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Abstract: Microvascular dysfunction (MVD) has long plagued the medical field despite improve-
ments in its prevention, diagnosis, and intervention. Microvascular lesions from MVD increase
with age and further lead to impaired microcirculation, target organ dysfunction, and a mass of
microvascular complications, thus contributing to a heavy medical burden and rising disability rates.
An up-to-date understanding of molecular mechanisms underlying MVD will facilitate discoveries
of more effective therapeutic strategies. Recent advances in epigenetics have revealed that RNA
methylation, an epigenetic modification, has a pivotal role in vascular events. The N6-methylation
of adenosine (m6A) modification is the most prevalent internal RNA modification in eukaryotic
cells, which regulates vascular transcripts through splicing, degradation, translation, as well as
translocation, thus maintaining microvascular homeostasis. Conversely, the disruption of the m6A
regulatory network will lead to MVD. Herein, we provide a review discussing how m6A methylation
interacts with MVD. We also focus on alterations of the m6A regulatory network under pathological
conditions. Finally, we highlight the value of m6A regulators as prognostic biomarkers and novel
therapeutic targets, which might be a promising addition to clinical medicine.
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1. Introduction

Microvascular dysfunction (MVD) remains a major health issue worldwide despite
decades of research on its diagnosis, treatment, and prognosis. Featured by lesions in
microvasculature, MVD leads to microvascular complications in various organs and sys-
tems [1,2]. Endothelial cells (ECs), pericytes, and vascular smooth muscle cells (VSMCs)
are major components of microvasculature, whose proliferation, coverage, and dysfunction
are key predictors of vascular fragility [3,4]. The etiology of MVD is heterogeneous and
polymorphic. Various pathogenic factors, including hypoxia, inflammation, and metabolic
disorders, contribute to MVD occurrence and development (Figure 1) [5].

RNA methylation is a group of epigenetic modifications that modulate gene expres-
sion without altering nucleotide sequences. RNA methylation includes 7-methylguanosine
(m7G), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), N1-methyladenosine
(m1A), N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), and 2′-O′ methy-
lation (2′-OMe). Among all, m6A modification is the most prevalent, abundant, and typical
form in eukaryotes. Reportedly, m6A modification regulates the vascular regulatory net-
work by mediating metabolism of vascular cells and expression of vascular genes [6,7].
Impaired m6A regulatory network disrupts microvascular homeostasis, further leading to
MVD [8,9].

Cells 2022, 11, 3193. https://doi.org/10.3390/cells11203193 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11203193
https://doi.org/10.3390/cells11203193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://doi.org/10.3390/cells11203193
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11203193?type=check_update&version=1


Cells 2022, 11, 3193 2 of 13
Cells 2022, 11, x FOR PEER REVIEW 2 of 14 
 

 

 
Figure 1. Pathogenic factors and pathological processes of MVD. Pathogenic factors, such as hy-
poxia, inflammation, and metabolic dysregulation, contribute to MVD. Pathological processes of 
MVD include neovascularization, microvascular malformation, and microvascular remodeling. 
Both neovascularization and microvascular malformation can be structurally and functionally re-
modeled in response to physical and chemical stimuli. 

RNA methylation is a group of epigenetic modifications that modulate gene expres-
sion without altering nucleotide sequences. RNA methylation includes 7-methylguano-
sine (m7G), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), N1-methyladeno-
sine (m1A), N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), and 2′-O′ 
methylation (2′-OMe). Among all, m6A modification is the most prevalent, abundant, and 
typical form in eukaryotes. Reportedly, m6A modification regulates the vascular regula-
tory network by mediating metabolism of vascular cells and expression of vascular genes 
[6,7]. Impaired m6A regulatory network disrupts microvascular homeostasis, further lead-
ing to MVD [8,9]. 

In this review, we summarized and discussed the role of m6A modification in MVD, 
aiming to provide a better understanding into its pathogenesis. Three dominant patho-
logical processes of MVD were investigated, including neovascularization, microvascular 
malformation, and microvascular remodeling. This review also highlighted the potential 
clinical applications of m6A regulators as prognostic biomarkers and therapeutic targets 
for MVD. 

2. RNA m6A Methylation 
M6A modification, first detected in the 1970s, is the most abundant biochemical mod-

ification in eukaryotic RNAs, accounting for 0.1–0.4% of mammalian adenosine [10]. M6A 
modification has been identified in various types of RNAs, including messenger RNAs 
(mRNAs), transfer RNAs (tRNAs), ribosomal RNAs, long noncoding RNAs (lncRNAs), 
circular RNAs (circRNAs), small nuclear RNAs (snRNAs), and microRNAs (miRNAs). 
M6A modification participates in almost every step of RNA metabolism, from its genera-
tion, splicing, and processing in the nucleus to its translation, stabilization, and degrada-
tion in the cytoplasm, serving as a bridge between transcription and translation [11].  

Figure 1. Pathogenic factors and pathological processes of MVD. Pathogenic factors, such as hypoxia,
inflammation, and metabolic dysregulation, contribute to MVD. Pathological processes of MVD
include neovascularization, microvascular malformation, and microvascular remodeling. Both
neovascularization and microvascular malformation can be structurally and functionally remodeled
in response to physical and chemical stimuli.

In this review, we summarized and discussed the role of m6A modification in MVD,
aiming to provide a better understanding into its pathogenesis. Three dominant patho-
logical processes of MVD were investigated, including neovascularization, microvascular
malformation, and microvascular remodeling. This review also highlighted the potential
clinical applications of m6A regulators as prognostic biomarkers and therapeutic targets
for MVD.

2. RNA m6A Methylation

M6A modification, first detected in the 1970s, is the most abundant biochemical
modification in eukaryotic RNAs, accounting for 0.1–0.4% of mammalian adenosine [10].
M6A modification has been identified in various types of RNAs, including messenger RNAs
(mRNAs), transfer RNAs (tRNAs), ribosomal RNAs, long noncoding RNAs (lncRNAs),
circular RNAs (circRNAs), small nuclear RNAs (snRNAs), and microRNAs (miRNAs).
M6A modification participates in almost every step of RNA metabolism, from its generation,
splicing, and processing in the nucleus to its translation, stabilization, and degradation in
the cytoplasm, serving as a bridge between transcription and translation [11].

The global m6A level is dynamically regulated by writers and erasers, namely RNA
methylases and demethylases respectively (Figure 2). M6A writers include methyltransferase-
like 3/14/16 (METTL3/14/16), Wilms tumor 1-associated protein (WTAP), zinc finger
CCCH-type containing 13 (ZC3H13), Vir-like m6A methyltransferase associated protein
(VIRMA), and RNA-binding motif protein 15 (RBM15) [12]. The METTL3-METTL14 het-
erodimer and its catalytically inactive partner WTAP constitute the nucleus methyltrans-
ferase complex (MTC), which installs m6A modification. VIRMA, RBM15, and ZC3H13
are regulatory enzymes that facilitate recruitment of MTC [13]. RBM15 and ZC3H13
bind to the MTC and direct it to target RNA sites [14]. VIRMA regulates selective m6A
methylation on 3′-UTR [14]. Reportedly, METTL16 is an independent writer that modifies
snRNAs, U6 snRNA, and lncRNAs, but only a few substrates of METTL16 have been
confirmed [14]. M6A erasers include fat mass and obesity-associated protein (FTO) and
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a-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5). Both of them belong
to the Fe2+/α-ketoglutarate-dependent dioxygenases enzyme family, which recognizes
adenine and cytosine methylation in RNAs [14]. ALKBH5 also affects the synthesis and
splicing of mRNAs [15]. RNA m6A sites are further recognized by m6A readers. Identified
m6A readers include YT521-B homology (YTH) domain-containing proteins (YTHDF1/2/3,
YTHDC1/2), insulin-like growth factor 2 mRNA-binding-proteins (IGF2BP1/2/3), het-
erogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1), and hnRNPC (Figure 2) [16].
hnRNPs and YTHDC1 are nuclear readers. hnRNPC binds to structurally altered RNAs
and mediates pre-mRNA processing [14]. hnRNPA2B1 plays a vital role in RNA splicing
and primary miRNA processing [14]. YTHDC1 mediates alternative splicing and facilitates
mRNA export to cytoplasm [13]. In contrast, YTHDF1/2/3, YTHDC2, and IGF2BP1/2/3
are cytoplasmic-distributed. YTHDF1 recognizes m6A sites near the stop codon and enables
mRNA translation by recruiting eukaryotic initiation factor 3, whereas YTHDF2 transports
target mRNAs to the cytoplasmic processing body and promotes their degradation [17].
YTHDF3 is a modulator of YTHDF1 and YTHDF2, which can both enhance and suppress
their effects [14]. The IGF2BP proteins are co-localized with Hu antigen R to enhance stabil-
ity of target RNA transcripts [14]. They are also reported to participate in DNA replication
and cell cycle progression [18].
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Figure 2. The process and molecular functions of RNA m6A methylation. M6A modification is
dynamically installed by writers (METTL3, METTL4, METTL14, WTAP, RBM15, ZC3H13) and
removed by erasers (FTO and ALKBH5). M6A sites are recognized by readers. hnRNPs and YTHDC1
are nuclear readers. hnRNPC binds to structurally altered RNAs and mediates pre-mRNA processing.
hnRNPA2B1 regulates RNA splicing and primary miRNA processing. YTHDC1 mediates alternative
splicing and facilitates mRNA export to cytoplasm. YTHDF1/2/3, YTHDC2, and IGF2BP1/2/3 are
cytoplasmic-distributed. YTHDF1 enables mRNA translation by recruiting eukaryotic initiation factor
3, whereas YTHDF2 transports target mRNAs to the cytoplasmic processing body and promotes
their degradation. YTHDF3 is a modulator of YTHDF1 and YTHDF2, which can both enhance and
suppress their effects. IGF2BPs enhance stability of target RNA transcripts.

3. M6A Modifications in Pathological Neovascularization

Neovascularization is defined as the sprouting of ECs in response to stimuli to form
new capillary branches. The following steps are involved in neovascularization: (1) recogni-
tion of physiological or pathological signals, such as hypoxia, inflammation, and metabolic
dysregulation; (2) secretion of proteases, pro-angiogenic factors and cytokines, and their
bindings to corresponding receptors; (3) metabolic changes of vascular cells; (4) maturation
of newly-formed vessels [19]. Reportedly, dysregulated epigenetic modifications, including
DNA methylation, histone modifications, and RNA methylation, contribute to neovascu-
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larization [20]. Herein, we have summarized associations between aberrantly changed
expression of m6A regulators and pathological neovascularization in Table 1.

Table 1. Molecular mechanisms of m6A modification in pathological neovascularization.

Pathological
Process

Disease
M6A

Regulators

Model System
Mechanism ReferenceHuman

Tissue
Animal
Model Cell Line

hypoxia

lung cancer YTHDF2↑
√ √ promote HIF-1

expression [21]

stomach cancer IGF2BP3↑
√ √ promote HIF-1

expression [22]

breast cancer METTL14
/ALKBH5↑

√ √ √ increase TGFβ1
expression [23]

HCC
YTHDF2↓

√ √ √ stabilize IL-11 and
SERPINE2 mRNA [24]

METTL3↓
√ √ √ increase PDGF and

VEGF expression [25]

oxygen-induced
retinopathy METTL3↑

√ √ activate the Wnt
pathway [26]

inflammation

HCC YTHDF2↓
√ √ √ stabilize IL-11 and

SERPINE2 mRNA [24]

corneal neovas-
cularization

FTO↑
√ √ increase FAK

expression [27]

METTL3↑
√ √ activate the Wnt

signaling pathway [26]

diabetic
retinopathy YTHDF2↓

√ √ activate
FAK/PI3K/AKT

pathway
[28]

others

breast cancer YTHDF3↑
√ √ √ enhance translation

of VEGF [29]

lung cancer METTL3↑
√ √ √ increase VEGFA

expression [30]

intrahepatic
cholangiocarci-

noma
FTO↓

√ √ √ increase CCL19
expression [31]

colorectal can-
cer/melanoma ALKBH5↑

√ √ √ promote VEGF
expression [32]

Abbreviations: HCC, human hepatocellular carcinoma; IL-11, interleukin-11; SERPINE2, serpin family E member
2; FAK, focal adhesion kinase; VEGF, vascular endothelial growth factor; TGF-β, transforming growth factor β;
CCL19, C-C motif chemokine ligand 19; ↑, upregulation; ↓, downregulation;

√
, the experimental model was

included.

3.1. M6A Modifications in Hypoxia-Related Neovascularization

Hypoxic effects are mediated by hypoxia-inducible factor (HIF), which combines with
hypoxia-responsive elements (HREs) of target genes to regulate their expression [33]. There
are three isoforms of HIF, including HIF-1, HIF-2, and HIF-3 [34]. HIFs are heterodimers
composed of an α (HIF-1α, HIF-2α and HIF-3α) and a β (HIF-1β, HIF-2β and HIF-3β) sub-
unit [35]. The C- and N-termini of α subunits have nuclear localization signals that direct
them to nucleus to form adult HIFs [36]. Degradation of α subunits depends on prolyl
hydroxylase domain-containing proteins (PHDs). Under normal conditions, PHDs target α
subunits and mediate their polyubiquitination and degradation. However, activity of PHDs
is disturbed upon hypoxia, thus interrupting the degradation of α subunits [37]. HIF-1α
and HIF-2α share similar amino acid sequences and protein structures, and they regulate an-
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giogenesis by targeting angiogenic factors (e.g., vascular endothelial growth factor (VEGF),
angiopoietin-1/-2 (ANG-1/-2), transforming growth factor β (TGF-β), platelet-derived
growth factor (PDGF)). However, the biological function of HIF-3 remains elusive [38,39].

Hypoxia could reprogram m6A epi-transcriptome, further reshaping downstream tran-
scriptome and proteome that associate with neovascularization [40]. Increased METTL14
and ALKBH5 levels were detected in hypoxia-treated breast cancer cells, which led to up-
regulation of angiogenic transcripts, including TGF-β, matrix metallopeptidase 9 (MMP9),
PDGF, and VEGFA. Conversely, METTL14/ALKBH5 knockdown reduced expression of
angiogenic genes, thus inhibiting angiogenesis and cancer metastasis [23]. Hou et al. re-
vealed a transcriptional inhibition of YTHDF2 by HIF-2α in hepatocellular carcinoma (HCC)
cells. Suppressed expression of YTHDF2 not only promoted neovascularization through
interleukin-11 (IL-11) and serpin family E member 2 (SERPINE2) but also led to microvas-
cular malformation and remodeling. These adverse effects could be rescued by YTHDF2
upregulation [24]. Therefore, hypoxia primarily caused m6A changes, thus contributing
to pathological neovascularization. Hypoxia-induced METTL3 downregulation in HCC
promoted angiogenesis by upregulating expression of angiogenic genes, such as fibroblast
growth factor, PDGF, and VEGFA, thus contributing to sorafenib resistance [25]. The Wnt
signaling pathway is critical for vascular morphogenesis and endothelial specification [41].
Aberrantly activated Wnt signaling pathway is a leading cause of pathological neovas-
cularization, particularly in wet age-related macular degeneration, diabetic retinopathy,
and retinopathy of prematurity [42]. Yao et al. showed that METTL3 was upregulated in
hypoxia-exposed retina [26]. METTL3 upregulation enhanced expression of LDL receptor
related protein 6 (LRP6) and disheveled segment polarity protein 1 (DVL1) mRNAs, which
promoted angiogenesis by activating Wnt signaling cascades [26].

Aberrantly changed expression of m6A regulators also facilitates HIFs generation and
reprograms cellular metabolism, thus triggering neovascularization. In stomach cancer,
IGF2BP3 directly targeted an m6A site in HIF-1α mRNA to upregulate its expression, lead-
ing to increased microvascular density and a poor outcome [22]. In HCC cells, METTL3,
which was positively regulated by hepatitis B virus X-interacting protein (HBXIP), methy-
lated HIF-1 mRNA to upregulate its expression, further contributing to the Warburg effect
and angiogenesis [43]. Furthermore, in lung cancer, the crosstalk between polybromo 1
(PBRM1) and YTHDF2 was required for the effective synthesis of HIF-1 protein. YTHDF2
mediated RNA degradation in the cytoplasm under normal conditions, while it translo-
cated into cell nucleus upon hypoxia to promote the cap-independent translation of HIF-1α
mRNAs [21]. Collectively, these studies imply the critical role of m6A modification in
hypoxia-induced neovascularization.

3.2. M6A Modifications in Inflammation-Related Pathological Neovascularization

Inflammation tends to induce irregularly shaped, leaky, and highly permeable angio-
genesis rather than mature and functional vasculature [44]. Shan and colleagues detected
altered expression of several m6A regulators, including FTO, METTL3, and METTL14,
in mice with corneal neovascularization [27]. They further revealed that FTO promoted
corneal neovascularization by inducing focal adhesion kinase (FAK) upregulation. In
the alkali-burned corneal model, Yao et al. noticed that METTL3 knockdown restricted
corneal neovascularization by inhibiting the Wnt pathway [26]. In HCC, YTHDF2 down-
regulation promoted neovascularization by accelerating the translation of inflammatory
cytokines, such as IL-11 and SERPINE2 [24]. Similarly, lysine acetyltransferase 1 (KAT1)
was poorly expressed in diabetic retinopathy, leading to YTHDF2 downregulation and
inflammation-related neovascularization. YTHDF2 upregulation inhibited neovascular-
ization and vascular leakage by degrading integrin subunit beta 1 (ITGB1) mRNAs and
suppressing the FAK/PI3K/AKT signaling pathway [28]. These studies indicated the
critical role of m6A modification in inflammation-related neovascularization.
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3.3. Others

In this section, we present findings on the m6A-associated pathological angiogenesis
in non-specific contexts. He et al. identified that decreased m6A level associated with
reinforced angiogenesis and a poor survival rate in breast cancer [29]. They found that
YTHDF3 promoted the binding between eukaryotic initiation factor 3 and angiogenic
transcripts, such as VEGFA and epidermal growth factor receptor (EGFR), indicating its
potential role as a therapeutic target in breast cancer [29]. Wang et al. found that METTL3
associated with angiogenesis and brain metastasis in lung cancer. Mechanistically, METTL3
promoted angiogenesis via facilitating the splicing of precursor miR-143-3p to generate
its adult form, which positively regulated VEGFA expression [30]. Ma et al. identified
miR-320b downregulation in lung cancer, which accelerated neovascularization through
IGF2BP2-mediated thymidine kinase 1 (TK1) upregulation [45]. These results indicated
that miRNAs and m6A regulators can be mutually regulated. In intrahepatic cholangiocar-
cinoma, FTO inhibited angiogenesis and tumor cell migration via upregulating C-C motif
chemokine ligand 19 (CCL19) expression [31]. FTO also induced the apoptosis of intra-
hepatic cholangiocarcinoma cells by enhancing their sensitivity to cisplatin, indicating its
potential role as a multipotent therapeutic target. In colorectal cancer/melanoma, ALKBH5
accelerated expression of angiogenic genes, such as VEGFA and TGFβ1, which weakened
the efficacy of GVAX/anti–PD-1 therapy. These adverse effects could be rescued by the
small-molecule ALKBH5 inhibitor (ALK-04) [32]. These studies revealed a critical role of
m6A regulators in neovascularization and implied their potential therapeutic application
in MVD.

4. M6A Modifications in Microvascular Malformation

Microvascular malformation mainly encompasses micro-venous malformation, ar-
teriovenous malformation, lymphatic malformation, and mixed malformation [46]. Mi-
crovascular malformation, which can be congenital or acquired, arises from abnormal
neovascularization, genetic mutations, and post-injury structural changes [46]. Endothelial
dysplasia and incomplete pericyte coverage are two major characters of microvascular
malformation [47]. Herein, we aim to discuss the association between m6A dysregulation
and microvascular malformation (Table 2).

4.1. M6A Modifications in Hypoxia-Related Microvascular Malformation

M6A modification participates in hypoxia-related microvascular malformation by trig-
gering incomplete pericyte coverage [48]. YTHDF2 positively regulates pericyte coverage
by degrading m6A-containing IL-11 and SERPINE2 mRNAs [24]. YTHDF2 expression
was suppressed in HIF-2α-treated HCC cells, which inhibited pericyte coverage and gen-
erated aberrant microvasculature. The HIF-2α blockade (PT2385) upregulated YTHDF2
expression, thus reversing the subsequent microvascular abnormalities in HCC [24]. Ma-
lignant tumors tend to obtain sufficient blood perfusion through vasculogenic mimicry, a
vasculature-like structure formed by tumor cells instead of ECs [49]. Qiao and colleagues
identified METTL3 upregulation in HCC, which facilitated both angiogenesis and vascu-
logenic mimicry [50]. Mechanistically, METTL3 aberrantly activated the Hippo pathway
to generate vasculogenic mimicry, and upregulated angiogenic transcripts, such as vascu-
lar endothelial growth factor receptor 1/2 (VEGFR1/2) and matrix metallopeptidase 2/9
(MMP2/9), to promote angiogenesis [50]. Collectively, these studies implied a critical role
of m6A modification in hypoxia-induced microvascular remodeling.

4.2. M6A Modifications in Inflammation-Related Microvascular Malformation

In diabetic retinopathy, METTL3 upregulation was detected in pericytes treated with
inflammatory stimuli, such as tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) [51].
METTL3 impaired viability, proliferation, and differentiation of pericytes via inhibiting the
protein kinase C (PKC)/FAT4/PDGFRA axis in a YTHDF2-dependent manner. Conversely,
Suo et al. detected that METTL3-specific deletion in pericytes promoted their coverage and
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suppressed diabetic microvascular complications [51]. In diabetic nephropathy, METTL14
was found to inhibit expression of α-klotho gene (an anti-inflammatory gene) and its
encoding protein, leading to upregulation of inflammatory cytokines (TNF-α, IL-6) and
microvascular malformation [52]. Therefore, a single m6A regulator may affect various
downstream genes and set off a chain effect.

4.3. Others

Arteriovenous malformation is a vascular variation caused by the lack of capillary
beds between venules and arterioles [53,54]. Wang et al. detected reduced METTL3 ex-
pression in arteriovenous malformation, which inhibited synergistic function of deltex
E3 ubiquitin ligase 3L/1 (DTX1/3L) as Notch blockers, leading to aberrantly activated
Notch signaling pathway and capillary malformation. These adverse effects could be
restored by the Notch antagonist DAPT [55]. WTAP was also found downregulated in
arteriovenous malformation, which caused capillary malformation through destabilizing
desmoplakin (DSP), a critical component that maintains the integrity of vascular wall [56].
The Akt/mTOR signaling pathway is critical for endothelial differentiation [57]. In ze-
brafish embryos, METTL3 deletion in ECs upregulated the expression of PH domain and
leucine rich repeat protein phosphatase 2 (PHLPP2), which promoted Akt dephosphory-
lation and suppressed the Akt/mTOR signaling pathway, thus leading to microvascular
malformation [58]. Consistently, METTL3 deletion in bone mesenchymal stem cells also
caused Akt dephosphorylation during osteogenic differentiation, thus inhibiting vascular
normalization [59,60]. These microvascular defects were salvaged by Akt1 overexpres-
sion and/or the Akt activator SC79 [61]. These studies indicated a critical role of m6A
modification in regulating Akt phosphorylation (Table 2).

Table 2. Molecular mechanisms of m6A modification in microvascular malformation.

Pathological
Process

Disease
M6A

Regulators

Model System
Mechanism ReferenceHuman

Tissue
Animal
Model Cell Line

hypoxia HCC
YTHDF2↓

√ √ √ stabilize IL-11 and
SERPINE2 mRNA [24]

METTL3↑
√ √ √ activate Hippo

pathway [50]

inflammation diabetic
nephropathy METTL14↑

√ √ √ decrease α-klotho
expression [52]

diabetic
retinopathy METTL3↑

√ √ suppress
PKC/FAT4/PDGFRA

pathway
[51]

others

arteriovenous
malformation

METTL3↓
√ √ activate the Notch

pathway [55]

WTAP↓
√ √ block the Wnt

pathway [56]

model system
(endothelial

cells)
METTL3↓

√ √ inhibit the
PI3K/AKT pathway [58]

model system
(bone

mesenchymal
stem cells)

METTL3↓
√ inhibit the

PI3K/AKT pathway [59,60]

Abbreviations: ↑, upregulation; ↓, downregulation;
√

, the experimental model was included.
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5. M6A Modifications in Microvascular Remodeling

Microvascular remodeling is defined as structural or functional adaptations of the
microvasculature. Either neovascularization or microvascular malformation can progress
into microvascular remodeling (Figure 1) [62]. Herein, we have summarized associations
between aberrantly changed expression of m6A regulators and microvascular remodeling
in Table 3.

5.1. M6A Modifications in Hypoxia-Related Microvascular Remodeling

Hypoxia-induced microvascular remodeling is primarily driven by HIF-2α [63]. Hou
et al. identified that HIF-2α suppressed YTHDF2 expression in HCC. The reduced YTHDF2
level further provoked microvascular reconstruction by upregulating expression of IL-11
and SERPINE2 [24]. Pulmonary arterial hypertension is a lethal disease driven by pro-
gressive microvascular remodeling [64]. Proliferation of VSMCs is the main character
of pulmonary arterial hypertension, manifested by concentric vasoconstriction and ex-
tracellular matrix deposition. METTL14 upregulation was observed in hypoxia-treated
VSMCs, leading to progressive microvascular remodeling [65]. However, the downstream
regulatory mechanism of METTL14-induced microvascular malformation remains elu-
sive [65]. Proliferation of VSMCs depends on phosphatase and tensin homolog (PTEN), an
endogenous inhibitor of PI3K/Akt/mTOR signaling cascades [66]. METTL3 upregulation
in hypoxia-treated VSMCs mediated the degradation of PTEN mRNAs through YTHDF2
recognition. Thus, aberrant proliferation and migration of VSMCs occurred through Akt
hyperphosphorylation, contributing to microvascular remodeling [67].

5.2. M6A Modifications in Inflammation-Related Microvascular Remodeling

Inflammation-related microvascular remodeling is driven by migration of inflam-
matory cells, which is mediated by adhesion molecules, such as intercellular adhesion
molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin [62]. In
atherosclerosis, METTL3 promoted microvascular remodeling by upregulating the expres-
sion of NLR family pyrin domain containing 1 (NRLP1), a gene generating inflammasomes,
with YTHDF1 as the reader [68]. Moreover, METTL3 aggravated endothelial inflammation
by inhibiting the expression of the anti-inflammatory protein KLF transcription factor
4 (KLF4) [68]. However, in TNF-α-treated ECs, METTL3 knockdown mitigated mono-
cyte adhesion and microvascular remodeling [68]. In addition, METTL14 was also found
upregulated in TNF-α-treated ECs, facilitating FOXO1 translation through YTHDF1 recog-
nition [69]. FOXO1 then acted upon promoter regions of VCAM-1 and ICAM-1 mRNAs
and promoted their transcriptions, contributing to microvascular remodeling.

5.3. M6A Modifications in Metabolism-Related Microvascular Remodeling

Metabolic disorders, such as dysregulation of glucose and lipid metabolism, also
associate with microvascular remodeling [70]. VSMC dysfunction and intimal hyperplasia
are two typical features of microvascular remodeling [71]. FTO upregulation in VSMCs was
detected in type 2 diabetes mellitus, which triggered intimal hyperplasia through disturbing
mRNA stability of smooth muscle 22 alpha (SM22α) [71]. YTHDC2 promoted circYTHDC2
expression in VSMCs under high glucose. CircYTHDC2 then inhibited the expression
of ten-eleven translocation 2 (TET2), a gene positively regulating VSMC plasticity, thus
contributing to VSMC dysfunction and microvascular remodeling. Metformin, a first-line
hypoglycemic drug, alleviated YTHDF2-mediated microvascular remodeling by arresting
cell cycle and inducing cell apoptosis [72,73].

Another leading cause of microvascular remodeling is dysregulated lipid metabolism.
Macrophages take up oxidized lipoproteins and transform into foam cells, which cause
endothelial dysfunction and extracellular matrix deposition, thus contributing to microvas-
cular remodeling [74]. Gong et al. speculated that in atherosclerosis METTL14 promoted
lncRNA ZFAS1 expression, an ncRNA that caused dyslipidemia. LncRNA ZFAS1 then
elevated ADAM10/RAB22A expression to inhibit cholesterol efflux and facilitate microvas-
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cular remodeling [75]. The scavenger receptor CD36 is the primary transporter mediating
lipid uptake and is directly targeted by PPARγ [76]. FTO inhibited foam cell formation
by reducing CD36 and PPARγ levels. FTO also facilitated intracellular cholesterol efflux
by upregulating ATP-binding cassette transporter A1 (ABCA1) expression, implying its
potential role in preventing microvascular remodeling [76] (Table 3).

Table 3. Molecular mechanisms of m6A modification in microvascular remodeling.

Pathological
Process

Disease
M6A

Regulators

Model System
Mechanism ReferenceHuman

Tissue
Animal
Model Cell Line

hypoxia HCC YTHDF2↓
√ √ √ stabilize IL-11 and

SERPINE2 mRNA [24]

pulmonary
arterial

hypertension

METTL3↑
√ √ degrade PETN

mRNAs [67]

METTL14↑
√ cooperate with

SETD2 [65]

inflammation atherosclerosis METTL3↑
√ √ increase NLRP1 and

decrease KLF4
expression

[68]

METTL14↑
√ √ increase VCAM-A

and ICAM-1
expression

[69,77]

metabolism

type 2 diabetes
mellitus

FTO↑
√ √ destabilize SM22α

mRNAs [71]

YTHDC2↑
√ √ inhibit TET2

expression [72]

atherosclerosis FTO↑
√ √ √ reduce CD36 and

PPARγ level [76]

Abbreviations: NRLP1, NLR family pyrin domain containing 1; KLF4, KLF transcription factor 4; ICAM-1,
intercellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1; SM22α, smooth muscle 22 alpha;
PTEN, phosphatase and tensin homolog; ABCA1, ATP-binding cassette transporter A1; CD36, CD36 molecule; ↑,
upregulation; ↓, downregulation;

√
, the experimental model was included.

6. Discussion

MVD and its regulatory network have long been investigated. Various pathogenic
factors, including hypoxia, inflammation, and metabolic disorders, contribute to MVD
occurrence and development. RNA m6A modification is a post-transcriptional modification,
which regulates all steps of RNA metabolism (splicing, maturation, export, translation,
degradation). Herein, we summarized the role of m6A modification in MVD, aiming
to provide a better understanding into its pathogenesis. M6A regulators participate in
MVD pathogenesis by altering m6A status of vascular transcripts, thus mediating their
expression. In turn, expression patterns of m6A regulators could also be changed by various
pathogenic factors contributing to MVD. We also summarized the promising application of
m6A modification in therapeutic strategies for MVD.

Roles and regulatory mechanisms of m6A regulators vary with their subcellular
locations and in different diseases. Reportedly, stress induced the translocation of YTHDF2
from cytoplasm to nucleus, and unlike the role of cytoplasmic YTHDF2 in mediating RNA
degradation, the endonuclear YTHDF2 promoted the cap-independent mRNA translation
of HIF-1α, thus contributing to neovascularization [21,78]. M6A regulators may also play
opposite roles in different diseases or pathogenesis. For instance, METTL3 promoted
neovascularization in stomach cancer, but suppressed expression of angiogenic factors in
sorafenib-resistant HCC [25,79]. FTO showed a pro-angiogenic role in diabetic retinopathy,
but an anti-angiogenic role in intrahepatic cholangiocarcinoma [28,31]. The diversity is
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probably due to the distinct downstream regulatory network of METTL3 in different
pathological processes. In addition, m6A modifications have been detected in various types
of RNAs, while their roles in mediating metabolism of noncoding RNAs that associate
with MVD are largely unknown. More investigations are warranted to reveal the complex
biological/pathological effects and regulatory mechanisms of m6A modification.

Targeting m6A modification might be a promising therapeutic option for MVD. In
colorectal cancer/melanoma, the ALKBH5 inhibitor ALK-04 downregulated expression
of VEGFA and TGFβ1, thus inhibiting angiogenesis and enhancing efficacy of anti–PD-
1 therapy [32]. Excitingly, in recent years, demethylation/methylation drugs, such as
decitabine and azacitidine, have been developed, which have been clinically applied for
the treatment of myelodysplastic syndrome and acute myeloid leukemia [80]. Both drugs
are cytidine analogues that inhibit DNA methylation and restore normal function of tumor
suppressor genes. Unlike decitabine, which only incorporates into DNA, azacitidine could
be phosphorylated and incorporate into DNA/RNA, thus altering RNA synthesis and
processing [81]. Reportedly, effects and sensitivities of antineoplastic drugs are enhanced
by m6A regulators. In intrahepatic cholangiocarcinoma, FTO promoted cisplatin sensitivity
to inhibit angiogenesis and accelerate the apoptosis of tumor cells [31]. ALKBH5 sensitized
pancreatic ductal adenocarcinoma cells to gemcitabine by activating the Wnt pathway [82].
Moreover, in pancreatic cancer, suppressed METTL3 expression improved the efficacy
of anti-cancer agents, such as gemcitabine, 5-fluorouracil, and cisplatin. These studies
further suggested the potential clinical application of m6A modification in therapeutic
strategies [83]. However, more investigations are needed to explore the role of m6A
modification in MVD, thus helping with the development of prognostic and therapeutic
strategies for MVD.
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