
The availability of complete genomic sequences of many 
model organisms has made it possible to perform highly 
informative genome-wide functional analyses. For multi
cellular organisms (including the nematode Caenorhab­
ditis elegans, the fruit fly Drosophila melanogaster, the 
plants Arabidopsis thaliana and rice, as well as mouse), 
phenotypic analysis of genetic mutations is still one of the 
most effective ways to explore the function of a gene. 
Collections of strains with mutations in nearly every gene 
are now available, making it possible to analyze the 
phenotypes of a large number of independent strains. 
However, conventional analytic approaches, such as 
high-magnification microscopy at the single-cell level, 
require manual manipulation of samples and screening 
by eye, thus limiting throughput and presenting bottle
necks to large-scale genetic studies in multicellular 
organisms. Therefore, development of high-throughput 
methods, including automation in phenotyping and 
screening, is a strategy that is now coming to fruition [1]. 
Systematic large-scale phenotyping efforts have begun to 
generate information on a previously unattainable scale. 
For example, it was recently shown that even a highly 
dynamic process such as the division of human cells can 
be studied on a genome-wide scale by live imaging [2].

Cultured cells have also proved amenable to high-
throughput phenotyping [2]. Although more challenging, 
the study of living organisms can provide insights into 
biological pathways, regulatory networks and/or cellular 
activity and behavior not obtainable from cultured cells 
[3-6]. Large-scale acquisition of phenotypic data can 
then predict important biological outputs, such as the 
roles of individual genes in development. Thus, high-
throughput phenotyping approaches (that is, phenomics) 
can encompass a broad range of model systems and 
techniques aimed at understanding the link between 
genotype and phenotype.

A good example of the evolution of high-throughput 
phenotyping is provided by RNA interference (RNAi) 
screens in the worm C. elegans, where recent advances 
in robotic sample preparation have facilitated high-
throughput screens. However, C. elegans is only one of 
many systems in which innovative technologies for high-
throughput studies are being developed. Indeed, the 
development and use of robotic platforms has also 
enabled high-throughput phenotypic analysis of plant 
growth and development at a larger physical scale. Here, 
we use C. elegans and Arabidopsis as the primary 
examples of the exciting new wave of approaches to 
functional genomics [7-10]. We focus on current 
advances in high-throughput phenotyping (HTP) for the 
analysis of C. elegans and Arabidopsis, as lessons learned 
from these organisms can be broadly applied to other 
animal and plant species.

RNAi and high-throughput phenotyping in 
C. elegans
Reverse genetic screening has proved a powerful method 
to identify gene function [11,12]. RNAi is a well-con
served phenomenon observed in many different 
organisms [13-23]. It was originally discovered in plants, 
and became one of the first genome-wide techniques 
used to study loss-of-function phenotypes in several 
model systems and in mammalian cell culture [24-27]. 
RNAi screens have become invaluable tools in assessing 
genotype-phenotype relationships [28,29], and several 
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large-scale RNAi libraries have been generated to identify 
essential genes and those with novel functions [16,30-32]. 
For example, an RNAi library of 750 ovary-enriched 
genes was generated to study the function of genes 
involved in embryogenesis [31]. RNAi genome-wide 
screens in Drosophila have been performed using cell 
culture [12,15]. The genome-wide collection of transgenic 
constructs that has been prepared for in vivo screening 
has underpinned a number of studies, including a screen 
that led to the identification of the sex-peptide receptor 
of Drosophila [33,34]. Large-scale mutagenesis and pheno
typing projects are also under way in mammalian cells, 
and are likely to yield similarly important results [23,35].

Over the past few years, increasingly sophisticated 
image-analysis tools have facilitated RNAi screens. 
Initially, high-throughput RNAi phenotyping focused on 
endpoint observations, such as worm morphology and 
viability, and thus were unable to distinguish between the 
primary and secondary effects of gene silencing. It is now 
possible to perform rapid and accurate phenotyping of 
embryonic lethality in different C. elegans developmental 
stages by analyzing high-throughput image data [36]. The 
image-analysis system DevStaR uses a hierarchical 
approach, in which the output of one step is the input for 
the next, for automatic classification of the developmental 
stages of worms from a population of mixed stages 
(including adult, larval and embryonic stages; Figure 1). 
The system consists of several layers that result in the 
identification of an area of interest: a segmentation of 
pixels within this region; a model-based component that 
breaks the pixel regions into object parts; and finally, a 
categorization of those objects using a machine-learning 
approach. This multi-layered object-recognition software 
offers the computational flexibility for generalized object-
recognition problems and, therefore, is not limited to 
high-throughput worm screens [36].

New computer-aided visualization methods, which 
automatically distinguish images of worms grown in agar 
plates, are also available [37]. In addition, automated 
phenotyping based on machine-learning methods of 
images obtained from movie frames can also be used to 
study embryo development [38]. These systems overcome 
previous bottlenecks in image analysis by scoring image 
data in a fully automated manner and providing rapid 
quantitative output that would not be obtainable at high-
throughput by manual scoring. Because high-throughput 
phenotyping generates a large volume of data, which 
need to be standardized, normalized and analyzed, 
statistical and bioinformatics approaches are also 
becoming increasingly available.

Automated screening using worm-sorters
Further advances combining RNAi and sample sorters 
have enabled rapid selection of organisms with 

Figure 1. Simplified illustration of the DevStaR system. The input 
images are from 96-well plates containing a population of mixed 
stages of adult, larva and embryo worms. Each pixel within the wells 
is first grouped together (contrast measure). Pixels are then grouped 
into connected components based on a threshold value (pairwise 
symmetry score). Third, for the object categorization, a support vector 
machine (SVM) learning method assigned a score to each category. 
Finally, as a result of the segmentation and labeling, DevStaR 
distinguishes adult (blue), larva (red) and embryo (green) worms.
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phenotypes of interest for a variety of assays, including 
genetic screens (Figure 2). Small-animal sorters, such as 
the BIOSORT/COPAS (complex object parametric analysis 
and sorter) machine, use a flow-through technique and a 
profiler system that can analyze up to 100 live animals 
per second and generate fluorescence emission profiles of 
the C. elegans body. COPAS has recently been used to 
analyze the expression pattern of 900 predicted C. elegans 
genes [39]. By analyzing large numbers of animals from a 
mixed-stage culture, Dupuy and colleagues [39] 
generated digitized chronograms of the intensity of gene 
expression throughout post-embryonic development. 
This machine allows researchers to study gene expression 
patterns in a large population of adult animals with a 
quantitative read-out. However, its sensitivity in sorting 
non-adult animals, such as embryos and larvae, is limited. 
Therefore, as a complementary approach, fluorescence-
activated cell sorting (FACS) can be employed. By using 
embryo FACS (eFACS), large numbers of living embryos 
enriched in any desired embryonic stage can now be 
selected. Given the availability of different fluorescent 
marker genes, eFACS enables the assay of embryonic 
stage-specific gene expression in a high-throughput 
manner. Moreover, the need for a fast and reliable way of 
identifying phenotypic alterations in larvae, after modu
lating or eliminating genes, led researchers to develop a 
method to sort live C. elegans larvae (laFACS) [40]. 
Modifying a FACS machine enabled the collection of 
large quantities of live mutant worms from mixed popu
lations, thereby expanding the arsenal of tools for high-
throughput ‘sample preparation’ for genetic screens. 
Because these flow-cytometry-based systems sort animals 
only on one-dimensional intensity profiles, microfluidics 
chips have been developed to obtain single-cell resolution 
[41,42]. Microfluidic chips can be designed to function as 
small-scale sorters with channels and computer-controlled 

valves that control the environment surrounding the 
organism and restrict the worms’ movements. This tech
nology, when combined with automated image process
ing, allows high-throughput, non-biased phenotyping, 
imaging and screening of multicellular organisms [43].

The resolution at which biological samples can be 
analyzed has greatly increased in recent years as fluores
cence microscopy strategies have been developed to 
characterize gene expression at the single-cell level in C. 
elegans [1,44]. Methods to quantitatively measure gene-
expression dynamics with cellular resolution are antici
pated, and will be advantageous to functional genomic 
studies. However, the challenge of capturing high-resolu
tion images that represent the entire sample remains 
formidable. Extensive high-throughput time-lapse fluor
escent microscopy will only become a reality with 
improvements to the automation of microscopy imaging 
and the processing of large datasets.

High-throughput phenotyping for plant 
biotechnology
The identification of genes that underlie phenotypic 
variation for complex agronomic traits such as biomass 
and drought tolerance will be key to biotechnology-aided 
crop improvement. Because such traits are often con
trolled by many genes that are also heavily influenced by 
the environment, the discovery of their genetic basis often 
requires large-scale phenotyping strategies. Mutational 
methods such as chemical or fast neutron mutagenesis can 
be used in forward genetic screens, whereas insertional 
mutagenesis via T-DNA lines or transposons is used to 
generate libraries of loss-of-function mutants for reverse 
genetic screens. Arabidopsis has led the way in plant 
phenotypic profiling because insertional mutations of 
most genes are available [45-51]. Rice, as a leading 
experimental model for monocotyledonous crops, also 

Figure 2. Outline of general strategies of phenotyping in C. elegans using RNAi and sorters. The sorting techniques COPAS and laFACS can 
be used to sort live worms. FACS is used to rapidly sort and collect large quantities of live larvae from a mixed population. After laFACs, pure GFP or 
mutant worms can be used for either genetic or chemical screens, microarray or biochemical assays.
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has a panel of insertional mutant lines [52]. Insertional 
mutagenesis has also been applied to other crops, 
including maize and Medicago truncatula [53,54]. 
However, advances in phenomics will be essential to fully 
realize the potential of these powerful genetic resources.

The investigation of complex traits such as root 
morphology, leaf size, plant height, flower shape or seed 
weight requires analyzing hundreds to thousands of 
plants, which poses a major challenge. Furthermore, gene 
response as a function of the environment must be 
accounted for. For this reason, tools specific for digital 
phenotyping together with automation of this process in 
controlled environments are necessary for high-through
put screening of plant phenotypes. Digital phenotyping 
offers the major advantage that data can be reanalyzed 
when new traits of interest or new types of measurements 
emerge. As the demand for digital image-acquisition 
technologies increases, several efforts have been made to 
generate software tools capable of producing objective 
and quantitative analyses of large image sets. Automated 
platforms have been developed for Arabidopsis and for 
crop plants to allow different aspects of automated 
visualization and image quantification. For example, the 
PHENOPSIS platform was used to dissect plant respon
ses to soil water deficit in a collection of natural acces
sions of Arabidopsis [55]. The PHENODYN platform 
imposes drought scenarios and has been used to image 
maize and rice plants [56]. In addition, several efforts to 
improve aspects of automated visualization and image 
quantification for high-throughput phenotype scoring 
(for example, seed germination, hypocotyl growth, leaf-
area development and root growth dynamics) have been 
made for Arabidopsis. Specifically, the high-throughput 
seed-germination analysis platform GERMINATOR was 
used to screen for natural variation in a population of 165 
recombinant inbred lines, which revealed several 
quantitative trait loci (QTLs) for salt tolerance [57]. 
High-resolution measurements of hypocotyl growth and 
shape have been obtained by automated quantification of 
time series of electronic images using HYPOTrace [58]. 
Other examples of fully or partially automated imaging 
platforms for non-destructive image-based phenotyping 
are LeafAnalyser, LAMINA and GROWSCREEN 3D 
[59‑61]. These computer-based tools provide quantitative 
descriptors for leaf shape and size. A shortcoming of 
most of these tools is that they are designed to address 
very specific questions. Moreover, most traditional 
phenotype-scoring systems are based on endpoint 
analysis, and therefore do not easily capture the dynamic 
aspects of complex traits.

Recent approaches to capture these aspects have 
incorporated time-course data acquisition so that 
transient events and subtle temporal changes can be 
observed. However, the challenge of observing dynamic 

growth processes and responses to environmental 
stimuli, through the combination of automated time-
lapse imaging with automated image analysis, remains 
[62]. Many image-analysis-based software tools have 
focused on quantifying root growth rates and root 
structure. Advances in machine vision and computation 
of automatic trait evaluation have facilitated digital 
reconstruction of root systems and have potentially 
increased the levels of throughput for phenotyping in 
plants. Examples of software that allow higher-
throughput phenotyping are RootTrace [63], KineRoot 
[64], SmartRoot [65], RootLM [66], Phytomorph [67,68], 
RootFlow [69] and WinRhizo [70].

Many high-throughput methods have been developed 
for Arabidopsis, aided by its small size. For crop plants, 
an automatic imaging system has been applied to 
monitoring rice growth [71]. Moreover, a foundation for 
high-throughput automatic phenotyping for QTL analy
sis of root system architecture (RSA) traits of crop 
plants has been laid recently. To capture the root-system 
topologies of diverse rice cultivars, inbred lines were 
grown in a transparent gel substrate and imaged at high 
resolution. The resulting images were combined in an 
analysis pipeline that automatically extracted RSA 
measurements. Using a machine-learning approach, 

Figure 3. The general strategies of phenotyping in plants. 
Illustration of the root-imaging platform. (1) Rice plants are grown in 
cylinders in gel-based media (sample preparation). (2) The cylinders 
are placed in a box containing water on the imaging turntable 
with backlighting. Computers control cameras attached to a four-
post support system, which permits adjustments vertically and 
horizontally. Images are acquired through 360° (image-acquisition 
platform and data handling). (3) Cropped images from multiple 
angles are used for analysis (data processing). (4) Feature maps of 
root architecture that record values for a variety of root features, such 
as perimeter, depth, bushiness and volume, of each image (image/
data analysis).
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these measurements were able to distinguish between 
closely related genotypes [72] (Figure 3). Alternative 
methods exist for the non-destructive capture of images 
of crop root systems grown in solid substrates, such as 
X-ray tomography and positron emission tomography 
(PET), but these are limited by throughput, resolution 
or cost [73,74].

Low-cost packages for high-throughput phenotyping 
allow the handling of large-scale experiments, and down
stream software pipelines offer flexibility for analysis of 
numerous lines and treatments. The improved efficiency 
and absence of subjectivity are great advantages of 
computer-aided assessment. In the past few years, the 
generation of phenotypic databases for large numbers of 
mutants has become a collaborative effort. For example, 
large-scale phenotypic analysis has been reported in rice 
using several mutant resources and several phenotype 
databases are now available (Table 1) [75-79]. Web-
accessible collections of visible phenotypes observed for 
other crop plants, such as barley, maize, tomato and 
soybean, are also available (Table 1) [80-82].

Conclusions
Mutational analysis remains the gold standard for identi
fying and characterizing gene function and this is being 
facilitated by high-throughput phenotyping. Given the 
demand for high-throughput phenotypic analysis in 
many organisms, we can expect the further development 
of large-scale phenotyping to unravel complex genotype-
phenotype relationships. As an example, automated 
microscopy provides the opportunity to collect vast 
amounts of data that need to be standardized, normalized 
and analyzed. This increases the need for community 
access to store and search these large datasets. It would 
be of great benefit if large-scale phenotypic data could be 
easily compared and shared between labs. However, 
current limitations to the reuse and sharing of such data 
include the lack of standardized vocabulary terms, 
experimental parameters and quantitative benchmarks. 
Therefore, there is a pressing need for clearly defined 

standards and terms agreed upon by a given community. 
To achieve this goal, databases that contain phenotypic 
information and, especially, integration of phenomic and 
other genome-wide data are required. Multi-organism 
phenotype-genotype databases that facilitate cross-
species identification of genes associated with ortholo
gous phenotypes are now becoming available (for 
example, PhenomicDB) [83,84]. In the next few years, the 
ability to harvest the full benefit of such large datasets 
can only be obtained by combining the genomic, epi
genomic, transcriptomic, proteomic, metabolomic and 
phenomic data into shared databases. This resource will 
be invaluable for the investigation and eventual elucida
tion of molecular mechanisms regulating the biology of 
multicellular organisms, and will form a comprehensive 
description of the whole organism, opening new paths 
into systems biology.
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