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The establishment success of a population is a function of abiotic and biotic factors and introduction dynamics. 

Understanding how these factors interact has direct consequences for understanding and managing biological 

invasions and for applied ecology more generally. Here we use a mesocosm approach to explore how the size 

of founding populations and the number of introduction events interact with environmental conditions (tem- 

perature) to determine the establishment success of laboratory-reared Drosophila melanogaster. We found that 

temperature played the biggest role in establishment success, eclipsing the role of the other experimental factors 

when viewed overall. Under optimal temperature conditions propagule pressure was of negligible importance 

to establishment success. At adverse temperatures, however, establishment success increased with the total 

founding population size. This effect was considerably stronger at the cold than at the hot extreme. Whether 

the population was introduced all at once or by increments (changing the number of introduction events) had a 

negligible global effect. However, once again, a stronger effect of increasing number of introduction events was 

seen at adverse temperatures, with hot and cold extremes revealing opposite effects: adding flies incrementally 

decreased their establishment success at the hot extreme, but increased it at the cold extreme. These differing 

effects at hot and cold thermal extremes implies that different establishment mechanisms are at play at either 

extreme. These results suggest that the effort required to prevent (or conversely, to facilitate) the establishment 

of populations varies with the environment in ways that can be complicated but predictable. 
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. Introduction 

An understanding of the factors involved in the successful estab-

ishment of populations is critical to understanding how species shift

heir ranges, with direct applied implications for reintroduction biol-

gy, invasion science and assisted migration ( Hayes and Barry, 2008 ;

miljanowicz et al., 2017 ; Kueffer et al., 2013 ). In general, establish-

ent success is a function of environmental suitability, life history

raits and introduction dynamics ( Howeth et al., 2016 ; Iles et al., 2016 ;

asties et al., 2016 ; Wilson et al., 2009 ; Cassey et al., 2004 ; Enders et al.,

020 ; Catford et al., 2009 ), with important factors including the recip-

ent environment’s climate, biodiversity and disturbance regime; the

eproductive capacity and adaptability of the introduced species; the

umber of individuals introduced; and the pathway along which indi-

iduals are introduced. The interplay of these factors is often context-

pecific, varying in space and time. However, across taxa, the most con-
∗ Corresponding author at: Plant Health Diagnostic Services, Department of Agricu

599, South Africa. 

E-mail address: davinas@dalrrd.gov.za (D.L. Saccaggi). 

ttps://doi.org/10.1016/j.cris.2021.100011 

eceived 12 October 2020; Received in revised form 11 February 2021; Accepted 14

666-5158/© 2021 The Author(s). Published by Elsevier B.V. This is an open access 

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
istent predictor of establishment success is the total number of indi-

iduals introduced, termed propagule pressure ( Lockwood et al., 2005 ;

ockwood et al., 2009 ; Simberloff, 2009 ; Cassey et al., 2018 ). 

Propagule pressure, which is essentially founding population size,

an be important in establishment success for both demographic and ge-

etic reasons ( Fauvergue et al., 2012 ; Hufbauer et al., 2013 ; Drake and

odge, 2006 ). Small founding populations are more likely to die out

imply by chance, e.g. all individuals born are one sex or all happen to

uccumb to adverse environmental conditions ( Fauvergue et al., 2012 ;

uncan et al., 2014 ). Moreover, the per capita fitness might be intrin-

ically lower at low population sizes, i.e. Allee effects. Propagule pres-

ure can also have genetic effects —small founding populations will typ-

cally have low genetic diversity and so over time they can become

eavily inbred. High levels of inbreeding can be detrimental to survival

 Fauvergue et al., 2012 ; Sz ű cs et al., 2014 ), although in some cases it can

lso be advantageous, e.g. low genetic diversity can reduce intra-specific
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ompetition and facilitate invasions in eusocial insects ( Tsutsui et al.,

003 ; Garnas et al., 2016 ). 

Environmental stochasticity can similarly interact with factors in-

rinsic to small populations to increase the chance that a population

ies out ( Duncan et al., 2014 ; Bajeux et al., 2019 ). The interaction be-

ween founding population size and environment is complex and the

nterplay is context-specific ( Duncan et al., 2014 ; Sz ű cs et al., 2014 ;

uncan, 2016 ; Bacon et al., 2014 ; Dressler et al., 2019 ; Von Holle and

imberloff, 2005 ; Chevillon et al., 2013 ), making it difficult to elucidate

hich mechanisms are important in specific cases. 

When viewed across the whole range of environmental suitability

nd propagule pressure, both population size and environment play a

ole ( Duncan, 2016 ; Yeates et al., 2012 ; Hee et al., 2000 ) and there-

ore, as a result of environmental stochasticity, both the total num-

er of individuals introduced and when they are introduced in relation

o each other can impact establishment success ( Dressler et al., 2019 ;

on Holle and Simberloff, 2005 ; Vahsen et al., 2018 ; Hedge et al., 2012 ;

inclair and Arnott, 2016 ). 

The interaction between propagule pressure and environmental

tochasticity has direct implications for managing biological inva-

ions. For example, biotic and abiotic factors and introduction dy-

amics need to be considered before deciding how many individuals

f a biocontrol agent need to be released for a population to estab-

ish ( Fauvergue et al., 2012 ; Hufbauer et al., 2013 ; Duncan, 2016 ;

eates et al., 2012 ). The influence of introduction events on popula-

ion establishment is similarly important when trying to prevent in-

asions (i.e. biosecurity) ( Garnas et al., 2016 ; Wonham et al., 2013 ).

s it enough to keep each introduction event below a certain estab-

ishment threshold? Or is the total number of individuals introduced

ore important, regardless of whether they arrive during a single in-

ursion event or are distributed over many? Are there particular sets

f environmental conditions when establishment is much more likely

i.e. invasion windows)? Despite the practical importance of these ques-

ions, little consensus on the relative role of these factors has been

eached to date in the literature ( Cassey et al., 2018 ; Wonham et al.,

013 ). It might be expected that multiple introductions should increase

he probability of population establishment and survival in variable,

dverse or harsh environments, as the timing of at least one intro-

uction is more likely to coincide with suitable conditions for estab-

ishment ( Haccou and Iwasa, 1996 ; Drake et al., 2006 ) (but see also

oontz et al., 2018 ). One might similarly expect that if strong Allee

ffects are present, small introductions will have a low probability of

urvival and a single large introduction event would be more likely

o result in successful establishment ( Sz ű cs et al., 2014 ; Hedge et al.,

014 ). However, various studies have found number of individuals in-

roduced ( Vahsen et al., 2018 ; Sinclair and Arnott, 2016 ), number of

ntroduction events ( Hedge et al., 2012 ; Sinclair and Arnott, 2016 ;

oontz et al., 2018 ), both ( Dressler et al., 2019 ; Drake et al., 2005 ) or

either ( Sinclair and Arnott, 2017 ) to influence the probability of estab-

ishment. Similarly Garnas et al. (2016 ) note that founder effects rarely

imit invasive insect fitness. This is most likely due to different mecha-

isms at play in different taxa or environments ( Drake and Lodge, 2006 ;

ahsen et al., 2018 ). 

Laboratory studies are useful in addressing such questions, since

here is typically tighter control over key demographic factors,

ith fewer uncontrolled covariates than under field conditions

 Dressler et al., 2019 ). As ectotherms, most insects have body temper-

tures that approximate closely (and are therefore susceptible to) am-

ient environmental conditions ( Sinclair et al., 2016 ). Furthermore, in-

ects typically show asymmetric thermal performance curves of diverse

raits that manifest as a peak in performance (often equated with fitness

r population growth rates) at some intermediate temperature, while

erformance declines to zero at extremes, albeit far more sharply at

igh temperatures ( Buckley et al., 2017 ; Frazier et al., 2006 ). Drosophila

elanogaster (Diptera: Drosophilidae) is a well-studied model system in

iomedical research and evolution owing to its short life-span, well-
2 
haracterised genetics and ease of handling and is increasingly recog-

ised as a model in invasion biology ( Roberts, 2006 ; Gibert et al.,

016 ; Dahmann, 2008 ). Studies on D. melanogaster have provided in-

ight both to the invasion of other drosophilid flies, such as D. suzukii

 Hauser, 2011 ; Iacovone et al., 2015 ; Asplen et al., 2015 ) and to biolog-

cal invasions more generally ( Gibert et al., 2016 ) . 

In this study, we investigated the interplay between environment,

ounding population size and number of introduction events on estab-

ishment success of D. melanogaster laboratory colonies (with establish-

ent success defined here as when offspring of the founding individuals

urvived to adulthood ( Sz ű cs et al., 2014 )). First, from thermal perfor-

ance curve theory we predicted that temperature was likely to have the

reatest effect on establishment, with a higher proportion of colonies es-

ablishing at optimal temperatures than at either thermal extreme. Sec-

nd, although Drosophila melanogaster is able to establish from a single

ravid female under optimal conditions, laboratory experiments often

nitiate multiple introductions to compensate for anticipated colony fail-

re under these circumstances. Therefore we expected that increasing

ounding population size would increase the probability of establish-

ent under all circumstances, with a greater effect at extreme thermal

onditions since, under those conditions, small founding populations

ay fail more often. Third, previous studies have shown that in sexually

eproducing organisms, colonies established from a single large found-

ng event had higher survival rates than those from smaller and more fre-

uent introductions ( Sinclair and Arnott, 2016 ). Thus, we predicted that

ncreasing the number of introduction events (which in turn decreased

he number of individuals in each event) would decrease the probabil-

ty of successful colony establishment. Finally, we predicted that these

actors would interact positively with each other to influence overall

olony establishment, such that colonies established at optimum tem-

eratures with the highest number of founders in a single event would

e most likely to survive. 

. Methods 

.1. Drosophila melanogaster colonies 

Drosophilid flies were wild-caught in Stellenbosch, South Africa by

rapping with mixed rotting fruit. Fourteen gravid females were placed

ndividually into vials containing a media diet (described below). Once

arvae were observed, the female was removed and identified by se-

uencing of the COI barcode gene ( Folmer et al., 1994 ) and compared

o reference sequences on Genbank ( Benson et al., 2005 ). All females

dentified unambiguously as D. melanogaster and offspring were then

ixed in colonies. 

Colonies were maintained on a media diet consisting of 15.875 g

rewer’s yeast, 9.175 g soy flour, 70 g corn flour, 21.175 g dextrose, 6 g

gar, 15 mL of a 3% nipagin / ethanol solution and 5 mL of a 41.8%

ropionic / 4.2% phosphoric acid solution, mixed with enough water

o make 1 L. The mixture, excluding nipagin and acid, was heated until

t thickened, then nipagin and acid were added and the mixture stirred

ntil it cooled. It was then poured into sterile glass containers and al-

owed to solidify overnight. Plain paper was added to provide adult

ies a resting place and allow for larvae to crawl up and pupate, af-

er which containers were plugged with cotton wool or covered with

ne mesh (depending on the width of the container’s opening). Optimal

earing temperature for Drosophila melanogaster colonies is between ap-

roximately 18 °C and 25 °C ( Stocker and Gallant, 2008 ). We chose to

aintain our colonies at 22 ± 1 °C at a 14h:10 h L:D cycle and 45–55%

umidity, as the fly developmental time at this temperature allowed us

reater control over the colony. It was necessary to periodically transfer

ies to new containers with new media as the diet media became de-

leted and quality deteriorated. In doing this, not all adult flies could

e transferred and thus populations were routinely culled in the transfer

rocess. 



D.L. Saccaggi, J.R.U. Wilson and J.S. Terblanche Current Research in Insect Science 1 (2021) 100011 

 

e  

e  

i  

g  

t  

fl

2

 

4  

t  

3  

f  

s  

r  

A  

f  

m  

i  

t  

t  

w  

t  

c  

f  

d  

(  

t  

g

 

a  

p  

f  

(  

l  

w  

t  

m  

t  

s  

4  

s  

w  

(  

T  

m  

g  

a  

fl  

d  

t  

h  

K  

m  

j  

i  

c  

t  

e  

t  

w

1  

T  

a  

m  

i  

s  

m  

n  

t

2

 

c  

R

2

 

(  

p  

t  

(  

g  

t  

w  

w  

f  

a  

t  

O  

a  

s

 

i  

f  

A  

l

 

g  

f  

o  

o  

o

 

n  

t  

t  

b  

c  

u  

(

2

 

t  

o  

c  

u  

(  

c  

d

 

m  

T  

n  

i  

e  

c  

d

The genetic diversity of the wild-caught flies was unknown. How-

ver, we were careful to mix offspring and colonies during transfers,

nsuring as much genetic mixture as possible. Due to the colony be-

ng started from 14 females, maintained in the laboratory for multiple

enerations and routinely culled (which could cause a population bot-

leneck) it is unlikely that there were large genetic differences between

ies used in the experiments. 

.2. Experimental design 

A pilot study was carried out to determine the temperatures at which

0–60% of founding colonies of eight females and eight males would es-

ablish. Treatments were conducted at 12 °C, 14 °C, 16 °C, 28 °C, 30 °C,

2 °C and 33 °C, each replicated 20 times. Adult flies of 1–4 days old

rom the mass-bred fly cultures were caught and cooled on ice and then

exed. While cool they were sucked into plastic tubing and allowed to

egain mobility before being gently blown into the treatment containers.

ll introductions were performed between 7:00 and 9:00am to control

or potential circadian effects on reproduction. Given the age of flies,

ost females were expected to be gravid, although this was not explic-

tly determined. Founding adult flies were removed at approximately

wo thirds of the fly life cycle so as not to be confused with the es-

ablishment cohort. Drosophila melanogaster life cycle from egg to adult

as c . 52, 12 and 9 days, at 13 °C, 22 °C and 32 °C, respectively. Es-

ablishment was defined as offspring surviving to adulthood, which we

onsidered to be the case if at least one adult fly emerged and survived

or at least two days. Drosophila melanogaster mate approximately one

ay after emergence, thus allowing two days for survival implied that

if the environment were maintained) the emergent flies would be able

o mate and reproduce, leading to successful establishment of multiple

enerations. 

From the pilot study, thermal extremes were determined to be 13 °C

nd 32 °C. Optimal temperature was kept at 22 °C, as this was the tem-

erature at which the colonies were reared. All treatments were there-

ore conducted at either 13 °C (extreme cold), 22 °C (optimal) or 32 °C

extreme heat). All treatments were conducted in programmable, insu-

ated growth chambers equipped with fluorescent lights. Temperatures

ere kept within 1 °C of the intended target temperatures throughout

he course of the experiment (as monitored by the use of digital ther-

ometers). A partially factorial experimental design was applied to test

he effect of temperature (13 °C, 22 °C or 32 °C), founding population

ize (2, 4, 8 or 16 individuals) and number of introduction events (1, 2,

 or 8 events), as shown in Fig. 1 . For instance, a founding population

ize of 16 with 8 introduction events meant that two new adult flies

ere introduced to the experimental container every day eight times

 Fig. 1 ). To prevent crowding ( Horváth and Kalinka, 2016 ; Miller and

homas, 1958 ), treatment container size and diet media amount were

atched to founding population size. Containers were wide-mouthed

lass jars of 1 L, 500 mL, 250 mL and 125 mL with 160 mL, 80 mL, 40 mL

nd 20 mL diet media for founding population sizes of 16, 8, 4 and 2

ies (1:1 female:male ratio), respectively. While this potentially intro-

uces a confounding effect of jar size, the alternative of potentially in-

roducing crowding effects was deemed less desirable as crowding can

ave large negative impacts on development and survival ( Horváth and

alinka, 2016 ). Fresh media was made and added a day before treat-

ents began. Adult flies were caught, sexed and added to treatment

ars using the same method as for the pilot study. Adult flies were kept

n the treatment containers for approximately two thirds of the fly life

ycle at that respective temperature, as identified in the pilot study, and

hen removed. Containers were subsequently monitored every day for

mergence of new adult flies. Monitoring continued for five days after

he first new adult had emerged at 32 °C and 22 °C and for 10 days after-

ards at 13 °C. This resulted in an experimental duration of 12–14, 15–

7 and 56–60 days for treatments at 32 °C, 22 °C and 13 °C, respectively.

en replicates were performed at each treatment condition, resulting in

 total of 300 replicates. Due to space and time constraints, not all treat-
3 
ents could be conducted simultaneously. Treatments were carried out

n batches of between two and six treatments (i.e. 20 to 60 replicates)

tarted on the same day, with media prepared in a single batch. Treat-

ents were randomly assigned to each batch, modified slightly when

ecessary due to space constraints, resulting in seven treatment batches

hroughout the course of the experiment. 

.3. Analyses 

All analyses were carried out in the R statistical analysis software

ore v.3.5.0 using the RStudio v.1.1.447 interface ( RStudio Team 2020 ;

 Core Team 2020 ). 

.3.1. Modelling 

The data were analysed by fitting both generalised linear models

GLMs) and generalised linear mixed models (GLMMs) to account for

ossible random treatment effects. GLMs were fitted using the base func-

ion glm , while GLMMs were fitted using functions in the package lme4

 Bates et al., 2020 ). For both models, temperature was treated as a cate-

orical variable, given the expected non-monotonic thermal response of

he flies. Founding population size and number of introduction events

ere treated as continuous variables. For the GLMM, treatment batch

as added as a random effect, in case batches that were started on dif-

erent days influenced the outcome. Models were fitted with full inter-

ctions between terms: outcome ∼ temperature ∗ population size ∗ in-

roduction events and then simplified where possible ( Crawley, 2013 ).

utcome was initially modelled as a binomial response variable with

 logit link function. If GLMs were over-dispersed, a quasibinomial re-

ponse variable was instead adopted ( Crawley, 2013 ). 

Relative model performance was evaluated by comparing the Akaike

nformation criterion (AIC) or quasi-AIC (QAIC) values between models

or under- or over-dispersed models, respectively ( Bolker et al., 2009 ).

IC values could be extracted directly, while QAIC values were calcu-

ated using the package MuMIn ( Barton, 2020 ) in R. 

As temperature is very likely to have a large effect on reproduction,

rowth and establishment in an insect, it may obscure the effect of other

actors. To determine the effect of founding population size and number

f events within each environment, GLMs and GLMMs were also fitted to

utcomes within each temperature treatment and compared using AIC

r QAIC values as above. 

The best-fitting models were further bootstrapped to increase robust-

ess and determine 95% bias-correct, accelerated (BCa) confidence in-

ervals. For GLMs, this was performed using the Boot and Confint func-

ions within the car package ( Fox and Weisberg, 2018 ; Fox and Weis-

erg, 2019 ) using 1000 iterations. For GLMMs, the function was more

omputationally intense and therefore 500 iterations were performed

sing the bootMer and confint.merMod functions in the package MuMIn

 Barton, 2020 ). 

.3.2. Effect sizes 

The above models are able to show which variables and interac-

ions are statistically significant, but do not show the size of the effect

f each one. Thus it is difficult to determine if a statistically signifi-

ant variable or interaction is biologically relevant. For this, it is more

seful to calculate effect sizes with bootstrapped confidence intervals

 Cumming, 2014 ). Bootstrapped confidence intervals also give an indi-

ation of power of the test, i.e. the maximum effect size that our test can

etect ( Colegrave and Ruxton, 2003 ). 

Effect sizes were calculated first as unstandardised, as is recom-

ended to allow future inclusion in meta-analyses ( Cumming, 2014 ).

his was done using the function bootES in the package of the same

ame ( Gerlanc and Kirby, 2015 ) with 5000 iterations. When contrast-

ng the effect of two conditions, a weight of − 1 and + 1 was assigned to

ach by default ( Kirby and Gerlanc, 2017 ). When comparing multiple

onditions to find the global effect, contrast weights were calculated as

escribed in Kirby and Gerlanc ( Kirby and Gerlanc, 2013 ). 
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Fig. 1. Founding population sizes and number of introduction events of adult Drosophila melanogaster used to test establishment success of colonies. Treatment 

containers were wide-mouthed glass jars of 1 L, 500 mL, 250 mL and 125 mL with 160 mL, 80 mL, 40 mL and 20 mL diet media for founding population sizes of 16, 

8, 4 and 2 adult flies, respectively. All treatments were repeated at 13 °C, 22 °C and 32 °C and replicated ten times. 
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Table 1 

The effect of varying the number of introduction events and the number of 

individuals per introduction event on the establishment success of Drosophila 

melanogaster colonies ( n = 10 for each treatment). See Fig. 1 for a graphical rep- 

resentation of the experimental set-up. 

Founding 

population size 

(1:1 female:male) 

Number of 

introduction 

events 

Number of colonies established ( n = 10) 

13 °C 22 °C 32 °C 

16 1 8 10 5 

16 2 2 10 6 

16 4 7 10 8 

16 8 9 10 2 

8 1 4 7 5 

8 2 5 10 4 

8 4 1 10 5 

4 1 4 10 3 

4 2 1 9 6 

2 1 0 9 0 

 

a  

1  

p  

n  

t  

r  

v  

l  

t  

s  
Thereafter, Hedge’s g was calculated as an unbiased, standardised

stimate of effect size in a similar manner, also bootstrapped with 5000

terations ( Kirby and Gerlanc, 2017 ; Kirby and Gerlanc, 2013 ). Hedge’s g

s more robust to small sample sizes ( Kirby and Gerlanc, 2013 ), but does

ssume a normal distribution of data ( Algina et al., 2006 ). However, by

alculating bootstrapped BCa confidence intervals along with Hedge’s g,

his metric performs well even if the assumption of normality is violated

 Algina et al., 2006 ; Kelley, 2005 ). 

Results from the models were extracted, collated into data frames

nd visualised using the ggplot2 package ( Wickham, 2016 ) in R. 

. Results 

.1. Overall establishment and power of experiment 

Colony establishment success was 70–100% at the optimal rearing

emperature (22 °C), 0–90% at 13 °C and 0–80% at 32 °C ( Table 1 ). As

xpected, colony establishment was far more variable at the thermal

xtremes than at the optimal temperature. 

.2. Modelling 

.2.1. GLMs 

The GLM containing all variables and all interactions fitted to the

ata the best (supplementary material). Simplifying the model by re-

oving interactions or variables did not lower the AIC and in some

ases resulted in over-dispersed models. However, in this overall model

o term was significant and most of the confidence intervals were large

 Fig. 2 ). Thus, although it is the best model in this context, it does not

eem to sufficiently describe the data to give confidence in the results. 
4 
GLMs within each temperature showed different influences of vari-

bles at different temperatures. At the thermal extremes (32 °C and

3 °C), increasing founding population size significantly increased the

robability of establishment, while at the optimal temperature (22 °C),

either aspect of propagule pressure had a significant influence. Addi-

ionally, the GLM at 22 °C did not perform well because seven of the ten

eplicated trials had 100% success rate. Confidence intervals for both

ariables were consequently large for the 22 °C GLM ( Fig. 2 ) (note the

arger axis scale relative to that for 32 °C and 13 °C). The number of in-

roduction events did not have a significant influence on establishment

uccess in any of the models, possibly because it is correlated to found-
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Fig. 2. The relative influence of temperature, 

founding population size, number of introduc- 

tion events and interactions of these on the es- 

tablishment success of Drosophila melanogaster 

colonies, modelled using bootstrapped gen- 

eralised linear models (GLMs). Establishment 

success here is defined as offspring surviving to 

adulthood. Separate GLMs for the experiment 

overall and within each temperature treatment 

were produced and are graphed separately in 

each panel (left to right, note the different axis 

scales). Dots indicate the coefficient sizes esti- 

mated by the GLMs and the lines show 95% 

confidence intervals. Coefficients signify the 

size and direction of the influence of each of 

the predictors on establishment success, with 

positive values indicating a higher establish- 

ment success. A dashed line at zero is included 

to facilitate interpretation of coefficient values 

and confidence intervals. Confidence intervals 

which do not include zero indicate that the 

predictor has a significant influence and are 

indicated by an asterisk ( ∗ ). 

i  

s

3

 

t  

c  

A  

c  

s  

f

 

t  

m  

t  

r  

m  

F  

m

3

 

i  

d  

i  

f  

e

 

t  

p

6  

s  

r  

e

 

c  

a  

e  

c  

t  

u  

o  

f

 

t  

t  

(  

c  

a  

c  

e  

(

 

l  

l  

o  

p  

f  

t  

l  

s  

t  

f  

e

 

t  

t  

e  

g  

p  

g

4

 

i  

c  

t  

(  

2  

S

 

m  
ng population size. This idea was explored further when testing effect

izes (below). 

.2.2. GLMMs 

Most of the fitted GLMMs did not perform well (supplementary ma-

erial), with four of the five models which included all terms failing to

onverge. Simplifying the model by removing terms did not lower the

IC. Thus we chose to retain the model with the lowest AIC that did

onverge, which contained all variables but no interaction terms. Boot-

trapping this model resulted in 498 bootstrapped values, as two runs

ailed. 

GLMMs fitted within each temperature performed even more poorly

han the overall ones. Many of the models resulted in a singular fit,

eaning that the model fit was on the boundary of feasible parame-

ers ( Bates et al., 2020 ). Bootstrapping these models did not improve

esults as many bootstrap iterations failed, model fits were singular or

odels did not converge. We thus did not examine the GLMMs further.

ull details of the GLMM outcomes can be found in the supplementary

aterial. 

.3. Effect sizes 

Calculation of effect sizes enabled us to detect and visualise biolog-

cally relevant information far more easily than GLMs or GLMMs had

one ( Fig. 3 ). Effect sizes are of necessity calculated as pair-wise compar-

sons (weighted, if a global effect is desired) and thus can give more in-

ormation about each aspect of the experiment in addition to the global

ffect. 

As expected, temperature had a large and significant effect on es-

ablishment success: when moving away from optimal, establishment

robability declined by 51% (95% CI [41–61%]) and 54% (95% CI [42–

4%]) at hot and cold thermal extremes, respectively. The apparently

mall global effect of temperature is just a result of the strong non-linear

elationship, where establishment peaks at optimal but declines to either

xtreme. 

Overall, both founding population size and number of events in-

reased establishment success. Founding population size had a greater

nd significant positive effect on establishment success ( Fig. 3 ). On av-

rage, the global effect of doubling the founding population was to in-

rease the chance of establishment by 25%. It is interesting to note that

he effect size was not consistent for changes in different founding pop-

lation sizes or number of introduction events. For instance, doubling
5 
f founding population from 2 to 4 had a larger effect than doubling it

rom 4 to 8 individuals. 

Within each temperature, the effects of increasing founding popula-

ion size and number of introduction events were more noticeable at the

hermal extremes (32 °C and 13 °C) and negligible at optimum (22 °C)

 Fig. 3 ). The effect of increasing founding population size was to in-

rease establishment at both 32 °C and 13 °C, although far more strongly

t 13 °C (effect size at 32 °C = 0.21; at 13 °C = 0.46; Fig. 3 ). Similarly, in-

reasing the number of introduction events had a small non-significant

ffect at 32 °C, while at 13 °C it increased establishment significantly

effect size at 32 °C = − 0.017; at 13 °C = 0.36; Fig. 3 ). 

There was likely to be a strong correlation between founding popu-

ation size and number of introduction events, as bigger founding popu-

ations could accommodate more events. Thus the increased probability

f establishment with a higher number of introduction events could sim-

ly be due to larger founding population size. To test this, we controlled

or founding population size by calculating the effect of number of in-

roduction events at a single large founding population size ( Fig. 3 , last

ine). This showed almost no global effect (effect size = 0.0056) but did

how more marked effects within the hot and cold thermal extremes. In-

erestingly, the effect at 32 °C was to decrease establishment success (ef-

ect size = − 0.31) while at 13 °C increasing number of events increased

stablishment success (effect size = 0.32). 

Direction and (corrected) sizes for Hedges g were very similar to

hose obtained from the unstandardised effect size calculations and were

hus not graphed (supplementary material). As for the unstandardised

ffect sizes, Hedge’s g showed a far greater effect of temperature (Hedges

 = − 1.3 and − 1.4 for 32 °C and 13 °C, respectively) than for founding

opulation size (Hedges g = 0.52 overall) or number of events (Hedges

 = 0.29 overall) on population establishment. 

. Discussion 

Our laboratory study corroborates previous observational, exper-

mental and theoretical studies that have found establishment suc-

ess is determined by an interaction between environmental condi-

ions, founding population size and the number of introduction events

 Duncan et al., 2014 ; Duncan, 2016 ; Bacon et al., 2014 ; Yeates et al.,

012 ; Vahsen et al., 2018 ; Hedge et al., 2012 ; Sinclair and Arnott, 2016 ;

inclair and Arnott, 2017 ). 

In this study, the effect of temperature was large and obvious, as

ight be expected given the broad range tested, and initially masked
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Fig. 3. The effect of temperature (top), founding population size (middle) and number of introduction events (bottom) on establishment success of Drosophila 

melanogaster colonies. Bootstrapped unstandardised effect sizes for the experiment overall and within each temperature treatment were calculated and are graphed 

separately in each panel (left to right). The unstandardised effect size (dot) and 95% confidence interval (line) are graphed for each global or pair-wise comparison 

shown on the vertical axis. A positive effect size denotes an increase in establishment success as the variable shifts from a to b (as stated on the vertical axis). A 

dashed line at zero is included to facilitate interpretation of effect size values. Unstandardised effect sizes can be interpreted in the original units of measurement (i.e. 

temperature in °C, founding population size in number of individuals and number of introduction events). Confidence intervals which do not include zero indicate 

that the effect is significant and are indicated by an asterisk ( ∗ ). 
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t

he comparatively smaller role of propagule pressure. This confirms our

rst prediction that temperature would have the greatest effect on es-

ablishment. Given this, it may have been tempting to conclude that

ropagule pressure played a very small role in establishment success.

owever, when viewed within each controlled temperature, the role of

ropagule pressure became apparent even within the confines of this

airly limited laboratory experiment. 

We expected propagule pressure in this study (both in total found-

ng population size and in number of introduction events) to influence

stablishment under all conditions, with a greater effect at thermal ex-

remes of viable population growth. This prediction was only partially

onfirmed: the effect of propagule pressure was negligent at optimal

emperature, but became apparent at the thermal extremes. This cor-

oborates theory, as the effects of demographic stochasticity are more

ikely to have deleterious effects in adverse environments as individual

ifferences in fitness and survival are amplified at low population sizes

 Fauvergue et al., 2012 ; Duncan et al., 2014 ; Bajeux et al., 2019 ). 

Interestingly, increasing the number of introduction events had dif-

erent magnitude and directions (i.e. sign) of effects at 13 °C and at 32 °C,

hus disproving our final prediction. This context-dependence is likely

ue to different physiological mechanisms at play at the two thermal

xtremes and the generally asymmetric nature of thermal performance

urves in ectotherms, as has been shown previously ( Sinclair et al., 2016 ;

uckley et al., 2017 ; Frazier et al., 2006 ). 

Low temperatures slow insect metabolism and development and sup-

resses activity, thus, slowing population growth rates and reducing

tness. However, at sub-lethal cold temperatures such as those tested

ere very little direct physiological harm is caused to the insect it-

elf. Thus, the low temperature population establishment scenario can

e overcome by adding more individuals to the population to facili-

ate population growth, albeit slow. This would be especially useful if

he new individuals were sourced from optimal environments, where

heir own metabolism, reproductive capacity and likely body condi-

ion were already maximised. The positive effect of multiple introduc-

ion events is also likely to be seen in the case where Allee effects are

ot acting strongly on the population and small introductions are not

ikely to go extinct before the addition of more individuals ( Sinclair and

rnott, 2016 ). Indeed, this is exactly what was seen in the current study

t 13 °C, where larger founding population sizes and increased numbers

f events (i.e. adding individuals in increments rather than all at once)

ad a marked positive effect on establishment success. Thus we can pos-

ulate that at the low temperature tested here, Allee effects were min-

mal and that the strongest driver of successful establishment was the

epeated introduction of optimal individuals to build up a population. 

Conversely, high temperatures are far more detrimental to the in-

ect and set a harder boundary on population establishment than cooler

emperatures and may cause sterility and eventual death, even at

emperatures which are not immediately lethal ( Walsh et al., 2019 ;

raújo et al., 2013 ). Both the detrimental physiological effects and in-

reased metabolic rate at this high temperature may contribute to demo-

raphic stochasticity playing a far larger role than at cold temperatures.

n the current study, this can be seen by the very small effect of increas-

ng founding population size at 32 °C. Adding more individuals would

ot compensate for physiological damage and so, while it dampens the

ffects of demographic stochasticity, it does not completely overcome it.

imilarly, increasing the number of events had very little effect, as small

ntroduction events are more likely to go extinct (or at least become per-

ormance impaired) before the next introduction event, resulting in very

ittle positive effect from new additions. 

The fact that the number of introduction events did not make a differ-

nce to global establishment success may be because it was confounded

ith effects due to temperature and founding population size. When

ested in isolation at the largest founding population size, the num-

er of introduction events did have an effect at the thermal extremes

 Fig. 3 ), although this was not as large as that due to founding popu-

ation size itself. There are several reasons why the number of events
7 
ay not have had a large effect in this study. Drosophila melanogaster’s

gg to adult life cycle is fairly short compared to the adult longevity

nd multiple generations are expected to overlap. In this experiment,

ntroduction events were spaced out over eight days. This was chosen

s at 32 °C emergence of the new generation of adults could be observed

s from day nine and thus eight days was the maximum available time

or introductions. However, due to adult longevity, introductions on this

ime scale may have been functionally indistinguishable from a single

ntroduction event. This possibility seems plausible, given that at low

emperature (where the life cycle is slowest), the effect of multiple intro-

uctions was more marked and resulted in higher establishment success.

t would be useful to further investigate this in D. melanogaster , possibly

sing a low temperature (to maximise experimental time) and varying

he timing of introduction events. Introduction events could also foresee-

bly be of different life stages in order to vary the potential overlap of

eproductive stages. Moreover, one might expect that multiple introduc-

ion events have more value for establishment success in situations of

nvironmental stochasticity. If conditions are not always suitable for

opulation establishment (but still allow for population persistence),

hen multiple introduction events will be much more likely to coincide

ith an invasion window than a few introductions of large numbers

 Fauvergue et al., 2012 ; Dressler et al., 2019 ). This is for instance true

n seasonality, as introduced populations may be more likely to estab-

ish when climate conditions at the origin and introduced region match

ore closely ( Tatem and Hay, 2007 ; Hill et al., 2017 ). 

. Conclusion 

Abiotic factors, biotic factors and introduction dynamics interact to

etermine whether a population will establish in a new environment.

or Drosophila melanogaster in our mesocosm experiments, temperature

an important abiotic factor determining survival and growth rates)

as most important in determining successful establishment of colonies

n the laboratory. In this experiment, a larger founding population in-

reased the chances of establishment in an inhospitable environment

i.e. at the thermal extremes), while at optimal temperature, measures

f propagule pressure had no influence. The relative influences of found-

ng population size and number of events had different effects at hot

nd cold thermal extremes, highlighting the different physiological and

tochastic mechanisms at play. 

In general, introduction of more individuals increases the chances

f at least one individual surviving to reproduction. This difference be-

omes increasingly important when faced with harsh or unsuitable con-

itions and could manifest differently for diverse species with more com-

lex life-histories and evolutionary adaptations to climate ( Iles et al.,

016 ; Fauvergue et al., 2012 ; Bajeux et al., 2019 ; Yeates et al., 2012 ;

uckley et al., 2017 ). 
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