
lipid contents and were reported as promising hosts for biofuel production
[5,7–10]. Moreover, recent studies showed that Monoraphidium could grow
robustly even in wastewater, suggesting that Monoraphidium cultivation could
become a simultaneous solution for bioremediation and biorefinery [11,12]. To
date, optimization of microalgal cultivation has been studied by computational
and experimental approaches [13–15]. In these types of optimization, it is a
common procedure to optimize the titre of microalgae in a single culture harvest.
However, a major challenge in practical algal cultivation lies in the discovery
of cultivation conditions that enable continuously stable and cost-effective
production over multiple cultivation–harvest cycles. Thus, a model-guided
approach to the design of a cultivation plan for long-term cultivation is desirable.
In particular, development of a mathematical model capable of predicting the
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Figure 1. (a) Overview of cultivation planning. The symbols (C0, Ein, Nmax, Nw and Tw) are the initial medium concentration, the incident light flux into culture, the
maximum biomass, the target biomass, and the target time, respectively. (b) Enlarged view of experimental set-up. The symbol Eout is the transmitted light flux
thorough culture.
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number of cells and harvest time in response to various cultiva-
tion conditions will be a key to finding the conditions for
sustainable cultivation.

Many existing mathematical models predict the growth
rate in response to various environmental factors during cul-
tivation [16,17]. Examples include the Monod growth model
describing the effect of specific nutrients [18] and the models
of temperature-dependent cell growth [14,15,19]. The effect of
light intensity on the growth profile was also modelled in
various ways depending on the state of the cell culture [17].
Although the growth rate is affected by numerous factors
including nutrient concentration, light intensity, temperature,
carbon dioxide concentration and toxic by-products in the
medium [20], these models consider the effect of only a few
factors based on the assumption that cell growth is ultimately
limited by those factors. In contrast to these models, the
logistic equation incorporates the bulk effect of multiple
growth-limiting factors such as medium concentration and
toxic by-products into a single parameter called the carrying
capacity of the environment [21]. Thus, the equation was
used to fit the growth profiles of a wide range of microorgan-
isms [22–26]. However, since it does not explicitly consider
the counteraction of the biomass production to the change
of environmental factors, the original logistic equation
cannot directly be used for the exploration of the growth con-
ditions in cultivation planning. To overcome the limitations
of these models, a recent study proposed a hybrid logistic–
Monod model [27]. This model explicitly takes the medium
concentration into the variable while the other self-limiting
factors are considered in the logistic-type equation. In par-
ticular, this model explicitly captures the dynamic interplay
of the biomass production and the medium consumption
using ordinary differential equations (ODEs) to enable the
exploration of cultivation conditions. This idea of modelling
the complex interplay of biomass production and environ-
mental factors can be used to build a more advanced
hybrid model that includes other important factors for algal
cultivation such as light intensity.

This paper proposes an ODE model of the growth profile
of microalgae to enable cultivation planning by model-based
exploration of the cultivation parameter space, as shown in
figure 1a. Specifically, the proposed model extends the logistic
equation in a way that explicitly incorporates dynamic
environmental factors such as light flux being available for
a single cell and medium concentration, enabling one to
find a cultivation condition that satisfies various constraints
of a practical cultivation process such as target biomass
and target time. The specific form of the extended logistic
equation and its parameters were determined from exper-
imentally measured growth profiles of an originally isolated
Monoraphidium sp. under different light fluxes into culture
and medium concentrations. These experimental data were
further used for the cross-validation of the proposed model.
The cross-validation result showed that the model could
replicate various features of the growth profiles, including
the peak biomass and its timing, for different cultivation con-
ditions. Finally, we showcase a procedure of cultivation
planning, where the initial medium concentration and the
incident light flux into culture are explored to achieve prede-
fined target biomass and target time based on the simulations
and some analytic relation of the proposed model.
2. Experimental conditions and overview of the
proposed model

The goal of cultivation planning is to find parameters of culti-
vation such as the initial medium concentration C0 and the
incident light flux into culture Ein that achieve a target biomass
Nw at target time Tw. To this end, we build a mathematical
model that can predict the dynamic biomass N in response to
various cultivation parameters as shown in figure 1a. In this
section, we first introduce experimental conditions for building
the proposed model, and then outline the overview for the
proposed model.

2.1. Experimental conditions
Microalgae isolated from a freshwater pond in Yoshikawa,
Saitama, Japan were named ACCB1808. The 18S ribosomal
DNA sequence of ACCB1808 was 99.3%, 99.1% and 99.1%
identical to that of Monoraphidium sp. LB59, M. subclavatum
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Figure 2. (a) Experimental conditions combining initial medium concentrations C0 and light fluxes into culture Ein. (b) Time-series data for different initial medium
concentrations C0 and incident light flux into culture Ein. Circles and solid lines show experimental data and predicted results of the full model described in §4,
respectively. (c) Time-series data for the four incident light fluxes into culture Ein with C0 = 1. Circles and solid lines show experimental data (repeat of the data
in (b)) and predicted results of the MR model described in §3, respectively.
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FBCC-A409 and Monoraphidium sp. HDMA-11, respecti-
vely (electronic supplementary material, figure S1). This
result indicated that ACCB1808 belonged to the genus
of Monoraphidium.

To measure the growth profile for modelling, ACCB1808
cultures were incubated in 300ml flasks containing 200ml of
modified BG11 medium. The details of experimental con-
ditions including the medium composition are summarized
in appendix A. Flasks containing culture were directly placed
onto awhite LED light whose intensitymeasured as photosyn-
thetic photon flux density (PPFD) was 1034 μE m−2 s−1. To
strictly regulate the incident light flux into culture, black draw-
ing paper with a 3 cm radius hole (area of 2.826 × 10−3 m2) was
inserted between the flasks and the LED light. The flasks were
placed in an enclosure made with the same drawing paper as
shown in figure 1b. The incident light intensities to flasks
measured as PPFD were adjusted to 1034, 386.7, 184.8 and
96.8 μE m−2 s−1 by inserting sheets of papers between the
flasks and the LED light. Owing to strict regulation of the
illuminated area (2.826 × 10−3 m2), the incident light fluxes
into culture Ein were calculated as 2.92, 1.09, 0.521 and
0.274 μE s−1. The concentration of modified BG11 medium C
was defined as 1, and the initial medium concentrations C0

were adjusted to 0.5, 0.25 and 0.125 by dilution. Although
the medium is composed of different nutrients consumed at
various rates upon growth, we here assume that there is a
rate-limiting nutrient species and use the single variable C
to capture the growth-limiting effect by that nutrient.
ACCB1808 cultures were incubated under 16 conditions con-
sisting of combinations of four patterns of initial medium
concentrations C0 and four patterns of incident light fluxes
into culture Ein as shown in figure 2a. These experimental
data were used for building and evaluating the proposed
model in the following sections.
2.2. Overview of the proposed model
The growth profiles of experimental data shown in figure 2b
indicated that the growth rate and the biomass accumulation
were dependent on the incident light flux into culture Ein and
the initial medium concentration C0, respectively. In initial
growth phase, the biomass N increased exponentially. Next,
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after following a linear increase, the growth rate gradually
decreased and levelled off. These phase transitions were poss-
ibly caused by photoinhibition, insufficient light absorption
at high biomass, depletion of the medium concentration,
and increase of inhibitory substances [28,29]. The state of cul-
ture used for subculture often affected the initial growth rate
in the next cultivation. Specifically, the culture state before
stationary phase was preferable for use in subculture. To har-
vest the culture in the preferable state, it is important to
predict not only a target biomass Nw but also the target
time Tw at which the biomass reaches Nw. Moreover, for prac-
tical operation, the target values (Nw and Tw) have to be
decided from various viewpoints such as cost effectiveness
and the schedule of operators. A mathematical model
would be a desirable tool for exploring cultivation conditions
satisfying these target values.

In what follows, we build a mathematical model capable
of predicting the growth kinetics of ACCB1808 culture for
various cultivation conditions. In particular, we are interested
in the growth kinetics in response to light flux into culture Ein

and medium concentration C since these parameters largely
affect the growth profile as shown in figure 2b. Since the
increase of biomass decreases available light flux for a
single cell even if light flux into culture Ein is constant
during cultivation, available light flux for a single cell is
one of the key variables for the prediction of the dynamic
biomass change. In this paper, light flux being available for
a single cell is called light flux per cell L. The effect of light
flux per cell on the growth kinetics will be discussed in §3.

We develop an ODE model of the growth kinetics based
on the logistic equation [21]

dNðtÞ
dt

¼ r 1�NðtÞ
G

� �
NðtÞ, ð2:1Þ

where N(t) is the biomass at time t, r is the maximum specific
growth rate and G is the carrying capacity of the environ-
ment, or the maximum achievable population size. The first
term of the logistic equation represents the growth due to
proliferation, and the second term collectively accounts
for growth-limiting factors such as toxic by-products and
reactive oxygen species.

Unlike the original logistic equation [21], we assume
that the maximum specific growth rate r is dependent on
the light flux per cell L, and the medium concentration C,
that is, r := r(L, C). As discussed later in detail, L and C are
subject to dynamic change since these two variables are
affected by biomass N(t). The combined effect of these
factors is incorporated into the maximum specific growth
rate r(L, C) by

rðL, CÞ : ¼ mrlightðLÞrmediumðCÞ, ð2:2Þ

where μ is a constant, and rlight(L) and rmedium(C) are func-
tions of light flux per cell and medium concentration. These
functions take values between 0 and 1. The specific forms
of these functions are defined in §§3 and 4. The functions rlight
(L) and rmedium(C ) represent the growth-limiting effect due to
insufficient absorption of light flux per cell and insufficient
nutrients, respectively. In other words, r(L, C )≃ μ when the
light flux per cell L and the medium concentration C are
sufficiently high such that rlight(L)≃ 1, and rmedium(C)≃ 1,
while r(L, C )≃ 0 when L or C is close to 0.
3. Logistic equation with light flux per cell
In the previous section, the maximum specific growth rate r is
defined by the functions of the medium concentration C and of
the light flux per cell L. When the medium concentration C is
sufficiently high, the maximum specific growth rate r is only
dependent on the light flux per cell L. In this section, we con-
sider this special case and formulate a logistic equation that
incorporates the effect of the light flux per cell L, which we
call the medium-rich model or the MR model for short.
3.1. Modelling of the medium-rich model
We incorporate the effect of the light flux per cell L on the
growth kinetics by defining

rlightðLÞ : ¼ LðNðtÞ, EinÞ
lL þ LðNðtÞ, EinÞ , ð3:1Þ

where λL is a half-velocity constant satisfying rlight(λL) = 1/2.
The light flux per cell L(N(t), Ein) is dependent on the

incident light flux into culture Ein and the biomass N(t).
The light flux absorbed by the culture is expressed by Ein−
Eout where Eout is the transmitted light flux through
culture as illustrated in figure 1b (see details about Eout in
appendix B). Thus, the absorbed light flux per cell L(N(t),
Ein) is written as (Ein− Eout)/N(t) by assuming that light
flux is uniformly absorbed by cells in culture. Moreover,
the attenuation of transmitted light in the culture obeys the -
Lambert–Beer Law [30], which states the exponential
decrease of light flux with the path length of light flux and
the concentration of the solution (biomass concentration)
(see details in appendix C). Thus, the absorbed light flux
per cell L(N(t), Ein) is

LðNðtÞ, EinÞ ¼ Ein � Eout

NðtÞ ¼ 1� 10�K�NðtÞ=V�D

NðtÞ Ein, ð3:2Þ

where K is the cell-specific extinction coefficient, D is the
culture depth, and V is the culture volume as illustrated in
figure 1b. It should be noted that, in general, the profile of
the growth rate functions of light flux per cell could be sig-
moidal at low light flux per cell L due to the minimum
light flux required for cell growth, and be decreasing at
high light flux due to photoinhibition [28]. Thus, equation
(3.1) is an approximation model that only captures the
increasing and the saturation phase of the growth rate in
the mild light flux condition, where the cultivation is
mainly performed.

When the nutrients in the medium are sufficient and
are not rate-limiting factors, rmedium(C ) = 1 holds. Thus, it
follows that

dNðtÞ
dt

¼ m
LðNðtÞ, EinÞ

lL þ LðNðtÞ, EinÞ 1�NðtÞ
G

� �
NðtÞ, ð3:3Þ

by substituting equation (3.1) into equation (2.1). In what
follows, equation (3.3) is called the MR model. The
MR model allows us to assess some of the parameters of
equations (2.1) and (2.2) by using experimental data taken
under the conditions with sufficient medium concentration
as shown in the next subsection. The other parameters that
appear in rmedium(C) can then be assessed by subsequent
experiments, which will be discussed in §4. The two-step
parameter evaluation helps avoid overfitting to a single
experimental datum.



Table 1. Initial values and assessed extinction coefficient K.

parameter unit value

V ml 200

D cm 3.7

OD0 — 0.025

K ml cm−1 cell−1 5.1 × 10−9

Table 2. List of evaluated parameters of the proposed model.

parameter unit assessed value

μ h−1 0.194

λL μE s−1 cell−1 1.90 × 10−6

G cell 99.9 × 109

ξC — 0.012

α cell−1 8.7 × 10−12
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3.2. Parameter evaluation of the medium-rich model
Experiments were conducted to assess the parameters K, μ, λL
and G of the MR model (equation (3.3)). Firstly, the extinc-
tion coefficient K being specific to ACCB1808 was evaluated
by the method of Masuda et al. [30]. PPFD was measured
in ACCB1808 culture with various biomass concentrations
and culture depths (see details in appendix C). The relative
logarithmic PPFD was negatively correlated with bio-
mass concentrations and culture depths, indicating that the
Lambert–Beer Law was obeyed in ACCB1808 culture. When
the units of culture depth and biomass concentration were
defined as ‘cm’ and ‘cell ml−1’, the extinction coefficient K
was evaluated as K = 5.1 × 10−9 ml cm−1 cell−1.

Using this extinction coefficient, we further performed
evaluation of μ, λL and G in the MR model (equation (3.3))
based on the growth profile of ACCB1808 culture (see details
about cultivation conditions in appendix A).

Experiments were conducted under a total of 16 different
conditions as shown in figure 2a, where the growth curves
were obtained for combinations of four different light fluxes
into culture, 0.274, 0.521, 1.09 and 2.92 μE s−1, and four initial
medium concentrations, 0.125, 0.25, 0.5 and 1. Optical density
at 730 nm (OD) was measured as a proxy of biomass N(t) (see
details in appendix C).

The parameters were then fitted to the four growth kin-
etics with the sufficient medium concentration, i.e. C0 = 1 in
figure 2c. Specifically, the culture volume V, the culture
depth D, the initial optical density OD0 and the evaluated
extinction coefficient K were set in equation (3.3) as shown
in table 1. When 200ml of culture was put into a 300 ml
flask, culture depth corresponded to 3.7 cm. The culture
depth D and the culture volume V were assumed to remain
constant during cultivation. For Ein = 1.09 and 2.92 μE s−1,
time-series data were fitted only for the first 690 h and 306
h, respectively, since the medium concentration could
become a rate-limiting factor, violating the assumption of
the MR model, when the culture reached stationary phase.

The assessed parameters are shown in table 2. This result
implied that the maximum specific growth rate r(L, C)≃
μrlight(L) was between 0 and 0.194 h−1 depending on the
light flux per cell L when the medium concentration was
high, i.e. rmedium(C )≃ 1. The carrying capacity G was evalu-
ated as 99.9 × 109 cell. The biomass concentration 99.9 × 109/
200 cell ml−1 can be converted into OD of 16.6. This indicated
that the value of OD would never exceed 16.6 regardless of
the medium concentration.

To evaluate the predictive ability of the MR model, the
predicted results of the MR model were further compared
with the experimental data using leave-one-out cross-vali-
dation (LOOCV) [31], where three of the four experimental
conditions were grouped together for parameter evaluation
and the other was used for prediction. Specifically, the par-
ameters (μ, λL and G) were fitted to the three growth curves
with C0 = 1. Then, the model was used to predict the
growth kinetics as shown in figure 2c. Figure 2c shows that
the MR model was capable of predicting the growth kinetics
before reaching stationary phase, where the decrease in
medium concentration had little effect on cell growth.

In the next section, the MR model is used to build a full
model that captures the effect of both light flux per cell L
and medium concentration C on cell growth.
4. Logistic equation with light flux per cell
and medium concentration

A standing assumption of the MR model is that the medium
concentration C(t) is sufficiently high so that the maximum
specific growth rate r is independent of C(t). In this section,
we will extend the MR model (equation (3.3)) to remove
this assumption and explicitly incorporate the effect of the
medium concentration on the maximum specific growth rate.
4.1. Modelling of logistic equation with light flux
and medium concentration

The experimental data in figure 2b suggest that the medium
concentration C(t) does not affect the growth profile just
before the stationary phase is reached.

Based on this observation, we incorporate the rate-limit-
ing effect of the medium concentration using the Monod-
type model [18]

rmediumðCðtÞÞ : ¼ CðtÞ
jC þ CðtÞ ,

where ξC is a half-velocity constant.
We assume that nutrients in the medium are mainly used

for cell growth, and the consumption rate is proportional to
the growth rate dN(t)/dt. Consequently, the mathematical
model that incorporates the effect of both the light flux
per cell L(N(t), Ein) and the medium concentration C(t) is
obtained as

dNðtÞ
dt

¼ m
CðtÞ

jC þ CðtÞ
LðNðtÞ, EinÞ

lL þ LðNðtÞ, EinÞ 1�NðtÞ
G

� �
NðtÞ

ð4:1aÞ
and

dCðtÞ
dt

¼ �a
dNðtÞ
dt

, ð4:1bÞ
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where α is a parameter representing consumption of the
medium concentration per a unit increase of the biomass,
and L(N(t), Ein) is defined by equation (3.2). Equation (4.1)
is called the full model in the following sections. Defining
the initial biomass N(0) by N0, equation (4.1) can equivalently
be expressed as
 lso
cietypublishing.org/
dNðtÞ
dt

¼ m
C0 � aðNðtÞ �N0Þ

jC þ C0 � aðNðtÞ �N0Þ
1� 10�K�NðtÞ=V�D

lL � E�1
in �NðtÞ þ 1� 10�K�NðtÞ=V�D 1�NðtÞ

G

� �
NðtÞ, ð4:2Þ
journal/rsif
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since equation (4.1b) implies

CðtÞ ¼ C0 � aðNðtÞ �N0Þ, ð4:3Þ
and Ein > 0 after starting cultivation.

It should be noted that the parameters K, μ, λL and G are
assessed in the MR model as described in §3.2. The other par-
ameters ξC and α can be assessed using the 16 experimental
data for the different incident light fluxes into culture Ein

and the initial medium concentrations C0 in figure 2b.

4.2. Parameter assessment in the full model
The parameters ξC and α in the full model (equation (4.1))
were assessed using the 16 experimental data in figure 2b.
Specifically, the initial parameters, V, D and OD0, and the
assessed extinction coefficient K in table 1 were used. The
parameters μ, λL and G obtained using the MR model in
§3.2 were set (table 2). Then, the least-square solution was
searched for ξC and α. The evaluated parameters are shown
in table 2.

The generalizability of the full model was also evaluated
by LOOCV [31] using the experimental conditions matrix in
figure 2a. Specifically, for each combination of the light flux
into culture Ein and the initial medium concentration C0, the
parameters ξC and α were assessed with the other 15 exper-
imental data. Then, the model was used to predict the
growth kinetics as shown in figure 2b. The simulated growth
kinetics showed agreement with the experimental data in
that the dynamics of the growth rate was dependent on the
light flux into culture Ein before reaching stationary phase,
while the maximum biomass was dependent on the initial
medium concentration C0. The result of LOOCV in figure 2b
also suggests that themodel can predict themaximumbiomass
Nmax or its corresponding maximum OD. These results will be
more quantitatively evaluated in the next section along with
the demonstration of cultivation planning.
5. Demonstration of cultivation planning
The goal of cultivation planning is to find the initial
medium concentration Cw

0 and the incident light flux into
culture Ew

in to achieve a predefined target biomass Nw at
target time Tw. In a typical cultivation process, cells are
harvested before reaching the stationary phase to avoid the
carry-over of potentially toxic by-products in subculture.
Thus, Cw

0 and Ew
in should be planned so that biomass reaches

Nw at Tw.

5.1. Prediction of initial medium concentration Cw0
for target biomass Nw

In a typical cultivation cycle, culture is harvested before
reaching stationary phase to maintain a preferable culture
state in subculture. In other words, target biomass Nw

should be set less than the maximum biomass at stationary
phase Nmax, e.g. Nw ¼ 0:8Nmax. Thus, prediction of the maxi-
mum biomass Nmax or its corresponding maximum OD in
response to cultivation conditions such as incident light
flux into culture Ein and initial medium concentration C0 is
important in cultivation planning. In theory, Nmax is the bio-
mass at steady state, at which dN(t)/dt = 0. The steady state is
achieved when either the biomass N(t) reaches the carrying
capacity G, i.e. NðtÞ ¼ G, or the medium concentration
is depleted, i.e. C(t) = 0. Thus, Nmax can be analytically
calculated from equations (4.1) and (4.3) as

Nmax ¼ min
C0

a
þN0, G

� �
: ð5:1Þ

It should be noted that the biomass N(t) can be converted
to OD by

OD ¼ N
V

1
30:1� 106

ð5:2Þ

and dry weight per OD is 0.213 mg ml−1. Equation (5.1)
implies that the maximum biomass Nmax, or its correspond-
ing maximum OD, is obtained from an initial medium
concentration C0 when C0 , aðG�N0Þ. This analytic solution
provides a crude estimation of biomass at stationary phase
for a given initial medium concentration.

Figure 3 shows the maximum OD predicted from
equations (5.1) and (5.2), and measured by the experiments
in figure 2b, where the parameters α and G in table 2 and
the initial OD0 in table 1 corresponding the initial biomass
N0 were used for calculation. The results show that the
maximum OD is determined from the initial medium con-
centrations C0 and is independent of the incident light
fluxes into culture Ein. Thus, a predefined target biomass
Nw or its corresponding target OD for cultivation planning
is obtained by simply selecting the initial medium concen-
tration Cw

0 , which can be calculated from equation (5.1).
Once the initial medium concentration Cw

0 is fixed, the time
when biomass reaches Nw can be adjusted by incident light
flux into culture Ein. In the next subsection, we will give a
demonstration to select the incident light flux into culture
Ew
in for target time Tw.

5.2. Prediction of incident light flux into culture Ewin
for target time Tw

Once the initial medium concentration Cw
0 is selected based

on equation (5.1), the next goal is to seek the incident light
flux into culture Ew

in that achieves target biomass Nw at
target time Tw. The incident light flux into culture Ew

in is
explored by running simulations of the full model (equation
(4.1)). Since the target biomass Nw is often set less than
the maximum biomass at stationary phase in practical
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cultivation, let us suppose, for example, that the target bio-
mass Nw is around 70–90% of the maximum biomass.
Then, the expected harvest time at which the biomass reaches
the target biomass can be computed from the growth kinetics
simulated by equation (4.1) for each Ein.

Figure 4 shows the time spans in which the biomass
reaches 70–90% of its maximum value for different incident
light fluxes into culture Ein. In figure 4, T1 and T2 represent
the simulated lower and upper bound of harvest time at
which biomass reaches 0.7Nmax and 0.9Nmax, respectively.
The parameters in tables 1 and 2 were used for these simu-
lations of the full model (equation (4.1)). The experimental
data in figure 4 are obtained from the time-series data
in figure 2b.

Figure 4 shows agreement of the computationally pre-
dicted time spans with the experimental data. Thus, the
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incident light flux into culture Ew
in that enables one to harvest

target biomass at target time can be computationally deter-
mined based on the full model (equation (4.1)). Thus,
combining with the prediction of the initial medium concen-
tration Cw

0 in §5.1, one can find cultivation conditions ðCw
0

and Ew
inÞ satisfying the predefined constraints ðNw and TwÞ,

fulfilling the goal of cultivation planning.
ing.org/journal/rsif
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6. Conclusion
Microalgae are photosynthetic organisms that have high
potential as carbon neutral producers and alternative feed-
stocks for livestock [1] and aquaculture [2]. Prediction of
biomass in cultivation of microalgae is a difficult task due
to the complex interplay of growth conditions such as light
flux, medium concentration, and temperature [20]. As a
result, experimental conditions for harvesting target biomass
at target time, i.e. cultivation plans, are often sought
empirically by operators.

This paper has proposed an ODE model for predicting
the growth profile of microalgae in response to medium con-
centration and light flux into culture to help operators with
cultivation planning. The proposed model has been built by
extending the logistic equation in two steps based on the
experimentally obtained growth profile of ACCB1808 (Mono-
raphidium sp.) under 16 conditions consisting of the
combinations of incident light fluxes into culture and initial
medium concentrations. Specifically, we have firstly con-
structed the MR model (equation (3.3)) that considers only
the effect of light flux into culture, assuming that the
medium concentration is high. In other words, the MR
model captures the growth profile before reaching stationary
phase under sufficiently high initial medium concentration
conditions. Next, we have extended the MR model to incor-
porate the effect of the medium concentration (equation
(4.1)), where the Monod-type model was introduced based
on the experimentally measured growth profile. The predic-
tive ability of the proposed model has then been evaluated
by a cross-validation method, and it has been shown that
the predicted growth kinetics agrees with experimental data
as shown in figure 2b. Finally, model-guided cultivation plan-
ning has been shown as a demonstration example, where the
initial medium concentration and the incident light flux into
culture have been planned for harvesting predefined target
biomass at target time. The proposed model streamlines the
planning process of cultivation cycles that satisfy various
practical demands such as cost effectiveness and the schedule
of operators.
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Appendix A. Experimental conditions for
cultivation
All ACCB1808 cultures were incubated in a space of which
room temperature was controlled at 25�C with continuous
aeration including 1.5% carbon dioxide. LED light was used
for growth, and light intensities were altered for incubation
conditions. PPFD in each condition was measured by using
a Spectromaster C-7000 (SEKONIC; Tokyo, Japan). Optical
density at 730 nm (OD), which is proportional to biomass
concentration N/V, where N is the biomass and V is the
culture volume, was measured by using a V-700 spectropho-
tometer (JASCO; Tokyo, Japan). Biomass concentration N/V
was evaluated by using a microscope (Olympus; Tokyo,
Japan) and a Thoma chamber.

For isolation and preculture, liquid and solid BG11
medium was used containing the following components
(per litre): 1.5 g of NaNO3, 31.4 mg of K2HPO4, 73.9 mg of
MgSO4 · 7H2O, 36.8mg of CaCl2 · 2H2O, 20.1 mg of Na2CO3,
1.12mg of EDTA 2Na, 6.09mg of citrate, 10.15mg of ferric
ammonium citrate, 1ml of A6 solution. A6 solution included
the following components (per litre): 2.86 g of H3BO4, 1.81 g
of MnCl2 · 4H2O, 0.22 g of ZnSO4 · 7H2O, 0.39 g of Na2MoO4 ·
2H2O, 0.079 g of CuSO4 · 5H2O, 0.049 g of Co(NO3)2 · 6H2O.
To prepare solid medium, 15 g l−1 agar was supplemented.

The growth profiles of ACCB1808 in different concen-
trations (from 73.9 to 739 mg l−1) of MgSO4 7H2O in BG11
medium indicated that sixfold concentration (443 mg l−1)
was appropriate (data not shown). Therefore, MgSO4 fortified
medium was called modified BG11 medium and used for
main culture cultivation.

In preculture cultivation, cells were inoculated into 60ml
of BG11 medium in a 100 ml test tube and incubated
under continuous illumination (40 μE m−2 s−1) and aeration
including 1.5% carbon dioxide. Cells of preculture in late log-
arithmic growth phase were inoculated into 200ml of
modified BG11 medium in a 300 ml flask to an initial optical
density at 730 nm (OD0) of 0.025.
Appendix B. Relation between incident light flux
and its density
The incident light flux into culture Ein can be calculated by
multiplication of incident light flux density ein and illumi-
nated area (2.826 × 10−3 m2):

Ein ¼ ein � 2:826� 10�3:

Assuming that the incident light linearly passes culture, the
transmitted light flux through culture Eout is also calculated by

Eout ¼ eout � 2:826� 10�3:

Based on the Lambert–Beer Law as mentioned in appendix C,
the light flux per cell L(N(t), Ein) is obtained as equation (3.2)
in §3.1.
Appendix C. Evaluation of extinction coefficient K
based on Lambert–Beer Law
The measured PPFD under conditions with different culture
depths D and optical densities at 730 nm (ODs) are

https://github.com/hori-group/logistic_eq_for_cultivation_planning
https://github.com/hori-group/logistic_eq_for_cultivation_planning
https://github.com/hori-group/logistic_eq_for_cultivation_planning


Table 3. PPFD for different depth D and OD.

PPFD (μE s−1 m−2)

ein eout

D (cm) OD = 0 OD = 0.149 OD = 0.310 OD = 0.600 OD = 1.17 OD = 2.47 OD = 4.78

0 834.3 829.0 834.0 824.5 818.0 842.0 839.5

1 419.3 386.5 365.0 300.5 226.5 155.5 69.0

2 203.3 175.0 157.0 120.0 77.0 40.0 9.5

3 114.3 95.0 82.0 58.0 33.5 11.5 1.0

4 75.0 58.5 48.0 31.0 15.0 3.0 N/A

5 52.0 38.0 29.5 17.5 6.5 0.5 N/A

6 39.0 26.0 20.0 10.0 3.0 N/A N/A
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Figure 5. (a) Relationships between relative logarithmic PPFD ( =log(eout/ein)) and culture depths D at particular OD (OD = 0.149–4.78). Circles and solid lines show
experimental data and the fitted line with slope (−JOD), respectively. (b) Relationships between relative logarithmic PPFD and ODs at particular culture depth (1–6
cm). Circles and solid lines show experimental data and the fitted line with slope (−JD), respectively. (c) Relation of JOD and JD with depth D and OD. Diamonds and
squares show slopes −JOD and −JD obtained in (a) and (b), respectively. Solid line shows slope of the fitted line for J.
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summarized in table 3. It should be noted that the unit of cul-
ture depth D is centimetre (cm) and that OD is proportional
to the biomass concentration N/V, where N is the biomass
and V is the culture volume. In table 3, ein and eout correspond
to PPFD in culture solution without cells and in culture with
various ODs (OD= 0.149–4.78), respectively.

OD can be converted to biomass concentration N/V by

N
V

¼ OD� 30:1� 106: ðC1Þ

Thus, ODs of 0.149, 0.310, 0.600, 1.17, 2.47 and 4.78 in
table 3 correspond to 4.55 × 106, 10.1 × 106, 17.6 × 106, 34.9 ×
106, 69.8 × 106 and 144 × 106 cell ml−1, respectively.

Figure 5a,b shows relative logarithmic PPFD ( =log(eout/
ein)) for various culture depths D at particular OD (OD =
0.149–4.78) and for various ODs at particular culture depth
(1–6 cm), respectively. The relative logarithmic PPFD was
negatively proportional to culture depth D and OD. This
suggested that the Lambert–Beer Law was applicable to the
culture solution. In other words,

log10
eout
ein

� �
¼ �K �N

V
�D ¼ �J �OD �D, ðC2Þ

where K and J are the extinction coefficients defined for
biomass concentration N/V and OD, respectively. The
relationship between K and J can be written by J = K ×
30.1 × 106, according to equation (C1). It should be noted
that, by convention, the natural number e is also used as
the base of logarithm in equation (C2). In that case, the
constants K and J should be redefined by the change of
base formula.

To obtain the extinction coefficients, least-square fittings
were performed. Specifically, equation (C2) is rewritten as

log10
eout
ein

� �
¼ �JOD �D ¼ �JD �OD,

where JOD is defined by JOD := J ×OD and JD is defined by
JD := J ×D. Then, JOD and JD were calculated from the slopes
of the fitted lines in figure 5a,b, respectively. The extinction
coefficient J was then obtained as J = 0.153 from the slope in
figure 5c, which plots JOD and JD. The value of J = 0.153
corresponds to

K ¼ J
30:1� 106

¼ 5:1� 10�9,

which is the extinction coefficient of ACCB1808 in the unit of
ml cm−1 cell−1. The assessed extinction coefficient K = 5.1 ×
10−9 ml cm−1 cell−1 was used for the prediction of the MR
model in §3.2 and the full model in §4.2, and for the demon-
stration of cultivation planning in §5.
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