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Circular RNAs (circRNAs) are endogenous noncoding RNAs that are widely found in

eukaryotic cells. They have been found to play a vital biological role in the development

of human diseases. At present, circRNAs have been involved in the pathogenesis,

diagnosis, and targeted treatment of multiple tumors. This article reviews the research

progress of circRNAs in osteosarcoma (OSA) in recent years. The potential connection

between circRNAs and OSA cell proliferation, apoptosis, metastasis, and chemotherapy

sensitivity or resistance, as well as clinical values, is described in this review. Their

categories and functions are generally summarized to facilitate a better understanding of

OSA pathogenesis, and findings suggest novel circRNA-based methods may be used

to investigate OSA and provide an outlook for viable biomarkers and therapeutic targets.
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INTRODUCTION

Osteosarcoma (OSA) is the most common primary malignant bone tumor, accounting for 20%
of all bone tumors and >5% of pediatric malignant tumors, with the highest incidence among
children, adolescents, and the elderly (>50 years old) (1). The 5-year survival rate for nonmetastatic
OSAs is 50–70%, but for metastatic OSAs (most commonly in the lungs), it is only 15–30%
(2). So far, the pathogenesis and development of OSA remain unclear, and OSA treatment is
still dominated by surgery and chemotherapy. For various reasons, outcomes for patients with
OSA have not improved significantly in recent years mainly due to resistance of OSA cells to
chemotherapy drugs (3). Therefore, further study into OSA pathogenesis is urgently needed,
alongside the development of new and effective treatment regimens.

Less than 2% of the human genome’s nucleic acid sequences encode proteins, and most genes
are transcribed into noncoding RNA (ncRNA) (4). In recent years, circular RNA (circRNA) has
become another research hit of ncRNA, following microRNA (miRNA) and long noncoding
RNA (lncRNA). In 1976, Sanger et al. (5) and Kolakofsky (6) successfully discovered the
existence of circRNA in plant viroids and sendai viruses. Electron microscopy was used in
1979 to clearly observe the circular structure of the circRNA in the cytoplasm of eukaryotic
cells (7). However, at that time, circRNAs were regarded as abnormal RNA formed by the
incorrect splicing of exon transcripts and, therefore, did not attract attention. In the 1990s,
Nigro et al. (8) revealed that eukaryote protein-coding genes could form mature linear mRNA
molecules. In addition, they discovered a special kind of reverse splicing reaction (back-
splicing), which makes the exons sequence upstream and downstream (exon reverse cyclization),
which eventually form a single closed loop structure with covalent bond connection (8). Rapid
advances in RNA sequencing and bioinformatics have made large-scale analysis of transcriptome
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FIGURE 1 | The main mechanisms of circular RNA (circRNA) in tumor pathogenesis. (A) Formation process of circRNA by back-splicing cyclization in cells. (B)

CircRNAs act as sponges of microRNAs (miRNAs) and subsequently affect target gene expression. (C) CircRNAs encode itself by translation of proteins in an internal

ribosome entry site (IRES)-mediated way. (D) Recognition of exogenous circRNAs activates retinoic acid inducible gene I (RIG-I)-mediated autoimmunity. (E) CircRNAs

are transported outside cells to regulate responses through exosomes or extracellular vesicles by membrane fusion and release.

data a reality, and circRNAs have been found in a wide range of
eukaryotes including humans, zebrafish, and fruit flies. Without
A 3’ end, 5’ end, and poly A tail structure, circRNAs can escape
the shear action of nucleic acid exonuclease such as RNase R,
which is evolutionary conservative and stable than linear RNA,
and more than 400 circRNAs can be detected even in human
saliva (9–11). In addition, circRNAs also show cell specificity,
tissue specificity, and sequence specificity (12). Studies on the
biological functions of circRNAs are still at the exploratory
stage. It has been found that circRNAs can act as competing

endogenous RNAs, namely, miRNA sponges, to regulate the
expression of target genes and can also act as transcription
regulators or RNA-binding proteins to indirectly regulate genes
at the posttranscriptional level (13, 14). Under certain conditions,
circRNAs can even translate proteins directly (15). The main
mechanisms of circRNA in tumor pathogenesis are illustrated
in Figure 1.

Recently, researchers have made many new advances in
multidisciplinary fields by using second-generation sequencing
technology and gene chip analysis to screen differential circRNAs
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and validate their biological functions. It is now recognized
that modulation of circRNA levels can result in a variety
of molecular and physiological phenotype changes in cells,
including effects on miRNAs, innate immunity, and many
disease-relevant pathways (16). However, their characteristics in
OSA remain far less documented. In this review, we will discuss
the cellular mechanisms of the circRNAs in OSA tumorigenesis
and progression.

CircRNA AND CANCER

CircRNAs have been studied in a variety of human tumor
types, including those affecting the reproductive and urinary
systems, digestive system, nervous system, respiratory system,
etc. (17–21). Currently, the enormous potential for circRNA use
in targeted therapy and as a noninvasive biomarker has garnered
much attention from the broader scientific community (22).
Numerous studies have shown that some circRNAs are involved
in the pathogenesis of cancer and can be regarded as disease
biomarkers or therapeutic targets (23). Noteworthy studies
concerning the function of circRNAs in OSA pathogenesis
and drug resistance have successively been reported, suggesting
that they may provide valuable biomarkers for diagnosis or
prognosis and show promise for the development of novel
therapeutic approaches.

CircRNA AND OSTEOSARCOMA

To investigate the differentially expressed circRNAs in OSA,
researchers usually conduct a circRNA microarray screening,
an analysis based on OSA/paired adjacent normal tissue or
OSA/normal osteoblast cell lines. These approaches allow the
identification of novel circRNAs that may be involved in
the biological process of OSA progression. CircRNA-targeted
miRNAs and miRNA-targeted genes can also be screened by
microarray or bioinformatics analysis performed by software
such as circRNA Interactome, miRDB, and Targetscan, etc.
(24–26). CircRNAs could act as miRNA sponges to compete
with endogenous RNAs in regulating posttranscriptional levels
of gene expression (27). Functional bioinformatics analysis
was selected for further research followed by experimental
validation (28).

In this review, we summarize the roles of circRNAs in the
proliferation, apoptosis, metastasis, and chemotherapy sensitivity
or resistance, as well as the prognosis of OSA. We also
summarized the emerging OSA–circRNAs identified and collate
circRNA symbols corresponding to circRNA ID in the circBase
database. In addition, the possible mechanisms of action of
circRNAs are characterized.

REGULATION MECHANISM OF CircRNA
ON OSTEOSARCOMA

Most aberrantly expressed circRNAs may serve as crucial
regulators of OSA progression through the modulation of
multifarious cancer hallmarks, functioning to deregulate cellular

energetics, sustain proliferative signaling, promote invasion
and metastasis, induce angiogenesis, and promote tumor
immunology (29). Upregulated and downregulated circRNAs as
well as their various mechanisms in OSA are represented in
Tables 1, 2, respectively.

ONCO-CircRNA (UPREGULATED CircRNA)

At present, most circRNA studies conducted are based on
elevated circRNAs in OSA. Oncogenic circRNAs can participate
in inducing the progression of OSA. Their oncogenic function
involves promotion of cell proliferation, colony formation,
migration, and invasion, as well as affecting the rate of
apoptosis. Some circRNAs have also been identified as closely
correlated with OSA prognosis. For example, compared with
adjacent tissues, circ_0001658 displayed a significantly higher
expression in OSA tissues. Hsa_circ_0001658 could impede
apoptosis by sponging miR-382-5p and positively modulating
Y-box binding protein 1 (YB-1) expression to facilitate the
proliferation, migration, and invasion of OSA cells (33). Wu
et al. (44) revealed that increased circTADA2A expression in
OSA tissue and cells promotes the progression and metastasis
of OSA by sponging miR-203a-3p and by targeting oncogene
cyclic AMP-responsive element-binding protein 3 (CREB3), both
functionally and mechanistically. CircRNAs shsa_circ_0032462,
hsa_circ_0005909, and hsa_circ_0028173 were found to be
overexpressed in human OSA and to promote cell adhesion
molecule 1 (CADM1) expression by functioning as miRNA
sponges (56). Similar regulatory mechanisms were found in other
studies, such as for circCANX (63), hsa_circ_0009910 (64), and
hsa_circ_0056288 (67).

Of note, a study conducted by Du et al. (37) found that
circANKIB1 could play an absorbing role with miR-19b, and that
both molecules were upregulated in OSA cells (77). This study
further found that circANKIB1 promoted miR-19b expression
through absorption, thereby inhibiting the expression of SOCS3,
a downstream target gene, and activating the signal transducer
and activator of transcription 3 (STAT3) pathway to promote
OSA progression. Another similar study indicated that circORC2
could adsorb miR-19a to stabilize its inhibitory function on
target gene phosphatase and tensin homolog (PTEN) expression
and activate downstream Akt pathway (42). Currently, most
studies have shown that circRNAs exert effects on target genes
by competitive binding to miRNAs (78). However, circRNAs
stabilize miRNA functions through adsorption and enhance
regulation of target genes by reducing the degradation ofmiRNAs
(79), whichmay represent a novel mechanism. These studies have
provided a new research method based on circRNA–miRNA–
target gene axis and demonstrate the potential of circRNAs as
OSA-targeted therapies.

The Enneking surgical staging system has been used for
classification of musculoskeletal tumors by surgeons around
the world. It is characterized by reliability, reproducibility, and
prognostic importance for musculoskeletal sarcomas, especially
for those originating in the axial skeleton. Some circRNAs well
reflected the stage of OSA, which indicated its clinicopathological
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TABLE 1 | Characterization of upregulated circular RNAs (circRNAs) as potential diagnostic biomarkers of osteosarcoma (OSA).

CircRNA Expression Gene

symbol

Role of circRNA Sponge microRNA/Target

gene/Intersection molecules

References

1 circITCH Up ITCH Proliferation (+), Migration (+), Invasion (+) Sponge miR-7 (30)

2 Hsa_circ_0000006

(Alias:circ_001621)

Up SLC35E2B Proliferation (+), Migration (+), Metastasis (+)

Overall survival (−)

Sponge miR-578

(+) VEGF

(+) CDK4

(+) MMP9

(31)

3 Hsa_circ_0000285 Up HIPK3 Proliferation (+), Migration (+), Metastasis (+) Sponge miRNA-599

(+) TGFB2

(32)

4 Hsa_circ_0001658 Up ARID1B Apoptosis (−), Proliferation (+), Migration (+),

Invasion (+), Metastasis (+)

Sponge miR-382-5p

(+) YB-1

(33)

5 Hsa_circ_0001162 Up MMP9 Apoptosis (−), Proliferation (+), Migration (+),

Invasion (+)

Overall survival (−)

TNM stage (+)

Sponge miR-1265

(+) CHI3L1

(34)

6 Hsa_circ_0102049 Up ATL1 Apoptosis (−), Proliferation (+), Migration (+),

Invasion (+), Tumor size (+),

Pulmonary metastasis (+),

Overall survival (−)

Sponge miR-1304-5p

(+) MDM2

(35)

7 Hsa_circ_0000479 Up EPSTI1 Proliferation (+), Migration (+) Sponge miR-892b

(+) MCL1

(36)

8 Hsa_circ_0009112 Up ANKIB1 Proliferation (+), Invasion (+) Absorb/stabilize miR-19b

(−) SOCS3

(+) STAT3

(37)

9 Hsa_circ_0071989 Up MYO10 Proliferation (+), EMT (+) Sponge miR-370-3

(+) RUVBL1

(38)

10 circLRP6 Up LRP6 Apoptosis (−), Proliferation (+), Migration (+),

Invasion (+)

(−) KLF2

(−) APC

(39)

11 Hsa_circ_0004846 Up SAMD4A Proliferation (+), OSA stemness (+) Sponge miR-1244

(+) MDM2

(40)

12 Hsa_circ_0001785 Up ELP3 Apoptosis (−), Proliferation (+) Sponge miR-1200

(+) HOXB2

(41)

13 Hsa_circ_0006101 Up ORC2 Apoptosis (−), Proliferation (+), Invasion (+) Absorb/stabilize miR-19a

(−) PTEN

(+) Akt

(42)

14 Hsa_circ_0023404

(circRNA_100876)

Up RNF121 Apoptosis (−), Proliferation (+), Migration (+)

Overall survival (−)

Sponge miR-136 (43)

15 circTADA2A Up TADA2A Proliferation (+), Migration (+), Invasion (+),

Tumorigenesis (+), Metastasis (+)

Sponge miR-203a-3p

(+) CREB3

(44)

16 Hsa_circ_0000885 Up INSR Disease-free survival/Overall survival (−) (45)

17 Hsa_circ_0000502 Up None Apoptosis (−), Proliferation (+), Migration (+),

Invasion (+)

Sponge miR-1238 (46)

18 circFAT1 Up FAT1 Proliferation (+), Migration (+), Invasion (+),

Tumorigenesis (+)

Sponge miR-375

(+) YAP1

(47)

19 Hsa_circ_0001946

(Alias:CDR1as)

Up CDR1 Apoptosis (−), Proliferation (+), Migration (+),

EMT (+)

Sponge miR-7

(+) EGFR, (+) CCNE1, (+) PI3KCD,

(+) RAF1, (+) N-cadherin,

(−) E-cadherin, (+) PCNA

(48, 49)

20 Hsa_circ_0001721 Up CDK14 Apoptosis (−), Proliferation (+), Migration (+),

Invasion (+)

Sponge miR-569

Sponge miR-599

(50)

21 Hsa_circ_0000677

(Alias:circ_001569)

Up ABCC1 Proliferation (+)

Chemotherapy resistance (+)

(51)

22 Hsa_circ_0092509 Up NT5C2 Apoptosis (−), Proliferation (+), Invasion (+),

Tumor growth (+)

Disease-free survival/Overall survival (−)

Sponge miR-448 (52, 53)

23 Hsa_circ_0081001 Up CYP51A1 Overall survival (−) (54)

24 Hsa_circ_0003998 Up ARFGEF2 Proliferation (+), Invasion (+) Sponge miR-197-3p

(+) KLF10

(55)

(Continued)
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TABLE 1 | Continued

CircRNA Expression Gene

symbol

Role of circRNA Sponge microRNA/Target

gene/Intersection molecules

References

25 Hsa_circ_0004674 Up ADAM22 Overall survival (−) Sponge miR-490-3p-ABCC2

Sponge miR-1254–EGFR

(28)

26 Hsa_circ_0032462

Hsa_circ_0028173

Hsa_circ_0005909

Up

Up

Up

SIPA1L1

ATP2A2

XPR1

Sponge miR-338-3p

Sponge miR-142-5p

(+) CADM1

(Potential target by bioinformatics)

(56)

27 Hsa_circ_0007534 Up DDX42 Apoptosis (−), Proliferation (+)

Tumor size (+)

Overall survival (−)

(57)

28 Hsa_circ_0092340 Up NASP Proliferation (+), Invasion (+) Sponge miR-1253

(+) FOXF1

(58)

29 Hsa_circ_0008717 Up ABCB10 Apoptosis (−), Proliferation (+), Migration (+),

Invasion (+)

Sponge miR-203

(+) Bmi-1

(59)

30 Hsa_circ_0051079 Up AKT2 Proliferation (+), Migration (+), Invasion (+)

Overall survival (−)

Sponge miR-26a-5p

(+) TGF-β1

(60)

31 Hsa_circ_0001821 Up PVT1 Proliferation (+),

Chemotherapy resistance (+)

Overall survival (−)

Invasion (+), Metastasis (+), EMT (+)

(+) ABCB1

Sponge miR-205-5p

(−) E-cadherin, (+) N-cadherin, (+)

Vimentin, (+) c-FLIP

(61, 62)

32 Hsa_circ_0001564 Up CANX Apoptosis (−), Proliferation (+) Sponge miR-29c-3p (63)

33 Hsa_circ_0009910 Up MFN2 Apoptosis (−), Proliferation (+) Sponge miR-449a

(+) IL6R

(64)

34 circUBAP2 Up UBAP2 Apoptosis (−), Proliferation (+)

Tumor size (+)

Overall survival (−)

Sponge miR-143

(+) Bcl-2

(65)

35 circRNA_103801 Up — miR-370-3p/hsa-miR-338-3p/ miR-877-3p

(Potential target by bioinformatics)

(66)

36 Hsa_circ_0056288 Up GLI2 Proliferation (+), Migration (+), Invasion (+) Sponge miR-125b-5p (67)

37 Hsa_circ_0016347 Up KCNH1 Proliferation (+), Migration (+), Invasion (+),

Pulmonary metastasis (+)

Sponge miR-214

(+) Caspase-1

(68)

38 Hsa_circ_0041103 Up TCF25 Viability (+), Proliferation (+), Migration

(+), Invasion

Sponge miR-206

(+) MEK/ERK, (+) AKT/mTOR

(69)

TABLE 2 | Characterization of downregulated circular RNAs (circRNAs) as potential diagnostic biomarkers of osteosarcoma (OSA).

CircRNA Expression Gene

symbol

Role of circRNA Sponge microRNA/Target

gene/Intersection molecules

References

1 circLARP4 Down LARP4 Chemosensitivity (+)

Disease-free survival/Overall survival (+)

Enneking stage (−)

Sponge miR-424 (70)

2 Hsa_circ_0001258 Down PPP6R2 Sponge miR-744-3p

(+) GSTM2

(71)

3 Hsa_circ_0002052 Down PAPPA Apoptosis (+), Proliferation (−), Migration (−),

Invasion (−)

Sponge miR-1205

(+) APC2

(72)

4 Hsa_circ_0000284 Down HIPK3 Proliferation (−), Migration (−), Invasion (−)

Lung metastasis and poor prognosis (−)

Enneking stage (−)

(73)

5 circRNA_104980 Down miR-1298-3p/miR-660-3p

(Potential target by bioinformatics)

(66)

6 circITCH Down ITCH Apoptosis (+), Viability (−), Proliferation (−),

Migration (−), Invasion (−)

Sponge miR-22 (74)

7 Hsa_circ0021347 Down SOX6 Enneking stage (−)

Overall survival (+)

Sponge B7-H3 (75)

8 Hsa_circ_0000190 Down CNIH4 Proliferation (−), Migration (−), Invasion (−) Sponge miR-767-5p

(−) TET1

(76)

Frontiers in Oncology | www.frontiersin.org 5 October 2020 | Volume 10 | Article 552236

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liu et al. CircRNA in Osteosarcoma

features (80). Hsa_circ_0000885 expression was significantly
increased in tissue and serum samples from patients with OSA
compared with controls, and expression levels increased with
Enneking stage IIB and III OSA compared with early-stage OSA.
Receiver operating characteristic (ROC) curve analysis suggested
that hsa_circ_0000885 may act as a good diagnostic biomarker
for OSA (45).

TUMOR-SUPPRESSOR CircRNA
(DOWNREGULATED CircRNA)

CircRNAs can also act as tumor suppressants to inhibit tumor
growth. The study of tumor-suppressor circRNA will provide
a new direction for the diagnosis, treatment, and prognosis of
OSA. In OSA, circRNA can act as a miRNA sponge to indirectly
downregulate the expression of target genes, thus playing a
role in cancer inhibition. For instance, underexpressed circRNA
hsa_circ_0002052 was screened out and validated in OSA tissues
and in OSA cells, which might be a potential therapeutic target
for OSA intervention. Hsa_circ_0002052 suppressed Wnt/β-
catenin activation by promoting APC2 expression through
sponging miR-1205, which led to delayed OSA progression (72).
McEachron et al. (81) and Wang et al. (82) concluded that
hsa_circ0021347 was selected and validated to be significantly
downregulated in OSA tissues, and cell lines showed a strong
negative relationship with B7-H3, which served as a negative
regulator of osteoimmunology, helping tumor cells escape
immune surveillance. Furthermore, the hsa_circ0021347–miR-
646-NOB1 axis was suggested to be involved in promoting tumor
differentiation and invasion in OSA; however, this needs to be
validated in future studies (75).

Research has found hsa_circ_0000190 to exhibit an obvious
reduction in extracellular nanovesicles (EVs) and tissues of
OSA patients. Most hsa_circ_0000190 was discovered to be
encapsulated in EVs. EVs containing hsa_circ_0000190 in OSA
cells transported from normal cells could block biological
malignant behaviors by inhibiting the migration, proliferation,
and invasion both in vitro and in vivo. In addition, EVs
containing hsa_circ_0000190 might induce miR-767-5p to
modulate TET1 and impede OSA progression. Li et al. (76)
also offer a new concept for circRNA therapy based on cell–
cell communication by packaging into circRNAs. Several other
downregulated circRNAs, listed in Table 2, will be analyzed in
details in the subsequent sections.

CircRNA AND OSTEOSARCOMA
METASTASIS

The metastasis of OSA depends on many pathological processes
and regulation of cytokines. Epithelial-mesenchymal transition
(EMT) refers to the transformation of epithelial cells into
cells with mesenchymal phenotype. The main characteristic
of EMT is that epithelial cells lose their original polarity
but gain mesenchymal characteristics. The EMT biological
process plays an important role in tumor metastasis, with
tumor cells that lose the bond among cells being much more

able to invade and metastasize (83). Chen et al. (38) showed
that circMYO10 regulated EMT and activated Wnt/β-catenin
signaling, thereby regulating the miR-370-3p/RUVBL1 axis to
promote H4K16Ac at the promoter region of β-catenin/LEF1
target genes. It was also found that cerebellar degeneration-
related protein 1 (CDR1) knockdown led to the inhibition
of transforming growth factor-β (TGF-β)-induced EMT by
upregulating the mesenchymal phenotype with increased N-
cadherin and downregulated the epithelial phenotype with
reduced E-cadherin (48, 49). EMT occurrence and development
are always accompanied by multiple molecular interactions and
signaling pathways, including TGF-β, E-cadherin, and Wnt/β-
catenin signaling pathway, etc. (84). TGF-β is a crucial member
of the TGF-β superfamily that is involved in EMT to regulate
cell growth and differentiation (85). TGF-β1 was validated as
a putative target of miR-26a-5p, which is bioinformatically
analyzed to be sponged by circ_0051079 (60). The Wnt/β-
catenin signaling pathway is one of the predisposing factors of
EMT, which directs cancer cell migration, adhesion, invasion,
and metastasis and is closely bound up with degradation of
the extracellular matrix and tumor angiogenesis. This has been
widely confirmed in many studies (38, 51, 72).

The ability of circRNA to affect tumor angiogenesis is usually
directly related to tumor metastasis based on vascular endothelial
growth factor (VEGF). Research suggests that circ_001621
augments the progression of OSA cells by abolishing the
inhibition of VEGF by miR-578. The VEGF–CDK4–MMP9
axis was extended to be a novel VEGF-related pathway, which
remained to be completely elucidated (31). Functional analysis
by Liu et al. (66) found that circRNA_103801 as an miRNA
sponge was involved in VEGF to promote tumor angiogenesis
and tumor metastasis. Anoikis apoptosis is programmed cell
death caused by the loss of contact between the extracellular
matrix and other cells (86). Anoikis resistance was identified as
a factor facilitating the progression of OSA, as metastatic OSA
cells are able to colonize and survive in other sites (87). CircRNA
has been found to play a role in anoikis resistance, involving
Wnt pathway regulation (88). In addition, Bcl-2 and its related
proteins as well as EMT processes are also involved in regulating
anoikis (89). These findings are in line with studies on circUBAP2
and circ_0007534 (57, 65). Moreover, circ_0001785 showed a
marked downregulation effect on antiapoptotic genes in Bcl-2
family (Bcl-W, Bcl-A1, and Bcl-2) and conversely upregulated
the proapoptotic gene Bad (41).

CircRNA AND OSTEOSARCOMA
CHEMOTHERAPY RESISTANCE

Although existing targeted chemotherapies play a role in
the treatment of OSA, the emergence of drug resistance
causes OSA patients to fall into an impasse. Therefore, it
is important to deeply understand the mechanism of drug
resistance and open new therapeutic theories. It is evident that
some circRNAs participate in regulating the mechanisms of drug
resistance in OSA cells. In some studies, whole-transcriptome
sequencing (RNA sequencing) and next-generation sequencing
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technologies were performed in paired multidrug chemoresistant
and chemosensitive OSA samples. Circ_0001258 inhibited the
doxorubicin (DXR) resistance of OSA cell lines through
upregulation of glutathione S-transferase mu 2 (GSTM2)
expression via sponging hsa-miR-744-3p (71). Overexpression
of circ_0004674 has also been observed in chemoresistant
OSA cell lines and OSA patients and is negatively correlated
with prognosis (28). Furthermore, Hu et al. (70) suggested
that circLARP4 might elevate chemosensitivity to cisplatin
and DXR via sponging miR-424 in OSA, closely correlated
with decreased Enneking stage, better histological response,
and prolonged survival profiles. Kun-Peng et al. (61) reported
that circPVT1 resensitizes OSA cells to the chemotherapy
drugs DXR and cisplatin by reducing the expression of the
classical multidrug resistance-related gene, ABCB1. CircPVT1
could also function as a sponge for miR-205-5p to promote
c-FLIP expression, thereby enhancing EMT and inducing
OSA invasion and metastasis (61, 62). Hsa_circ_001569 has
also been shown to enhance cell resistance to cisplatin in
OSA by activating Wnt/β-catenin signaling (51). Researchers
found that hsa_circ_0081001 varied in paired chemosensitive
and chemoresistant OSA cell lines. It was identified as
significantly upregulated in OSA cell lines, tissues, and serums
and was related to poor prognosis of OSA patients. The
ROC curve analysis showed that it could be used as a
promising biomarker and may be a better prognostic indicator
than alkaline phosphatase (ALP) and lactate dehydrogenase
(LDH) (54).

CircRNA AND OSTEOSARCOMA
PROGNOSIS

To determine the relationship between circRNA expression and
prognosis in OSA, correlation analysis has shown that the
expression of circRNA in OSA was related to certain prognostic
factors, such as Enneking stage, tumor size, and the occurrence
of distant metastasis. Meanwhile, the relationship between the
expression of circRNAs and survival rates, including overall
survival (OS) time and disease-free survival (DFS) time, was
detected by Kaplan–Meier (KM) analysis.

Involvement of circRNAs in cancer progression has
influenced the prognosis of OSA in many studies. Clinical
pathologic characteristics of OSA patients and related literature
were analyzed retrospectively. Xiao-Long et al. (75) found
that circHIPK3 was consistently downregulated in OSA
cell lines, tissues, and plasmas compared with control.
Lung metastasis and advanced cancer or poor prognosis
were negatively associated with lower expression levels of
circHIPK3. CircHIPK3 may be used as a novel indicator for
OSA with high degrees of sensitivity, specificity, and accuracy
based on ROC curve analyses (73). Hsa_circ0021347 also
showed the same prognostic trend (75). In contrast, research
performed by Pan et al. (34) suggested that overexpression
of circMMP9 was correlated with advanced tumor stage and
predicted a low survival rate by KM analysis. Circ_0102049
was remarkably correlated with patients’ poor OS analyzed

by KM curves in a study of 76 OSA patients (35). Two
studies jointly reported the role of circ-NT5C2 in OSA from
the aspect of clinical and molecular biological mechanisms.
Patients with a high expression of circ-NT5C2 had a
shorter OS (p = 0.006) and DFS (p = 0.001) than those
with a low expression of circ-NT5C2. High circ-NT5C2
expression was thought to be an independent prognostic
parameter to predict poor prognosis by sponging miR-
448 (52, 53). Additional upregulated circRNAs included
circUBAP2 (65), hsa_circ_0000885 (45), hsa_circ_0081001
(54), hsa_circ_0004674 (28), hsa_circ_0000006 (31),
hsa_circ_0051079 (60), hsa_circ_0007534 (57), and PVT1 (61).

OSTEOSARCOMA-RELATED CircRNA IN
OTHER CANCERS

With advancement of circRNA research, expression of different
circRNAswas detected in normal and cancerous tissue. It is worth
noting that some circRNAs show similarities and participate
simultaneously in different tumor types, which is similar to the
basic idea of pan-cancer (90). These circRNAs are of guiding
significance on the progression of multiple cancer types.

Li et al. (30) showed that the expression of circ-ITCH in
OSA cancer cell lines was significantly upregulated compared
with hFOB1.19. Further mechanistic studies revealed that circ-
ITCH could promote the growth, migration, and invasion of
OSA cells and even enhance epidermal growth factor receptor
expression by reducing levels of miR-7 (30). However, another
study carried out by Ren et al. (74) stated the opposite
result—that circ-ITCH had lower expression in OSA cells
and was identified in clinical human OSA and para-tumor
tissues. Their data showed that overexpression of circ-ITCH
led to reduced SP-1 expression via PTEN/phosphoinositide
3-kinase (PI3K)/AKT pathways, which in turn suppressed
proliferation, migration, and invasion by downregulating miR-
22 (74). This is in concert with the conclusion that circ-ITCH
might serve as an anti-oncogene via spongingmultiple oncogenic
miRNAs in multiple tumors, including ovarian cancer, prostate
cancer, melanoma, gastric cancer, glioma, breast cancer, bladder
cancer, papillary thyroid cancer, lung cancer, hepatocellular
carcinoma, esophageal squamous cell carcinoma, and colorectal
cancer (91, 92).

Hsa_circ-0000285 has also been acknowledged to be
abundantly expressed in human cells and relevant to human
multicancer progression (93, 94). Hsa_circ-0000285 was believed
to regulate OSA by affecting the miRNA-599/TGFB2-axis
(32). It was established that hsa_circ_0000285 might act as
an oncogene in laryngocarcinoma. CircPVT1 seemed to be
a potential candidate of oncogenic interest. Per available
literature, so far, circPVT1 has been studied to induce
malignancy of different tumors including non-small-cell
lung carcinoma, gastric cancer, and acute lymphoblastic
leukemia (95). Additionally, many other circRNAs have
been shown to participate in a variety of tumors, as follows:
hsa_circ_0000190, hsa_circ_0000285, circMMP9, circEPSTI1,
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FIGURE 2 | Visualization of risk- and protection-associated circular RNAs (circRNAs).

circ-LARP4, hsa_circ_0001785, hsa_circ_100876, circTADA2A,
hsa_circ_0000502, circFAT1, CDR1as, hsa_circ_001569,
hsa_circ_0003998, hsa_circ_0007534, hsa_circ_0009910, and
circUBAP2. These OSA-associated circRNAs exhibit tumor-
regulatory characteristics and are expected to be biomarkers in
the future.

SUMMARY AND FUTURE GAZING

The unique circular structure of circRNA offers distinct functions
and better stability thanmiRNA and lncRNA. Increasing research
has found that circRNAs play a significant role in the occurrence,
malignant progression, and metastasis in many tumors. Current
research on circRNA in OSA has mainly focused on its role as
an endogenous competitive RNA that acts as a molecular sponge
to absorb miRNAs and thus affects the transcription of target
genes. Available literature demonstrated that certain circRNAs

can be regarded as risk- and protection-associated circRNAs
for diagnosis of OSA characteristics, which are illustrated in
Figure 2. In addition, some other biological mechanisms of
circRNAs remain under investigation. For example, circRNAs
may play multiple roles in the tumor microenvironment or act
as noninvasive biomarkers for the early detection of cancers.

It is difficult to distinguish the source of the translation
product of circRNAs because of protein-encoded exons
overlapping. High-throughput analytical and detection
methods such as ribosome profiling have technical challenges
(96, 97). Researchers are also confronted with numerous
challenges, such as difficulty in obtaining substantial tumor
specimens because of the complex genetic background,
extensive heterogeneity between or in tumor tissues, as well
as the low morbidity. More efforts should be invested in the
comprehensive evaluation of the mechanisms of circRNAs
in OSA pathogenesis and chemoresistance in order to make
them available for specific diagnosis and targeted gene therapy.
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With the research going on, we are convinced that circulating
circRNAs might be used as canonical biomarkers for cancers in
the future.
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